Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

GPS-based satellite formation flight simulation and applications to ionospheric remote sensing

YuXiang Peng, Wayne A. Scales and Thom R. Edwards
NAVIGATION: Journal of the Institute of Navigation March 2020, 67 (1) 3-21; DOI: https://doi.org/10.1002/navi.354
YuXiang Peng
Center for Space Science and Engineering Research Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Wayne A. Scales
Center for Space Science and Engineering Research Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thom R. Edwards
Center for Space Science and Engineering Research Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Bandyopadhyay S,
    2. Foust R,
    3. Subramanian GP,
    4. Chung SJ,
    5. Hadaegh FY
    . Review of formation flying and constellation missions using nanosatellites. Journal of Spacecraft and Rockets. 2016;567-578.
  2. 2.↵
    1. Escoubet CP,
    2. Schmidt R,
    3. Goldstein ML
    . Cluster-science and mission overview. In: The Cluster and Phoenix Missions. Dordrecht: Springer; 1997:11-32.
  3. 3.↵
    1. Curtis S
    . The magnetospheric multiscale mission … resolving fundamental processes in space plasmas. Technical Report. 1999:1-56.
  4. 4.↵
    1. Tapley BD,
    2. Bettadpur S,
    3. Ries JC,
    4. Thompson PF,
    5. Watkins M
    . GRACE measurements of mass variability in the Earth system. Science. 2004;305(5683):503-505.
    Abstract/FREE Full Text
  5. 5.↵
    1. Friis-Christensen E,
    2. Lühr H,
    3. Knudsen D,
    4. Haagmans R
    . Swarm—an Earth observation mission investigating geospacer. Advances in Space Research. 2008;41(1):210-216.
    CrossRefWeb of Science
  6. 6.↵
    1. Alfriend KT,
    2. Vadali SR,
    3. Gurfil P,
    4. How JP,
    5. Berger LS
    . Spacecraft Formation Flying: Dynamics, Control and Navigation. UK: Elsevier; 2010.
  7. 7.↵
    1. Anthes RA,
    2. Bernhardt PA,
    3. Chen Y, et al
    . The COSMIC/-FORMOSAT-3 mission: early results. Bulletin of the American Meteorological Society. 2008;89(3):313-333.
    CrossRefWeb of Science
  8. 8.↵
    1. Kelley MC
    . The Earth’s Ionosphere: Plasma Physics and Electrodynamics. 96 Academic Press; 2009.
  9. 9.↵
    1. Kintner PM,
    2. Psiaki M,
    3. Humphreys T, et al.
    A Beginner’s Guide to Space Weather and GPS. Lecture Notes. 2008.
  10. 10.↵
    1. Leitner J
    . A hardware-in-the-loop testbed for spacecraft formation flying applications. IEEE Aerospace Conference Big Sky, MT; 2001;2:615.
  11. 11.↵
    1. Busse FD,
    2. How JP,
    3. Simpson J
    . Demonstration of adaptive extended Kalman filter for low earth orbit formation estimation using CDGPS. NAVIGATION. 2003;50:79-93.
  12. 12.↵
    1. Burns R,
    2. Naasz B,
    3. Gaylor D,
    4. Higinbotham J
    . An environment for hardware-in-the-loop formation navigation and control. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2004; Providence, USA:4735.
  13. 13.↵
    1. Mohiuddin S,
    2. Psiaki ML
    . Satellite relative navigation using carrier-phase Differential GPS with integer ambiguities. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2005; San Francisco, CA:6054.
  14. 14.↵
    1. Gill E,
    2. Naasz B,
    3. Ebinuma T
    . First results from a hardware-in-the-loop demonstration of closed-loop autonomous formation flying. 26th Annual AAS Guidance and Control Conference. 2003; Breckenridge, CO.
  15. 15.↵
    1. Leung S,
    2. Montenbruck O
    . Real-time navigation of formation-flying spacecraft using global positioning system measurements. Journal of Guidance, Control, and Dynamics. 2005;28(2):226-235.
    CrossRef
  16. 16.↵
    1. Yamamoto T,
    2. D’Amico S
    . Hardware-in-the-loop demonstration of GPS-based autonomous formation flying. NAVITEC. 2008; Noordwijk, Netherlands.
  17. 17.↵
    1. Marji Q
    . Precise Relative Navigation for Satellite Formation Flying Using GPS. Master Thesis. University of Calgary, Canada; 2008.
  18. 18.↵
    1. Eyer JK
    . A Dynamics and Control Algorithm for Low Earth Orbit Precision Formation Flying Satellites. Ph.D. Dissertation. University of Toronto, Canada; 2009.
  19. 19.↵
    1. Eddy D,
    2. Giralo V,
    3. D’Amico S
    . Development and verification of the Stanford GNSS navigation testbed for spacecraft formation-flying. Technical Note. 2017.
  20. 20.↵
    1. Park JI,
    2. Park HE,
    3. Park SY,
    4. Choi KH
    . Hardware-in-the-loop simulations of GPS-based navigation and control for satellite formation flying. Advances in Space Research. 2010;46(11): 1451-1465.
  21. 21.↵
    1. Vallado DA
    . Fundamentals of Astrodynamics and Applications. 4th ed. Springer Science & Business Media; 2001.
  22. 22.↵
    1. Montenbruck O,
    2. Gill E
    . Satellite Orbits. Heidelberg, Germany: Springer-Verlag; 2001.
  23. 23.↵
    1. Jones KG
    . Vehicle reference frames and vehicle motion handling in SimGEN (PC) software. Spirent Communication plc. Technical Report. DGP01062AAA. 2011.
  24. 24.↵
    1. Yaakov BS,
    2. Li XR,
    3. Thiagalingam K
    . Estimation with Applications to Tracking and Navigation. New York; Johh Wiley and Sons; 2001.
  25. 25.↵
    1. Cloutier JR
    . State-dependent Riccati equation techniques: an overview. IEEE American Control Conference. 1997;2:923-936.
  26. 26.↵
    1. Gaposchkin EM,
    2. Coster AJ
    . GPS L1-L2 bias determination. Technical Report 971. MIT Lincoln Laboratory; 1993.
  27. 27.↵
    1. Rideout W,
    2. Coster A
    . Automated GPS processing for global total electron content data. GPS Solutions. 2006;10(3):219-228.
  28. 28.↵
    1. Peng Y
    . GNSS-based Spacecraft Formation Flying Simulation and Ionospheric Remote Sensing Applications. Master Thesis. Virginia Polytechnic Institute and State University; 2017.
  29. 29.↵
    1. Rodrigues FS,
    2. De Paula ER,
    3. Abdu MA, et al
    . Equatorial spread F irregularity characteristics over Sao Luis, Brazil, using VHF radar and GPS scintillation techniques. Radio Science. 2004;39 (1):1-9.
  30. 30.↵
    1. Richmond AD,
    2. Ridley EC,
    3. Roble RG
    . A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters. 1992;19(6):601-604.
  31. 31.↵
    1. Xu D,
    2. Morton Y,
    3. Jiao Y,
    4. Rino C
    . Simulation and tracking algorithm evaluation for scintillation signals on LEO satellites traveling inside the ionosphere. IEEE/ION PLANS 2018. Monterey, CA; April 2018:1143-1150.
  32. 32.↵
    1. Forte B,
    2. Aquino M,
    3. Elmas ZG,
    4. Vadakke SV
    . On the use of the of the Cornell Scintillation Model within a Spirent signal simulator for the simulation of ionospheric scintillation events. International Ionospheric Effects Symposium (IES2011). 2011; Alexandria, VA.
  33. 33.↵
    1. Rino CL,
    2. Tsunoda RT,
    3. Petriceks J,
    4. Livingston RC,
    5. Kelley MC,
    6. Baker KD
    . Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F—intermediate wavelength results. Journal of Geophysical Research: Space Physics. 1981;86 (A4):2411-2420.
Next
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 67 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 67, Issue 1
Spring 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
GPS-based satellite formation flight simulation and applications to ionospheric remote sensing
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
GPS-based satellite formation flight simulation and applications to ionospheric remote sensing
YuXiang Peng, Wayne A. Scales, Thom R. Edwards
NAVIGATION: Journal of the Institute of Navigation Mar 2020, 67 (1) 3-21; DOI: 10.1002/navi.354

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
GPS-based satellite formation flight simulation and applications to ionospheric remote sensing
YuXiang Peng, Wayne A. Scales, Thom R. Edwards
NAVIGATION: Journal of the Institute of Navigation Mar 2020, 67 (1) 3-21; DOI: 10.1002/navi.354
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 OVERVIEW OF THE VIRGINIA TECH FORMATION FLYING TESTBED
    • 3 SOFTWARE ALGORITHMS AND DESIGN METHODOLOGY
    • 4 IONOSPHERIC REMOTE SENSING DEMONSTRATION
    • 5 SUMMARY AND FUTURE WORK
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • APPENDIX A
    • Footnotes
    • REFERENCES
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Thirty Years of Maintaining WGS 84 with GPS
  • Doppler Positioning Using Multi-Constellation LEO Satellite Broadband Signals as Signals of Opportunity
  • Federated Learning of Jamming Classifiers: From Global to Personalized Models
Show more Original Article

Similar Articles

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire