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Abstract

This work enables GPS-denied flight on fixed-wing UAS by accounting for
fixed-wing-specific sensing requirements and using a methodology called
relative navigation as an overarching framework. The development of an
odometry-like, front-end, EKF-based estimator that utilizes only a monocular
camera and an inertial measurement unit (IMU) is presented. The filter uses
the measurement model of the multi-state-constraint Kalman filter. The filter
also regularly resets its origin in coordination with the declaration of keyframe
images. The keyframe-to-keyframe odometry estimates and their covariances
are sent to a global back end that represents the global state as a pose graph.
The back end is better suited to represent nonlinear uncertainties and incorpo-
rate opportunistic global constraints. We also introduce a method to account for
front-end velocity bias in the back-end optimization. The paper provides simu-
lation and hardware flight-test results of the front-end estimator and performs
several back-end optimizations on the front-end data.

1 INTRODUCTION

The capabilities of unmanned aircraft systems (UAS) have
dramatically increased over the past decade. This expan-
sion of capabilities has largely been enabled by the devel-
opment, optimization, and miniaturization of traditional
navigation methods, where Global Positioning System
(GPS) measurements are fused with inertial measure-
ments (GPS-INS). Figure 1 shows an example of a small,
fixed-wing UAS. As UAS continue to get smaller and more
advanced, they will be able to operate in confined spaces,
in urban environments, and inside buildings. For UAS to
continue to expand to more applications, they will require
the ability to navigate when GPS is unavailable or unreli-
able. For example, many civil applications, including deliv-
ery and inspection services, require that UAS fly in close
proximity to structures. Structures can reduce the accu-
racy and reliability of GPS signals. UAS can also be used
in military applications for observing and prosecuting the
enemy, but the threat of spoofing and jamming of GPS sig-
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nals provides motivation for navigating without relying on
GPS measurements.

Inertial measurements, by themselves, can be used to
estimate the motion of a UAS, but sensor errors will accu-
mulate and cause the estimates to drift. A UAS can be
augmented with exteroceptive sensors, such as cameras
or laser scanners, to measure the motion of the vehicle
with respect to the surroundings. By fusing the inertial
and exteroceptive measurements, the motion estimate will
improve. In the absence of GPS or other global measure-
ments, the global position and yaw angle are unobserv-
able,1-3 and the estimates will eventually diverge.

Sensor noise filtering and measurement fusion can take
place in an extended Kalman filter (EKF). EKFs, used
extensively on robots4 and UAS5,6 alike, account for both
sensor errors and process uncertainty. They utilize a lin-
ear Gaussian representation of the state belief to take
advantage of the computational convenience of a Kalman
update but maintain the nonlinearity of the process propa-
gation. This combination of properties performs well when
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that constrain the pose either to a global location, such as
an opportunistic GPS measurement, or, as introduced in
this paper, relative to non-stationary objects, such as other
aircraft.

The majority of GPS-denied navigation research has
been performed with multirotor UAS as the experimental
platform. To effectively navigate fixed-wing UAS without
GPS, additional considerations including aircraft dynam-
ics, mission profiles, and sensing requirements must be
taken into account. Prior work that has focused on
fixed-wing UAS has often either made significant simplify-
ing assumptions, including flat-Earth or Manhattan world
environments, or imposed strict sensing requirements,
such as a downward facing camera or distance measure-
ments.14,15 The ability of multirotor UAS to hover in place
enables them to more easily fly in and around buildings
and structure. This allows laser scans and other distance
measurements to effectively measure the aircraft motion.
For fixed-wing UAS that typically fly at high speeds and
high above the ground, the vehicles are often at altitudes
that exceed or approach the limit of the measurement
range of depth sensors making them less effective for sens-
ing aircraft motion.

Using the relative navigation framework as a guide, this
work enables GPS-denied navigation of fixed-wing UAS
by developing a tightly coupled, EKF-based, visual-inertial
odometry (VIO). With the fixed-wing requirements in
mind, we avoid the use of depth sensors, such as laser
scanners and RGB-D cameras, and utilize only a monoc-
ular camera with no assumptions about the distance to
observed features. By producing keyframe-based estimates
of the change in pose, the front-end estimator enables the
fixed-wing aircraft to utilize all the advantages of the global
back end within the relative-navigation framework for
GPS-denied navigation. This paper extends our previous
efforts16 where the concepts for the VIO filter and lim-
ited simulation results were initially presented. This paper
provides a complete filter development and improved sim-
ulation results, as well as hardware, flight-demonstration
results. Along with the flight-demonstration results, our
efforts to mitigate calibration, timing, and initialization
errors are discussed. Another contribution of this paper
is in the back-end pose graph optimization. We provide a
model of a slowly varying scale bias to account for both
scale errors that arise from potentially unobservable veloc-
ity associated with straight-and-level flight and the correla-
tion from one graph edge to the next. The full system local-
ization is demonstrated by utilizing the front-end odom-
etry together with various other opportunistic measure-
ments that provide loop-closure-like constraints. Finally,
to motivate future work, results are presented using mea-
surements and constraints between cooperative aircraft
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FIGURE 1 This work enables GPS-denied flight of fixed-wing
UAS. The method was tested on a modified STRIX StratoSurfer, a
1.5 m wingspan aircraft [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

errors remain small, such as when the availability of GPS
measurements is used to regularly remove drift errors.
The nonlinear nature of the process, however, causes the
Gaussian representation of the belief to become inconsis-
tent when errors are large due to the global states being
unobservable and their estimates drifting from the true
value. If a global measurement is received by an EKF after
significant drift errors have accumulated, nonlinearities
can make utilizing the measurement problematic. This
causes over confidence, especially in states such as veloc-
ities and inertial measurement unit (IMU) biases.7,8 This
may result in large jumps in the estimate and, in severe
cases, can even cause filter divergence. Methods to allow
EKFs to handle sparse opportunistic global measurements
are often ad hoc or cumbersome, including reinitializing
the filter by shifting its origin, treating GPS as a relative
sensor by transforming the measurement into a tempo-
rary coordinate frame,8 or gating (and thus ignoring) the
measurement.9 Some methods simply avoid using an EKF
when GPS measurements are intermittent.10

These observability and consistency problems have been
addressed in recent years by the proposal of a new
approach called relative navigation.11,12 Relative naviga-
tion has been introduced as a solution for operating UAS
when GPS is either unavailable or intermittent at best. It
utilizes an EKF for front-end estimation relative to the
local environment and a back-end optimization that com-
bines the relative information to produce the global esti-
mates. The complete architecture is shown in Figure 2.
Dividing the architecture into a relative front end and
a global back end provides important observability and
computational advantages. The front end navigates with
respect to a local frame where the states can remain
observable and the Gaussian distribution can accurately
represent uncertainty, thus enabling the computational
advantage of an EKF to be utilized. The back end uses a
pose graph that can accurately represent nonlinearities in
heading and be robustly optimized when given additional

constraints. These constraints arise from measurements
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FIGURE 2 Relative navigation architecture for GPS-denied navigation. State estimation and control is performed relative to a locally
declared coordinate frame. Global mission planning and localization are performed in the back end. Left: In previous work, a view-based
odometry has been used to produce an odometry solution for use as a measurement in the filter.12,13 Right: This work develops a fixed-wing,
front-end estimator by removing the view-based odometry and making the estimator a tightly coupled, visual-inertial odometry. This work
also provides a significant hardware flight-test experiment of the front-end estimator and provides a new method for improving the back-end
optimization by modeling time-correlated scale bias caused by small velocity errors in front-end estimates

that demonstrate the potential of the proposed method for
low-bandwidth, multi-vehicle cooperative localization.

2 RELATED WORKS

This paper builds upon previous research in two main
areas: The overarching framework draws from the relative
navigation body of research, and the method for construct-
ing the visual-inertial odometry uses the principles from
the multi-state-constraint Kalman filter (MSCKF). Rele-
vant research contributions in these areas are summarized
in the subsequent sections.

2.1 Relative navigation
Relative navigation is built on an elegant concept: At any
point in time, an agent can have complete confidence in
its position if, at that instant, it places its reference-frame
origin at the vehicle center. An agent can further maintain
good confidence of its local motion by observing the appar-
ent motion of the local surroundings, even if the global
position is unknown or is unobservable over large scales.
As an example, a robot agent can set its initial position
to zero and then localize around this initial origin, even
though the origin's global position is arbitrary.

Relative navigation uses this concept in the front-end fil-
ter in a process called the relative-reset step. The reset step
is closely related to the keyframe update of keyframe-based
odometry methods. As the vehicle travels from the cur-
rent origin, the front-end filter is able to reset the origin
to the current location of the vehicle (the new coordinate
frame being aligned with the heading of the vehicle but
level with the local-level frame), where the reset coincides
with the declaration of a keyframe image. Within the EKF,
the covariance associated with the position and heading
states can then be zeroed, and the states continue to evolve

with respect to the newly declared reference frame. The
state from just prior to the reset then forms a transfor-
mation from one reset to the next and, together with the
associated covariance, is provided to the back end. The
transformations form a directed pose graph, where each
origin is a node (or node frame) and each transformation
is an edge. Because the EKF operates only with respect
to a local origin, it is observable, as well as consistent, by
construction.7 The uncertainty is regularly removed from
the filter while a Gaussian is still able to accurately repre-
sent it, and nonlinearities are handled appropriately in the
back-end graph.

The global position and heading are accounted for in
the back end because it contains the keyframe-to-keyframe
transformations as edges in a pose graph. The global pose,
which is necessary for accomplishing a mission with a
global goal, can be produced by combining, or compos-
ing, the transforms. Figure 3 demonstrates how the graph
edges are able to represent the nonlinear coupling in
SE(3) better than a single pseudo-global state with a Gaus-
sian uncertainty, especially when heading uncertainty is
large.7 The global localization is also improved when the
back end is able to optimize the pose graph when it
receives other constraints, such as opportunistic GPS mea-
surements and place-recognition loop closures.12,13 Graph
optimization has been studied extensively, and computa-
tionally efficient methods are available17,18 for performing
these optimizations. Using these techniques, relative nav-
igation deliberately avoids global updates to the front-end
filter and thereby increases filter robustness.

The division of the front end and back end also pro-
vides additional benefits for scalable UAS operations.
First, because the EKF of the front end implicitly draws
on the Markov assumption (i.e., the current state and
covariance completely represent the previous sequence
of events and measurements), it essentially compresses
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FIGURE 3 An example of a relative-navigation graph. Each edge
provides a transformation from one keyframe (or node) to the next.
Although the transformations and associated covariances (small
ellipses) are linear, the graph is able to represent more complex,
nonlinear uncertainties (such as the banana distribution of the
Monte-Carlo samples) better than a single Gaussian (large
ellipses).3,7 This figure from Wheeler et al.7 is reproduced with
permission [Color figure can be viewed at wileyonlinelibrary.com
and www.ion.org]

the high-rate sensor information into edges that are pub-
lished at a low frequency. This compression, effectively
pre-marginalization of the graph factors, helps to make
the back-end scale for long-duration flights. Also, as the
back-end graph grows and the computation of optimiza-
tion increases, the decoupling of the front end allows the
graph optimization to be completed slower than real time
if needed, while the front end is still providing full-rate
state estimates necessary for vehicle control. Without pro-
viding empirical results, Brink19 hypothesizes that these
scalablility properties could be beneficial for multi-vehicle
cooperative localization.

Prior to this work, the relative-navigation front end has
relied on a loosely coupled VIO where the filter depends
on a separate visual odometry algorithm, such as Zhang
et al.,20 and uses a complete odometry solution as a mea-
surement input. This is depicted in Figure 2 with sep-
arate boxes for view-based odometry and relative-state
estimation. The primary functions of the filter have been
to perform the relative-reset step and fuse the odometry
with inertial measurements.21 The keyframe-based visual
odometries have been responsible for maintaining visual
overlap between the keyframe and the current image by
declaring new keyframes regularly and thus have con-
trolled when nodes are declared. They have, so far, resolved
scale ambiguity by depending on sensors that measure
distance, including laser scanners and RGB-D cameras.12

Since these sensors are impractical for small, low-cost,
fixed-wing UAS, a method that is capable of observing
scale without them, such as a visual-inertial odometry, is
ideal for this work.

2.2 MSCKF
The MSCKF has had a significant impact on the VIO
research field. Results have shown that it is capable of
maintaining an accumulated error of less than 1% of the
total distance traveled. It has also been proposed for a
variety of applications including smart phones,22 ground
vehicles,23 and spacecraft.24 A recent comparison of the
MSCKF to other VIO methods25 shows that its accu-
racy and consistency performance remains comparable to
the state-of-the-art while it is often computationally less
expensive.

The work in Li and Mourikis26 presented the MSCKF as
a dual to EKF SLAM. When EKF SLAM is used as a VIO,
the state vector includes states that evolve with the vehi-
cle motion (ximu) and is augmented with the image feature
locations. The state vector x has the form:

x = [xT
imu 𝑓0 𝑓1 … 𝑓k]T,

where fk is the location of feature k. Although EKF SLAM
is relatively intuitive, several issues arise from the fact
that the location of the feature is initially unknown by
a scale factor and error is introduced when the state
vector is augmented. Various modifications have been
proposed, including delayed feature initialization27 and
inverse depth parameterization,28 but the addition of ini-
tialization error to the state vector with every feature
remains an issue with EKF-SLAM-based VIO.

The MSCKF avoids these issues by instead augment-
ing the state vector with the transformation to the camera
at the instant each image is captured. The state vector is
therefore defined as

x = [xT
imu 𝜋0 𝜋1 … 𝜋k]T, (1)

where 𝜋k is the pose of image k. In this formulation,
little additional error is added to the state vector dur-
ing augmentation because the location of the image is
well known and its error is correlated with error in ximu.
The state vector contains a time history of image poses
that enables feature tracks to be used as measurements
given a measurement model.29 A given feature is tracked
across a sequence of images, and once it leaves the cam-
era field of view, the feature track is residualized as a single
measurement-update step.

The residual is created by first perform-
ing a least-squares optimization to produce the
three-dimensional location of the feature given the image
poses. The optimized location of the feature is used to
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produce the predicted pixel coordinates ẑ that are sub-
tracted from the measured pixel coordinates z to produce
the residual r as

r ≜ z − ẑ .

Because the feature location was optimized given both the
feature pixel coordinates and the image poses in the state
vector, the errors in the feature location are correlated with
errors in the state vector. This correlation is removed by
performing a projection of the residual onto the null space
of the feature position. A linear approximation of the resid-
ual is produced by two Jacobians: Hx, which accounts for
the residual with respect to perturbations in the state vec-
tor, and Hf, which approximates the residual with respect
to perturbations in the feature location. The residual and
Jacobians are fully defined in Appendix B1. These, with a
noise term 𝜼, can be written as

r ≃ Hxx̃ + H𝑓 p̃𝑓n + 𝜼,

where x̃ and p̃𝑓n are the error in the state vector and position
of the feature, respectively. The update is then performed
by first projecting the residual, noise, and Jacobian Hx onto
the null space of Hf, or

r0 ≜ AT(z − ẑ) ≃ ATHxx̃ + AT𝜼,

where A denotes the unitary matrix whose columns form
the basis of the left null space of Hf. Finally, the projected
residual r0 and Jacobian H0 are in an appropriate form

r0 ≃ H0x̃ + 𝜼0 ,

for use in the Kalman update, given that H0 = ATHx and
𝜼0 = AT𝜼.

The MSCKF has also had several extensions and vari-
ations. The original work was extended in the publica-
tion of the MSCKF 2.0, which introduces a method for
ensuring the state-transition matrix has accurate observ-
ability properties.26 On-line camera calibration, including
accounting for rolling-shutter, was introduced in Shelley22

to improve accuracy. Several slightly different formula-
tions of the state vector have been proposed. The work
in Clement et al.,23 for example, propagates the estimates
using velocity commands and therefore avoids the need
for acceleration bias terms. Formulations have used both
continuous and fully discrete propagation steps with dis-
crete measurement updates. Finally, to ensure computa-
tion remains tractable, several strategies have been pro-
posed for regularly pruning camera poses from the state
vector.22,29

3 DEVELOPMENT

The MSCKF measurement model provides a method for
constructing a VIO for a fixed-wing UAS because it does

not make assumptions about the distance to image fea-
tures and is both accurate and consistent, at least while
nonlinearities due to heading uncertainty remain small.
For it to function as a relative-navigation, front-end esti-
mator, the original MSCKF, must be modified to include a
reset step. There is some added complexity and some slight
degradation in the filter's accuracy, compared to the origi-
nal MSCKF inherent in this approach. The degradation is
due to a small amount of information being lost every time
a new node frame is declared. We argue that these changes
and their benefits, specifically the improved robustness as
well as the potential for a light-weight multi-agent back
end, outweigh the disadvantages for many applications.

The development of the filter begins by completely
defining the state vector in Equation (1). The pose of
the vehicle body (b) consists of a quaternion qb

n and a
north-east-down position pb

n with respect to the most
recent node frame (n). The body of the aircraft is assumed
to be centered at and axis aligned with the IMU. In con-
trast to other MSCKF implementations, the velocity is
body-fixed vb, meaning expressed in the body frame. The
complete IMU state is

ximu ≜
[

pb
n qb

n vb 𝛽w 𝛽a
]T
,

where the IMU acceleration and angular rate estimated
bias are 𝛽a and 𝛽w, respectively. The transformation to the
kth camera image ik is its position and orientation in the
node frame,

𝜋k ≜
[

pik
n qik

n
]T
. (2)

When an image is taken, these states are calculated from
the current IMU state using

pik
n = pb

n + RT(qb
n)pc

b

qik
n = qb

n ⊗ qc
b

where ⊗ is Hamiltonian-quaternion multiplication,
(pc

b, q
c
b) is the calibrated pose of the camera in the body

frame, and R(qb
n) denotes the rotation matrix associ-

ated with qb
n. It is important to note that the use of the

quaternion for rotation requires the filter to use the
error-state formulation and be multiplicative. In practice,
this means that while the quaternion has four values, to
be a minimal representation, the covariance for the same
rotation is a three-by-three matrix of the rotational error
uncertainty.30,31

The covariance P of the state vector consists of an upper
left block that corresponds to the IMU state ximu. With
every image transformation that is added to the state vec-
tor, the covariance matrix is augmented as

P ←

[
P PJT

𝜋

J𝜋P J𝜋PJT
𝜋

]
,

where the Jacobian J𝜋 relates the current camera loca-
tion to ximu by accounting for the IMU-to-camera extrinsic
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parameters. If ⌊·⌋ is the skew-symmetric matrix (defined
in Appendix B1), J𝜋 is defined as

J𝜋 ≜

[
I3×3 03×3 −RT(qb

n)⌊pc
b⌋ 03×3 03×3 03×6k

03×3 03×3 R(qc
b) 03×3 03×3 03×6k

]
,

where 03×3 is a 3 by 3 matrix of zeros and I3×3 is the iden-
tity. These terms are important because the correlations
from the images to the IMU states make the feature track
measurements useful in removing error from ximu.

The IMU states are propagated with every IMU mea-
surement. The orientation and velocity are mechanized by
integrating angular rate and acceleration measurements
on the manifold. At each time step, a small amount of pro-
cess noise is added to the covariance of the bias states to
model a slow random walk and to the covariance of the
integrated states to model sensor noise. The dynamics are
modeled as

.pb
n = RT(qb

n)vb

.qb
n = 1

2
qb

n ⊗

[
w
0

]
.vb = ⌊vb⌋w + R(qb

n)g + a
.
𝜷w = 𝜼𝜷w.
𝜷a = 𝜼𝜷a

.
𝜋k = 07×1,

where 𝜼𝜷w
and 𝜼𝜷a

are Gaussian noise processes for their
respective states, g is the gravity vector, w is the angular
velocity vector, and a is the acceleration vector. In prac-
tice, w and a are obtained by removing their respective bias
estimates from the IMU measurements.

The measurement update, including the measurement
Jacobians, is formulated to depend on the optimization
producing the feature location in the node frame p𝑓n . This
is in contrast to prior work that has defined the opti-
mizations in the global frame22 or in the image frame
where the feature was first observed.29 The node frame
was used because the filter state is relative to the most
recent node and the majority of feature-track measure-
ments are initialized on the keyframe image. An inverse
depth parameterization of the feature location is used to
perform Levenberg-Marquardt least squares and is defined
in Appendix C1. The coordinate-frame transformations
necessary for the optimization are depicted in Figure 4.

The relative-reset step consists of removing the head-
ing portion of qb

n as well as zeroing the position pb
n. The

uncertainty of the states is also removed by applying a
projection to the covariance matrix.21 The reset step is
fully defined in Appendix D1. In prior relative navigation
implementations,12,13 the reset step was performed after
the vehicle had traveled more than a specified distance or
yawed more than a specified angle. Since these criteria are
insufficient to ensure image overlap, this work makes the

FIGURE 4 The location of a feature in the node frame p𝑓n is
obtained through a least-squares optimization. The flight path
begins at the declaration of a new node frame. Also shown are the
transformations from the node frame to the keyframe, to all other
image frames, and to the current aircraft pose [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

criteria for reset depend on the number of feature tracks
that are maintained with the most recent keyframe. Once
the feature tracker can no longer maintain nine common
feature tracks, the reset is performed. This criteria is used
to ensure that there is sufficient overlap between images
and also that the number of feature correspondences is
adequate to construct a complete transformation between
the keyframe and the current image.32 It has the added
benefit of ensuring the reset does not happen sooner than
necessary. The state vector is then purged of all image
transformations 𝜋k, and the current image becomes the
next keyframe. The state vector is augmented with the
keyframe image transformation𝜋0, and the keyframe is the
first image i0.

4 FRONT-END IMPLEMENTATION

The mathematical development of the filter, while essen-
tial, is insufficient without the myriad of implementation
details necessary to run and test it. The following sections
describe, in part, the simulation implementation details
and our efforts to minimize and appropriately account for
relevant sources of error that accompany running the filter
on hardware.

4.1 Filter
The feature tracker implemented a pyramidal KLT
tracker33-35 using C++ OpenCV libraries. The feature
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tracker was responsible for informing the filter precisely
when to augment the filter state as well as when to per-
form a reset step. When the feature tracker can no longer
track a given feature, for example, if the feature goes out
of view, the tracker provides to the filter the complete
track as a measurement, consisting of the history of pixel
coordinates for every image where it was observed.

Although it was initially developed in Python,16 the filter
was implemented in C++ and uses the Robot Operating
System (ROS) for communication with sensors. The C++
implementation allowed the filter to run in real time and
at full sensor rate, even on an embedded ARM processor.

4.2 Simulation
The filter was first tested in a ROS/Gazebo simulation
using the tools that are distributed with ROSplane.36,37 The
fidelity of the simulation was enhanced by simulating a
small fixed-wing aircraft, including aircraft aerodynamics,
flight characteristics, and sensors. The aircraft was flown
in a realistic flight over a cityscape image appropriate for
obtaining image features and testing a VIO algorithm.

In the simulation, sensor plug-ins were used to supply
the filter with simulated camera images and IMU mea-
surements from the aircraft. The IMU was oriented to be
axis-aligned with the body of the aircraft, and noise and
bias walk parameters were representative of an MPU-6050
IMU, based on models presented in Furrer et al. and May-
beck38,39. Feature tracks were obtained from the simulated
camera image using the tracker described previously. An
example of the simulated image and image feature tracks
is shown in Figure 5. The camera was oriented facing for-
ward and tilted 45◦ down from the longitudinal axis of the
aircraft. The images were 640 by 480 pixels, and the camera
had a 115◦ field of view.

4.3 Hardware
The front-end filter was implemented on a small remotely
piloted hobby-grade aircraft (Figure 1). The aircraft car-
ried an Nvidia Jetson TX2 embedded computer. The use of
the OpenCV CUDA functionality was utilized to perform
image processing on the GPU. The use of the GPU freed
the CPU to perform other tasks and reduced the tracker
CPU load from 130% to 30% of a single processor core. The
TX2 received images from a Point Grey Chameleon 3 USB
camera and the acceleration and angular-rate gyroscope
measurements from a thermally calibrated InertialSense
IMU. This IMU is also a micro GPS-INS and is capable of
producing a full navigation solution for truth comparison.

The hardware implementation introduced three sources
of error that were not initially considered in the simu-
lation: calibration error, timing error, and initialization
error. Without addressing these errors, the filter would

either diverge or give unsatisfactory performance. Figure 6
demonstrates the sensitivity of the estimator accuracy to
these types of errors when they are deliberately intro-
duced into the simulation without correcting for them as
described in the following sections. The results in Figure 6
show that estimator performance was relativity insensi-
tive to body (IMU) to camera position offset pc

b calibration
error, and therefore, the calibration error discussion below
will focus primarily on body (IMU) to camera angular off-
set qc

b error. Figure 7 further demonstrates that estimator
performance is significantly degraded by these sources of
error.

4.3.1 Calibration error
Initial testing showed that a satisfactory calibration of
the camera's intrinsic parameters can be performed prior
to the flight. Error in the extrinsic parameters, specif-
ically the body (IMU) to camera rotation angles, how-
ever, was detrimental to the filter performance. Since the
transformation from the body to camera is used in the
measurement-model calculation of the residual r and mea-
surement Jacobians Hx and Hf (see Appendix B1), the
error is correlated with every feature measurement, and it
causes significant bias in the estimates. As shown in the
lower left plot in Figure 6, position error increases as angu-
lar errors are added to the body-to-camera offset. With
0.8◦ of error or less, the RMS error appears to increase
quadratically with calibration error. When the calibration
error is greater than approximately 0.8◦, the outlier rejec-
tion within the filter begins to prevent measurements from
negatively affecting the estimates, and RMS error con-
tinues to increase approximately linear with additional
calibration error.

This calibration error was accounted for, and removed
in flight, by introducing the camera rotation to the state
vector, making Equation (1) become

x = [xT
imu qc

b 𝜋0 𝜋1 … 𝜋k]T,

where qc
b is a quaternion of the rotation from the body

(IMU) frame to camera frame. The covariance was ini-
tialized to a relatively large value and allowed to con-
verge over time. We note that the introduction of qc

b to
the state vector makes the use of qik

n in Equation (2)
a non-minimum representation of the state because the
camera pose includes the calibrated camera rotation. This
slight mismodeling, and the fact that the camera calibra-
tion is both static and minimally observable in this case
(monocular camera and unknown features), necessitates
the use of partial updates40 (defined in Appendix E1) to
avoid inaccurate updates to qc

b during in-flight calibration.
The body-to-camera position offset pc

b was not included in
the online calibration for two reasons. First, the physical
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FIGURE 5 Left: Simulated camera image. Right: Real image from a flight test. Image features are shown as dots, and their track histories
are also overlaid. Simulating the camera image rather than simulating the features improved the simulation fidelity [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 6 Using a simulation of an aircraft,
the effect of unmodeled calibration, timing, and
initialization errors (in the two left, upper right,
and lower right plots, respectively) are shown
on the root-mean-squared (RMS) position error
for a 60 s flight and approximately 620 m
trajectory length. Calibration error was
introduced by adding both a position offset from
the body frame (IMU) to camera frame (pc

b) and
an angular offset about a random axis to the
rotation from the body frame (IMU) to camera
frame (qc

b). Timing error was added to the
image-feature measurements. Initialization
error was added to the initial roll and pitch
estimate, but no error was added to the
acceleration bias (see the discussion in
Section 4.3.3) [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

distance was small (about 2 cm) compared to the baseline
to observed features, making it nearly unobservable, and
second, testing using the simulation environment showed
the filter performance was insensitive to errors in pc

b, as
shown in Figure 6.

In general, the mathematical development provided in
this paper, including the appendices, corresponds to the
original state vector Equation (1). The inclusion of qc

b as an
estimate introduces only minor modifications and similar
efforts are discussed in Shelley.22

4.3.2 Timing error
The upper right plot in Figure 6 demonstrates that as lit-
tle as 10 ms of timing error in the sensor measurements is

enough to approximately double the RMS position error,
and when the timing error was 20 ms or more, the tim-
ing error produced biases in the estimated motion that
mostly corresponded with the direction of travel. This is
due to image measurements, which are effectively posi-
tion updates, being applied later than when they were
produced. Since the TX2 was not running a real-time oper-
ating system, the filter depended on accurate time stamps
on each measurement. The image measurements were
prevented from receiving an accurate time stamp by sig-
nificant and varying delays introduced while transferring
the images from the camera to the computer. To overcome
this delay, the camera was configured to provide a strobe
pulse that coincided with the camera shutter. Each pulse
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FIGURE 7 Unmodeled calibration, timing,
and initialization errors cause unacceptably
large pose estimation errors as shown in the
lower left, upper right, and lower right plots
compared to the nominal estimator
performance shown in the upper left plot. The
errors include 5◦ of body (IMU) to camera
angular calibration error, 0.08 s of timing error,
and 1.5◦ of initialization error and are
representative of errors that could be expected in
a hardware demonstration. These error sources
produced root-mean-squared (RMS) position
estimation errors of 36.9, 21.2, and 82.6 m in
their respective tests [Color figure can be viewed
at wileyonlinelibrary.com and www.ion.org]

caused the InertialSense IMU to publish the current time
stamp. Once the time stamps were received on the TX2
computer, they were added to a queue and used to re-stamp
the images once they were fully transferred from the cam-
era. Since both the IMU measurements and the GPS-INS
truth navigation solution also originated from the Iner-
tialSense IMU, every necessary measurement was stamped
relative to the same time reference. Because recombining
time stamps with their corresponding images depended
only on their order in the queue, this method was only
reliable up to an image frame rate of 7 Hz.

Once the measurements were stamped with the correct
time, they were used by the filter even though the images
(and thus the feature track measurements) arrived after
the IMU measurements. The filter uses the out-of-order
measurement scheme described in Wheeler et al.,12 where
sensor measurements and filter state snapshots are stored
in a priority queue. When an old measurement arrives, the
filter rewinds to just before the new measurement, applies
it, and then fast-forwards (and updates the snapshots)
to the latest measurement. Because image measurements
incur more delay and IMU measurements only propagate
the IMU state ximu, this method is computationally feasible
and runs in real time.

4.3.3 Initialization error
The MSCKF measurement model, including augmenting
the state vector with the time-history of image transfor-
mation, performs well once the filter is converged to the
true value but suffers when there are significant errors in
the IMU state. This is particularly problematic during ini-
tialization. Assuming the aircraft is not moving when the
filter starts, position and velocity can be initialized to zero
with negligible covariance, and the angular-rate bias can
be determined from the first few measurements. The fil-
ter must be initialized, however, to an unknown attitude
qb

n and acceleration bias 𝜷a. These states cannot easily be
sensed by measuring the gravity vector because attitude
errors and acceleration bias are correlated. The lower right
plot in Figure 6 shows how filter performance is sensitive
to initial roll and pitch attitude error. In the simulation
tests, the initial covariance for the attitude states did not
accurately model the error. If the initialization errors are
small and the flight is sufficiently long, the initialization
errors often die out as the estimates converge, but not until
after the odometry has accumulated error that can signifi-
cantly reduce the accuracy of the navigation solution.

Our strategy for initialization of the filter (in the hard-
ware flight tests only) included using the InertialSense
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GPS-INS attitude to initialize the filter attitude and using
its reported body-frame velocity as a measurement for the
first 45 s to help the acceleration bias states converge.
Using the velocity as a measurement was advantageous
because the relative-reset step did not affect how the mea-
surements were utilized by the filter. Conversely, using the
reported position would have required transforming the
measurement into the node frame using a potentially inac-
curate attitude estimate. The use of the partial update40

on acceleration bias and on attitude states improved the
consistency of the filter and limited its confidence of the
estimates. The partial update is detailed in Appendix E1.

5 FRONT-END RESULTS

The filter was first tested in the high-fidelity fixed-wing
simulation described above. Because the filter publishes
the position relative to the most recent reset-step node
frame, to plot and analyze the performance of the filter,
the state must be put into the global frame or the truth
must be put in the node frame. In Figure 8, the esti-
mates are put into the global frame by composing current
state with the previously published edge transforms, sim-
ilar to a back-end graph. Figure 8 compares the front-end
results for 60 s of three different simulated trajectories and
shows that the results suffer when the aircraft flies straight
and level, but improve as the aircraft turns.41 This phe-
nomenon is particularly important for fixed-wing aircraft
because they often fly over greater distances to accomplish
mission objectives. For the trajectory with the most turns,
the total accumulated error is shown as less than 1% of
the distance traveled, where the distance traveled is the
integrated flight-path length.

Hardware flight results were also obtained by flying the
aircraft in Figure 1 over a 6 km trajectory. The front-end
estimates were produced on the aircraft in real time. The
true flight trajectory and accumulated estimates are shown
in Figure 9. Because the aircraft was flown by a remote
pilot, the trajectory is only roughly straight and level, that
is, other than during take-off and landing. The effects of
the initialization error can also be seen in the first 100 s of
the flight when the scale error is much greater. The filter
estimates from 150 to 350 s are also shown to compare the
performance after the estimates converge and the effects of
initialization are minimized. The total accumulated error
of the filter estimate from 150 to 350 s was approximately
2.5% of the distance traveled. The entire dataset was 388 s
long, and the total accumulated error for the flight, corre-
sponding to the trajectory labeled “front-end estimate” in
Figure 9, was 5.3% of the distance traveled.

The results in Figure 10 show that the estimates track the
true motion of the aircraft. The effect of the relative reset

can be seen when position and heading angle abruptly
return to zero, as previously defined. During a reset step, a
new origin is declared at the position of the aircraft, ensur-
ing both the true and estimated values return to zero. The
estimated velocity and roll and pitch angles do not reset.
The amount of time between resets varies depending on
there being more than nine continuous feature tracks but
generally is between one and seven seconds.

Figure 11 shows 3𝜎 bounds around the relative error.
The bounds are calculated from the square root of the diag-
onal terms of the covariance matrix ¶. From these plots,
it appears that the filter is consistent, and the uncertainty
grows approximately linearly with the distance traveled.
The effect of the relative-reset step can be seen as the error
and 3𝜎 bound both return to zero for the position and
heading states. The filter also publishes its position and
heading state (and associated covariance) from just prior
to the reset to be used in a relative-navigation, back-end
pose graph.

6 BACK END

The results presented thus far, including those from both
simulation and hardware flight tests, have been for the
front-end estimator exclusively. We now briefly turn our
attention to the back end with subsequent sections pre-
senting results highlighting how the front end and back
end work together to improve localization accuracy.

In all prior relative-navigation work, the global back-end
graph optimization has assumed that the edges published
from the front end have been statistically independent,
meaning errors in one edge were uncorrelated with errors
in all others. This assumption has worked well when the
errors in the estimated linear velocities remained small
due to direct depth measurements13 or flying with s-turns
to help velocity remain observable.16 The assumption
becomes less appropriate, however, when errors are more
significant. In this paper, velocity error is more signifi-
cant for a fixed-wing UAS flying straight and level over
extended periods causing the forward velocity to be less
observable41 and therefore the edge errors to be more cor-
related. Further, because features tracks are discarded and
reinitialized at each keyframe and associated relative-reset
step, the velocity estimates are likely degraded. In this
section, we introduce a method for modeling the corre-
lation of the velocity error between edges in the back
end. Modeling this correlation improves the ability of the
back-end optimization to remove error when intermit-
tent global measurements or other loop-closure-like con-
straints are available. The method is aligned with our belief
that the back end provides value and flexibility for the
GPS-denied localization problem and small errors intro-
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FIGURE 8 Top: Three simulation flight tests
where the true path is compared to the
accumulated estimate. Bottom: The error as a
percent of the distance traveled is shown for the
first 60 s of each flight. There are significant bias
errors when the aircraft flies straight and level
due to velocity being less observable for a
monocular VIO. The estimates improve
significantly when a non-straight trajectory is
used, even with a slight sinusoidal s-turn. In the
flight with the most deviation from straight, the
accumulated error is ultimately less than 1% of
the distance traveled [Color figure can be viewed
at wileyonlinelibrary.com and www.ion.org]

FIGURE 9 Left: The aircraft flight path during a manually flown flight test. Right: The true path is compared to the accumulated estimate.
The estimates from 150 to 350 s are also shown to compare the result of removing most of the effects of the initialization errors. Other than
the take-off and landing circles, the aircraft was flown approximately straight and level over a 6 km distance. Notice the scale bias in the
estimates [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

duced by the relative reset are mitigated and offset by the
back-end optimizations.

Velocity errors can be accounted for over a single edge
by applying a scale bias to the published position. Because
velocity errors persist through a relative-reset step, they
are also correlated between consecutive edges. This corre-
lation is similar to how gyro bias walks and is correlated
over time.

In the back end, we model a two-dimensional slowly
varying bias walk using trinary factors for edges (Ek),
which are similar to IMU preintegration factors that
account for IMU bias.42 Each node variable N includes the
global north and east position (p = [ne]T) and global head-

ing (𝜓), and each bias variable B includes the scale bias
(b = [bxby]T). The factor is then defined by a loss function
𝓁 that effectively rotates the change in global position into
the previous node frame, applies the bias scale, and then
subtracts the measured odometry. The function is defined
as

𝓁(Nk,Nk+1,Bk,m) =[ (cos(𝜓k)(nk+1 − nk) + sin(𝜓k)(ek+1 − ek))bx − mx
(− sin(𝜓k)(nk+1 − nk) + cos(𝜓k)(ek+1 − ek))b𝑦 − m𝑦

(𝜓k+1 − 𝜓k) − m𝜓

]
,

where m is the measurement of the edge odometry
published by the front end at each relative reset and
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FIGURE 10 The true and estimate states of a UAS in flight relative to the most recent node. Position, velocity, and attitude states are
shown from left to right, respectively. The relative reset associated with the declaration of new nodes are shown with vertical lines [Color
figure can be viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 11 State error is shown for position, velocity, and attitude states (from left to right, respectively). The 3𝜎 uncertainty bounds
come from the square root of the diagonal terms of the covariance matrix. Sharp decreases in the position error bounds are due to the
relative-reset steps that are also indicated by vertical lines [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

includes the change in position (mx and my) and head-
ing (m𝜓 ). The factor graph is shown in Figure 12 with the
same depiction style as in Dellaert17 and is implemented
using GTSAM.

Unlike gyrocope bias, velocity errors are not a stochastic
process. The autocorrelation of the velocity errors depends
on the observability of the velocity and thus the flight
trajectory of the aircraft, and the scale error correlation
between edges depends on the time between resets. This
means modeling the bias scale as a random walk is a sim-
plification. In practice, the covariance of the binary factor
(R) between bias variables (Bk) is hand tuned. In the results
shown below, these factors use 𝜮 = 0.0001I2×2, where I2×2

is a 2 by 2 identity. This extension may be most relevant for
fixed-wing aircraft using VIO but could also be applied to
all previous relative-navigation work where velocity errors
persist through the reset step.

Once the factors are defined, they can be added to the
graph with connections to the appropriate variables. The
variables in the graph are the global north, east, and
yaw poses of the keyframe nodes (N) and the bias (B) at
each odometry and are initialized appropriately. Finally,
GTSAM provides functions to optimize the graph such
that the loss of all the combined factors is minimized. The
resulting graph, and thus the global state, is produced by
optimizing after all the factors have been added. The full
details of factor-graph optimization are extensive but can
be ascertained from Dellaert,17 Kummerle et al.,18 Forster
et al.,42 and elsewhere.

Figure 13 shows several examples of the advantage of
including these additional factors when there is significant
scale bias in the estimates. When several GPS measure-
ments are included in the optimization, the scale bias
can cause the optimized trajectory between the measure-
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FIGURE 12 Factor graphs used in the global back end where
values are ovals and measurement factors are squares. Top: Original
graph where nodes (N) are connected by odometry edge factors (E)
from the front-end filter and the edges are modeled as independent.
GPS measurements or other global constraints can be
opportunistically added as unary factors. Bottom: In our method,
edges become a trinary factor, which also considers a bias scale
variable (B). Because velocity errors persist through a relative-reset
step and errors in the edges are correlated, the bias is modeled as a
random walk through the use of binary factors (R) which are
initialized as identity with small, non-zero covariance

ments to bulge out. This is because the optimizer prefers
to add a small amount of heading change to each edge
rather than reduce the distance between each edge trans-
formation. Properly modeling the correlated scale error
between edges with scale-bias factors enables the opti-
mizer to remove the bulging and make the graph consis-
tent with the true trajectory. The bulging effect is partic-
ularly dramatic, as seen in Figure 13, under conditions
where the scale bias is large and GPS measurements are
intermittent enough for a relatively large amount of head-
ing uncertainty to accumulate. The figure demonstrates
that when there is only one GPS measurement, the opti-
mization cannot remove scale errors. Finally, it shows that
when GPS measurements are frequent and regular, the
need for scale-bias factors is mitigated since the GPS mea-
surements correct for the scale bias before significant path
errors accumulate.

The flight-test data used to construct Figure 13 included
significant scale bias in the front-end estimates. As dis-
cussed previously, most of the bias occurred near the
beginning of the trajectory due to initialization errors. The
bias was up to a factor of approximately 1.2 and varied
along the trajectory due to changes in observability of the
forward velocity.

7 FULL SYSTEM RESULTS

To demonstrate the value of the proposed relative front
end, the full localization solution is produced in a sin-
gle back-end graph using the published edges from
pre-recorded hardware flight tests. The results shown in
this section utilize a two-dimensional graph that is opti-
mized post-process and in a single batch, although sim-
ilar back-end architectures have been shown to work on
single multirotor aircraft for both localization and naviga-
tion in near real time.13 The back-end results simulated
global measurements calculated from the reported states
from the InertialSense GPS-INS that were used for truth
comparison.

Figure 14 incorporates three simulated GPS measure-
ments into the graph. The GPS measurements were added
to the graph with a 0.32 m standard deviation error.
These measurements help remove initialization errors and
provide constraints to optimize the scale factors intro-
duced previously. The results represent a mission pro-
file where GPS is available until the aircraft enters an
area where the GPS is spoofed or jammed or otherwise
unavailable.

The results in Figure 15 also incorporate simulated
global measurements, but in this example, the back end
utilizes five distance measurements to two static fea-
tures. The range measurements represent measurements
to a distance-measuring-equipment (DME) transponder or
similar fixed ground-based range station. The range mea-
surements were simulated as having a 0.71 m standard
deviation error. These results again show the ability of the
back end to improve global accuracy. If a given range mea-
surement had been used as an update to the EKF, however,
it may have caused the filter to become inconsistent or
even diverge, depending on the amount of uncertainty. By
incorporating these inputs in the back end and not in the
filter, this approach avoids the worst case scenario while
still improving the localization.

Finally, the results in Figure 16 use relative inter-vehicle
range measurements (with a simulated 0.71 m standard
deviation) between aircraft flying in a small formation
rather than from a stationary ground feature only. The
measurements allow the aircraft to cooperatively local-
ize. The three trajectories depicted are from separate flight
tests of the test aircraft in Figure 1. Each trajectory includes
significant initialization errors with bias scale. The cen-
ter aircraft receives intermittent, simulated global position
measurements such as those from GPS or a computa-
tionally expensive satellite-image-based place recognition
system.24 The results show that not only do the outside air-
craft receive the benefit of the global measurements but
also the relative position of the formation is maintained.

267



ELLINGSON ET AL.

FI
G

U
R

E
13

Ba
ck

-e
nd

op
tim

iz
at

io
ns

of
th

re
e

fli
gh

t-t
es

tt
ra

je
ct

or
ie

sw
ith

an
d

w
ith

ou
ts

ca
le

-b
ia

sf
ac

to
rs

.T
he

gr
ap

hs
w

er
e

co
ns

tr
uc

te
d

fr
om

fr
on

t-e
nd

es
tim

at
es

th
at

in
cl

ud
ed

si
gn

ifi
ca

nt
sc

al
e

bi
as

an
d

us
ed

va
ry

in
g

nu
m

be
rs

of
si

m
ul

at
ed

in
te

rm
itt

en
tG

PS
m

ea
su

re
m

en
ts

.T
he

up
pe

rp
lo

ts
sh

ow
th

e
op

tim
iz

ed
tr

aj
ec

to
rie

sc
om

pa
re

d
to

th
e

tr
ue

pa
th

s.
Th

e
lo

w
er

pl
ot

sh
ow

st
he

RM
S

po
si

tio
n

er
ro

ro
ft

he
op

tim
iz

ed
re

su
lts

as
a

fu
nc

tio
n

of
th

e
nu

m
be

ro
fG

PS
m

ea
su

re
m

en
ts

.T
he

gr
ap

hs
th

at
in

cl
ud

ed
th

e
sc

al
e-

bi
as

fa
ct

or
sw

er
e

ab
le

to
op

tim
iz

e
th

e
sc

al
e

bi
as

ou
to

ft
he

es
tim

at
es

to
m

at
ch

th
e

tr
ue

tr
aj

ec
to

ry
w

ith
gr

ea
te

ra
cc

ur
ac

y
th

an
th

e
gr

ap
hs

th
at

di
d

no
ti

nc
lu

de
th

e
ad

di
tio

na
lf

ac
to

rs
[C

ol
or

fig
ur

e
ca

n
be

vi
ew

ed
at

w
ile

yo
nl

in
el

ib
ra

ry
.c

om
an

d
w

w
w

.io
n.

or
g]

268

http://wileyonlinelibrary.com
www.ion.org


ELLINGSON ET AL.

FIGURE 14 Back-end optimization of the flight-test graph. The
unoptimized trajectory is the raw front-end estimates in a graph but
before optimization (corresponding with the complete estimated
trajectory in Figure 9). Three simulated GPS measurements were
added to help with initialization. Scale-bias factors were used to
remove the scale error of the estimated edges. The shaded
background indicates areas where GPS was available [Color figure
can be viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 15 Back-end optimization of the flight-test graph
includes five simulated range measurements to two static features
or DME stations. The results improve significantly by removing
initialization and scale errors [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

These later results do not account for several aspects
of a full multi-vehicle cooperative solution, including the
necessary communication links between vehicles. They
do show that the proposed method holds promise for
these scenarios. For example, a rough estimate of the total
amount of sensor data processed is 5.8 GB for all three vehi-
cles, where as the back-end graph is constructed from less

FIGURE 16 Back-end graph includes edges from three vehicles,
or more accurately three flight tests, with starting location of the
second and third vehicles artificially offset by 500 m south and
500 m east, respectively. The graph includes simulated inter-vehicle
range measurements and five GPS measurements for the center
vehicle. The localization accuracy of all vehicles improves and the
relative position of the swarm is maintained [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

than 0.15 MB of data. This suggests the potential for both
the scalability of a multi-agent system as well as robustness
to communication loss or delay.

8 CONCLUSION

This paper has demonstrated a method for localizing a
fixed-wing UAS in environments where GPS is either
unavailable or unreliable. This work has used the rela-
tive navigation architecture, previously implemented for
multirotor UAS, as a guide. The front-end filter depends
on a camera and an IMU for sensing and has no other
specific requirements. It uses a VIO approach to estimate
the motion of the aircraft and regularly publish trans-
formations that can be used in a back-end graph. The
filter uses a modified MSCKF measurement model and the
relative-reset step. The filter also makes no assumptions
about the scale or distance to observed image features.

The filter was tested first in simulation. The simulation
testing showed the filter accuracy is trajectory-dependent
due to the lack of observability of the velocity in
straight-and-level flight. In simulation, the total accumu-
lated error is demonstrated as less than 1% of the distance
traveled, provided there is sufficient turning to maintain
observability of the velocity estimate. The front-end fil-
ter was also demonstrated in a hardware flight test. The
implementation details of the flight test, including our
efforts to account for calibration, timing, and initialization
errors, were discussed. After the initialization errors were
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removed, the filter was accurate and ultimately accumu-
lated error of approximately 2.5% of the distance traveled.

The value of this approach can best be evaluated by con-
sidering the whole relative-navigation architecture. The
estimates from the relative-navigation, front-end, VIO esti-
mator are used in a back-end graph. The back-end graph
is responsible for both representing and optimizing the
global state, which is necessary for accomplishing a global
mission. For the back end to more accurately utilize our
front-end estimates, we introduced a scale-bias model to
account for the correlation of the scale errors between
edges.

This work has also demonstrated the use of the back
end and graph optimization to incorporate other con-
straints, such as opportunistic, geo-referenced measure-
ments. Such measurements can be problematic for a
front-end EKF because large covariance and filter incon-
sistency can cause the update to produce large jumps in
the state. Because the proposed relative front-end operates
independently from the back end, jumps in the back-end
state do not directly affect the control of the vehicle. The
full system is able to operate over significant periods with-
out global information and whenever it becomes available
the system can seamlessly utilize it in the back end to
improve localization.

Finally, we have shown the potential for the proposed
method and the relative-navigation architecture to be
used in multi-vehicle cooperative localization scenarios.
The back-end graph is able to efficiently incorporate the
odometry edges from multiple vehicles as well as rela-
tive inter-vehicle and global measurements. Cooperative,
multi-vehicle localization will be explored in future work.
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APPENDIX A: MEASUREMENT JACOBIANS

This section defines the measurement Jacobians Hx and
Hf that are necessary for the MSCKF measurement model.
As described previously, the measurement is the pixel
coordinates of a feature track. Thus, we begin by provid-
ing a camera projection function h(p) to project a feature in
the image frame onto a pixel coordinate while accounting
for the camera matrix and distortion parameters. The pro-
jection function enables the construction of the predicted
measurement and residual. Finally, we provide the partial
derivatives to fully define the Jacobians.

If we first neglect distortion, the camera projection func-
tion consists of normalizing the feature position vector (in
the image frame) p𝑓i by the depth and multiplying it by the
camera matrix K or

h(p𝑓i ) = K

[ u
v
1

]
(A1)

where

p𝑓i ≜

[ px
p𝑦
pz

]
,

u ≜
px

pz
,

and
v ≜

p𝑦
pz
.
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Next, a camera distortion model that includes radial coef-
ficients (k1, k2, and k3) and tangential coefficients (t1 and
t2) is applied to u and v using

r = u2 + v2

dr = (1 + k1r + k2r2 + k3r3)
u′ = dru + 2uvt1 + (r + 2u2)t2

v′ = drv + 2uvt2 + (r + 2v2)t1 .

Finally, the projection function h(p𝑓c ) consists of substitut-
ing u′ and v′ for u and v, respectively, into Equation (A1).

Recall that the measurement zk is the pixel location
provided by the tracker for camera image ik and the
least-squares optimization produces p𝑓n , the position of
the feature in the node frame. The residual r can then
be constructed by transforming the feature position to the
appropriate camera image frame with

p𝑓ik
= Rik

n [p
𝑓
n − pik

n ]

and then projecting it using the projection function h(p𝑓c ).
Thus, the residual for a single feature tracked over several
images is

r =
⎡⎢⎢⎢⎣

z0 − h(Ri0
n [p

𝑓
n − pi0

n ])
z1 − h(Ri1

n [p
𝑓
n − pi1

n ])
⋮

zk − h(Rik
n [p

𝑓
n − pik

n ])

⎤⎥⎥⎥⎦ .
Finally, in constructing the measurement Jacobians, we

define the partial derivative of the camera projection func-
tion as

Jk ≜
𝜕h(p)
𝜕p

,

the skew-symmetric matrix for a vector as

⌊a⌋ = [ 0 −az a𝑦
az 0 −ax
−a𝑦 ax 0

]
,

and the partial derivative of the residual with respect to the
image transformation 𝜋k as

H𝜋k ≜
𝜕r
𝜕𝜋k

=
[
−JkRik

n Jk⌊Rik
n [p

𝑓
n − pik

n ]⌋ ] .
The measurement Jacobians are

Hx =
⎡⎢⎢⎢⎣

02×15 H𝜋0 02×6 … 02×6
02×15 02×6 H𝜋1 … 02×6
⋮ ⋮ ⋱
02×15 02×6 02×6 … H𝜋k

⎤⎥⎥⎥⎦
and

H𝑓 =
⎡⎢⎢⎢⎣

J0Ri0
n

J1Ri1
n

⋮
JkRik

n

⎤⎥⎥⎥⎦ .
In practice, several tracks can be used in a single update
by vertically stacking residuals r and the measurement
Jacobians Hx and Hf.

APPENDIX B: FEATURE OPTIMIZATION

As part of the measurement model described pre-
viously, a least-squares optimization is performed to
produce the position of the feature in the node frame
(p𝑓n ) using the image transformations (𝜋) and the
pixel-coordinate measurements (z). This section defines
the Levenberg-Marquardt least-squares optimization that
is depicted in Figure 4.

For numerical stability, we optimize an inverse-depth
parameterization of the feature position 𝜌 = [ px

pz

p𝑦
pz

1
pz
]T.

Next, we define a function g that receives 𝜌 in the node
frame and the camera image pose and produces the feature
position transformed into the image frame, or

p𝑓ik
= g(𝜌𝑓n , 𝜋k) ≜ R(qik

n )

[ u
v
1

]
− 1

pz
R(qik

n )p
ik
n .

The position of the feature can be projected into pixel coor-
dinates of the image using the camera projection matrix
and distortion parameters defined in Equation (A1) of the
previous section.

We now set up the formal optimization problem

min
𝜌

𝑓 (𝜌𝑓n ) =
n∑

k=0

[
zk − h(g(𝜌𝑓n , 𝜋k))

]2
.

Finally, after the optimization is completed, the position of
the feature p𝑓n is extracted from 𝜌

𝑓
n .

APPENDIX C: RESET STEP

This section describes the process for performing a
relative-reset step. The relative-reset step is performed as
the position and heading state estimates and their uncer-
tainties are removed from the front-end filter and a new
local origin is declared. We discuss first removing the esti-
mate and then the uncertainty from the covariance matrix.

Removing the position from the state vector is performed
by simply applying zeroes to the position vector or

pb
n ← 03×1 .

The orientation of the body in the node frame is repre-
sented by a quaternion qb

n. Removing the heading from
the quaternion is non-intuitive, however, and we instead
decompose it to Euler angles, remove the heading, and
finally reconstruct the quaternion. Using the common air-
craft attitude representation of roll 𝜙, pitch 𝜃, and yaw 𝜓

as the active 3-2-1 Euler angles and a Hamiltonian quater-
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nion, the decomposition is

𝜙 = atan

(
2q0qx + 2q𝑦qz

q2
z − q2

x − q2
𝑦 + q2

0

)
,

𝜃 = asin
(
2q0q𝑦 − 2qxqz

)
,

𝜓 = atan

(
2q0qz + 2qxq𝑦

q2
x − q2

𝑦 − q2
z + q2

0

)
.

The new quaternion is constructed from the roll and pitch
angles and zero for yaw (𝜓 = 0) by applying equations

qx = cos 𝜓
2

cos 𝜃
2

sin 𝜙
2
− sin 𝜓

2
sin 𝜃

2
cos 𝜙

2
,

q𝑦 = cos 𝜓
2

sin 𝜃
2

cos 𝜙
2
+ sin 𝜓

2
cos 𝜃

2
sin 𝜙

2
,

qz = sin 𝜓
2

cos 𝜃
2

cos 𝜙
2
− cos 𝜓

2
sin 𝜃

2
sin 𝜙

2
,

q0 = cos 𝜓
2

cos 𝜃
2

cos 𝜙
2
+ sin 𝜓

2
sin 𝜃

2
sin 𝜙

2
.

When removing the uncertainty from the covariance
matrix P, we only consider the IMU portion of the state
or ximu, as the augmented camera image transforms 𝜋k are
removed from the state vector during the reset. This is done
by constructing a projection matrix N and applying it to P
using

P ← NP15×15NT

where

N ≜

⎡⎢⎢⎢⎣
03×3 03×3 03×3 03×6
03×3 I3×3 03×3 03×6
03×3 03×3 Nq 03×6
06×3 06×3 06×3 I6×6

⎤⎥⎥⎥⎦
and

Nq ≜

[ 1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos2𝜙 − cos𝜙 sin𝜙
0 − cos𝜙 sin𝜙 sin2𝜙

]
.

APPENDIX D: PARTIAL UPDATE

The partial-update Schmidt-Kalman filter (PSKF) was
introduced in Brink.40 The PSKF generalizes the clas-
sic EKF update step and offers a simple and effective
approach to improve the EKF's consistency and robustness
when estimating problematic and mildly-observable filter

states. It is an extension of the core concept behind the
Schmidt-Kalman filter43 resulting in the ability to reweight
the classic filter update to apply anywhere from 0% to
100% of the nominal EKF update for each state at each
update step.

Unlike a Schmidt-Kalman filter, which applies a zero
update to so-called nuisance states and full updates to all
other states, the partial updates can be applied both to
static nuisance states, as well as classic full states. The par-
tial update is performed by first calculating the full Kalman
update using

K = P−HT(HP−HT + R)−1

x̂+ = x̂− + K(r)
P+ = (I − KH)P− .

The state and covariance is then partially updated with

x̂i ← 𝛾ix̂−i + (1 − 𝛾i)x̂+i
Pi𝑗 ← 𝛾i𝛾𝑗P−

i𝑗 + (1 − 𝛾i𝛾𝑗)P+
i𝑗

where 𝛾 i is from a user defined 𝛾 = [𝛾0 … 𝛾n]T and cho-
sen such that 𝛾i ∈ [0, 1]. The value 1 − 𝛾 i can be thought
of as the percentage of the full update applied to state i.
For example, 𝛾 i = 0 implies the full EKF update is applied
to state i while 𝛾 i = 1 implies that state is simply consid-
ered. Anything in between would result in a partial update
of the state. Generally less observable, slowly time-varying
states should receive a lower percentage of the full update,
while more observable states with higher process noise
or uncertainty growth rates would receive larger (or full)
updates.

The partial-update approach was shown to increase filter
robustness to large uncertainties in camera to IMU cali-
bration example in Brink.40 In our filter, the partial update
is applied on the acceleration bias 𝛽1, body attitude qb

n,
and camera to IMU rotation qc

b states. The results were
obtained with 𝛾 values of 0.9, 0.9, and 0.97, respectively
(and 0 for all other filter states), implying that 10%, 10%,
and 3% (and 100%) of the nominal updates were applied to
the respective states at each measurement update step.
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