Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Characterization of on-orbit GPS transmit antenna patterns for space users

Jennifer E. Donaldson, Joel J.K. Parker, Michael C. Moreau, Dolan E. Highsmith and Philip D. Martzen
NAVIGATION: Journal of the Institute of Navigation June 2020, 67 (2) 411-438; DOI: https://doi.org/10.1002/navi.361
Jennifer E. Donaldson
1Goddard Space Flight Center, NASA, Greenbelt, MD, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Joel J.K. Parker
1Goddard Space Flight Center, NASA, Greenbelt, MD, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael C. Moreau
1Goddard Space Flight Center, NASA, Greenbelt, MD, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dolan E. Highsmith
2The Aerospace Corporation, Chantilly, VA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip D. Martzen
3The Aerospace Corporation, El Segundo, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Winkler S,
    2. Ramsey G,
    3. Frey C, et al
    . GPS receiver on-orbit performance for the GOES-R spacecraft. 10th International ESA Conference on Guidance, Navigation and Control Systems. Salzburg, Austria; 2017.
  2. 2.↵
    1. Winternitz LB,
    2. Bamford WA,
    3. Price SR,
    4. Carpenter JR,
    5. Long AC,
    6. Farahmand M
    . Global positioning system navigation above 76,000 km for NASA’s Magnetospheric Multiscale mission. NAVIGATION. 2017;64(2):289-300.
  3. 3.↵
    1. Winternitz LB,
    2. Bamford WA,
    3. Price SR
    . New high-altitude GPS navigation results from the Magnetospheric Multiscale spacecraft and simulations at Lunar distances. Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017). Portland, OR; September 2017:1114–1126.
  4. 4.↵
    1. Bauer FH,
    2. Moreau MC,
    3. Dahle-Melsaether ME, et al
    . The GPS space service volume. Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006). Fort Worth, TX; September 2006: 2503–2514.
  5. 5.↵
    1. Marquis WA,
    2. Reigh DL
    . The GPS Block IIR and IIR-M broadcast L-band antenna panel: its pattern and performance. NAVIGATION. 2015;62:329-347.
  6. 6.↵
    1. Winternitz LB,
    2. Bamford WA,
    3. Heckler G
    . A GPS receiver for high-altitude satellite navigation. IEEE J Select Topic Signal Process. 2009;3:541-556.
  7. 7.↵
    1. Jorgensen P
    . Autonomous navigation of geosynchronous satellites using the NAVSTAR global positioning system. National Telesystems Conference. Galvestion, TX; November 1982: D2.3.1-D2.3.6.
  8. 8.↵
    1. Wu SC,
    2. Yunck TP,
    3. Lichten SM,
    4. Haines BJ,
    5. Malla RP
    . GPS-based precise tracking of Earth satellites from very low to geosynchronous orbits. Proceedings of NTC-92: National Telesystems Conference. Washington, DC; May 1992:4/1–4/8.
  9. 9.↵
    1. Moreau MC
    . GPS receiver architecture for autonomous navigation in high Earth orbits. PhD Thesis. Boulder, CO: Department of Aerospace Engineering Sciences, University of Colorado; 2001.
  10. 10.↵
    1. Moreau MC,
    2. Axelrad P,
    3. Garrison JL,
    4. Long A
    . GPS receiver architecture and expected performance for autonomous navigation in high earth orbits. NAVIGATION. 2000;47:190-204.
  11. 11.↵
    1. Powell TD,
    2. Martzen PD,
    3. Sedlacek SB,
    4. Chao CC,
    5. Silva R
    . GPS signals in a geosynchronous transfer orbit: Falcon Gold data processing. Proceedings of the 1999 National Technical Meeting of The Institute of Navigation. San Diego, CA; January 1999: 575–585.
  12. 12.↵
    1. Balbach O,
    2. Eissfeller B,
    3. Hein GW,
    4. Enderle W,
    5. Schmidhuber M,
    6. Lemke N
    . Tracking GPS above GPS satellite altitude: first results of the GPS experiment on the HEO mission Equator-S. IEEE 1998 Position Location and Navigation Symposium. Palm Springs, CA; April 1996:243–249.
  13. 13.↵
    1. Moreau MC,
    2. Davis EP,
    3. Carpenter JR,
    4. Kelbel D,
    5. Davis GW,
    6. Axelrad P
    . Results from the GPS flight experiment on the high Earth orbit AMSAT OSCAR-40 spacecraft. Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002). Portland, OR; September 2002:122–133.
  14. 14.↵
    1. Kronman JD
    . Experience using GPS for orbit determination of a geosynchronous satellite. Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000). Salt Lake City, UT; September 2000:1622–1626.
  15. 15.↵
    1. Spilker JJ
    . GPS signal structure and theoretical performance. In: Spilker JJ, Axelrad P, Parkinson BW, Enge P, eds. Global Positioning System: Theory and Applications. Vol. 163. Reston, VA: American Institute of Aeronautics and Astronautics, Inc; 1996:57-119.
  16. 16.↵
    1. Czopek FM,
    2. Shollenberger S
    . Description and performance of the GPS Block I and II L-Band antenna and link budget. Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993). Salt Lake City, UT; September 1993:37–43.
  17. 17.↵
    1. Neumann N
    . In-flight results from the GPS receiver on SmallGEO. 68th International Astronautical Congress. Adelaide, Australia; September 2017.
  18. 18.↵
    1. Barker L,
    2. Frey C
    . GPS at GEO: a first look at GPS from SBIRS GEO1. Proceedings of the AAS Guidance Navigation and Control Conference. Breckenridge, CO; February 2012.
  19. 19.↵
    1. Parker JJK,
    2. Valdez JE,
    3. Bauer FH,
    4. Moreau MC
    . Use and protection of GPS sidelobe signals for enhanced navigation performance in high Earth orbit. 39th Annual AAS Guidance and Control Conference. Breckenridge, CO; February 2016.
  20. 20.↵
    1. Unwin M,
    2. Van Steenwijk RD,
    3. Blunt P, et al
    . Navigating above the GPS constellation—preliminary results from the SGR-GEO on GIOVE-A. Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013). Nashville, TN; September 2013:3305–3315.
  21. 21.↵
    1. Verde M,
    2. Unwin M,
    3. Duncan S,
    4. Hyslop A,
    5. Kowaltschek S
    . Revisiting the SGRGEO on GIOVE-A for GPS satellite antenna pattern mapping. Proceedings of the 10th International ESA Conference on Guidance, Navigation, and Control Systems. Salzburg, Austria; 2017.
  22. 22.↵
    1. DiOrio NA,
    2. Axelrad P
    . GPS weak signal detection for orbit determination at geosynchronous altitudes. CU-Boulder: Discovery Learning Student Project Poster; 2012.
  23. 23.↵
    1. Jackson JD
    . Classical Electrodynamics. New York: Wiley; 1962.
  24. 24.↵
    1. Crochiere RE,
    2. Rabiner LR
    . Multirate Digital Signal Processing. Upper Saddle River: Prentice-Hall; 1983.
  25. 25.↵
    1. Stein S
    . Algorithms for ambiguity function processing. IEEE Trans Acoustics Speech Signal Process. 1981;29:588-599.
  26. 26.↵
    1. Psiaki ML
    . Block acquisition of weak GPS signals in a software receiver. Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001). Salt Lake City, UT; September 2001:2838–2850.
  27. 27.↵
    1. Tsui JBY
    . Fundamentals of Global Positioning System Receivers: A Software Approach. New York: Wiley; 2000.
  28. 28.↵
    CGSIC. Limited duration GPS C/A power testing. US Coast Guard Bulletin. January 2017.
  29. 29.↵
    NASA Goddard Space Flight Center. Orbit Determination Toolbox (ODTBX). 2015. http://sourceforge.net/projects/odtbx/
  30. 30.↵
    1. Bar-Sever YE
    . A new model for yaw attitude of global positioning system satellites. The Telecommunications and Data Acquisition Progress Report. November 1995.
  31. 31.↵
    Radio Noise, Recommendation ITU-R P.372–13. International Telecommunications Union, 2016. http://www.itu.int/rec/R-REC-P.372-13-201609-I/en.
  32. 32.↵
    1. Van Dierendonck AJ
    . GPS receivers. In: Spilker JJ, Axelrad P, Parkinson BW, Enge P, eds. Global Positioning System: Theory and Applications. Vol. 163. Reston, VA: American Institute of Aeronautics and Astronautics, Inc; 1996:57-119.
  33. 33.↵
    1. Jones E,
    2. Oliphant T,
    3. Peterson P, et al
    . SciPy: open source scientific tools for Python, v. 0.7.2. 2001-2010. http://www.scipy.org/.
  34. 34.↵
    1. Winternitz LB,
    2. Bamford WA,
    3. Long AC,
    4. Hassouneh M
    . GPS based autonomous navigation study for the Lunar Gateway. AAS Guidance, Navigation and Control Conference. Breckenridge, CO; 2019.
  35. 35.↵
    1. Wanninger L,
    2. Sumaya H,
    3. Beer S
    . Group delay variations of GPS transmitting and receiving antennas. J Geodyn. 2017;91: 1099-1116.
  36. 36.↵
    1. Schmid R,
    2. Dach R,
    3. Collilieux X, et al
    . Absolute IGS antenna phase center model igso8.atx: status and potential improvements. J Geodyn. 2016;90:343-364.
  37. 37.↵
    1. Lake J,
    2. Stansell T
    . SVN-49 signal anomaly. 49th Meeting of the Civil GPS Service Interface Committee (CGSIC). Savannah, GA; 2009.
  38. 38.↵
    1. Dybdal RB
    . GPS satellite pseudorange deviation contributions. Aerospace Report No. TOR-2014–02719, The Aerospace Corporation. 2014.
  39. 39.↵
    1. Brumbaugh C,
    2. Love A,
    3. Randall G,
    4. Waineo D,
    5. Wong S
    . Shaped beam antenna for the global positioning satellite system. 1976 Antennas and Propagation Society International Symposium. Amherst, MA; October 1976:117–120.
  40. 40.↵
    1. Ashman BW,
    2. Parker JJK,
    3. Bauer FH,
    4. Esswein M
    . Exploring the limits of high altitude GPS for future lunar missions. American Astronautical Society Guidance, Navigation, and Control Conference. Breckenridge, CO; 2018.
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 67 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 67, Issue 2
Summer 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of on-orbit GPS transmit antenna patterns for space users
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Characterization of on-orbit GPS transmit antenna patterns for space users
Jennifer E. Donaldson, Joel J.K. Parker, Michael C. Moreau, Dolan E. Highsmith, Philip D. Martzen
NAVIGATION: Journal of the Institute of Navigation Jun 2020, 67 (2) 411-438; DOI: 10.1002/navi.361

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characterization of on-orbit GPS transmit antenna patterns for space users
Jennifer E. Donaldson, Joel J.K. Parker, Michael C. Moreau, Dolan E. Highsmith, Philip D. Martzen
NAVIGATION: Journal of the Institute of Navigation Jun 2020, 67 (2) 411-438; DOI: 10.1002/navi.361
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PREVIOUS WORK TO CHARACTERIZE GPS SIGNALS IN SPACE
    • 3 GPS ACE PROJECT DESCRIPTION
    • 4 ANTENNA PATTERN RECONSTRUCTION
    • 5 RESULTS
    • 6 VERIFICATION
    • 7 PSEUDORANGE DEVIATIONS
    • 8 CONCLUSIONS AND FUTURE WORK
    • ANTENNA PATTERN DATA AVAILABILITY
    • HOW TO CITE THIS ARTICLE
    • SUPPORTING INFORMATION
    • ACKNOWLEDGEMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire