Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Improved urban navigation with shadow matching and specular matching

Kirsten L. Strandjord, Penina Axelrad and Shan Mohiuddin
NAVIGATION: Journal of the Institute of Navigation September 2020, 67 (3) 547-565; DOI: https://doi.org/10.1002/navi.378
Kirsten L. Strandjord
1Draper Fellow, Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139
2Colorado Center for Astrodynamics Research, Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado Boulder, 80309, CO
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Penina Axelrad
3Colorado Center for Astrodynamics Research, Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado Boulder, 80309, CO
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shan Mohiuddin
4Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Adjrad, M., &
    2. Groves, P.
    (2017a). Intelligent urban positioning: Integration of shadow matching with 3D-mapping-aided GNSS ranging. The Journal of Navigation, 71(1), 1–20. https://doi.org/10.1017/S0373463317000509
  2. ↵
    1. Adjrad, M., &
    2. Groves, P.
    (2017b). Enhancing least squares GNSS positioning with 3D mapping without accurate prior knowledge. NAVIGATION, 64(1), 75–91. https://doi.org/10.1002/navi.178
  3. ↵
    1. Aguilar, J.
    (2018). Denver’s tall buildings partly to blame for A-Line, G-Line problems, RTD tells feds. Denver Post, 17 December.
  4. ↵
    1. Betaille, D.,
    2. Peyret, F.,
    3. Ortiz, M.,
    4. Miquel, S., &
    5. Fontenay, L.
    (2013). A new modeling based on urban trenches to improve GNSS positioning quality of service in cities. IEEE Intelligent Transportation Systems Magazine, 5(3), 59–70. https://doi.org/10.1109/MITS.2013.2263460
  5. ↵
    1. Bourdeau, A.,
    2. Sahmoudi, M., &
    3. Tourneret, J.-Y.
    (2012). Tight integration of GNSS and a 3D city model for robust positioning in urban canyons. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), pp. 1263–1269. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=10339
  6. ↵
    1. Bradbury, J.,
    2. Ziebart, M., &
    3. Cross, P.
    (2007). Code multipath modelling in the urban environment using large virtual reality city models: Determining the local environment. The Journal of Navigation, 60(1), 95–105. https://doi.org/10.1017/S0373463307004079
  7. ↵
    1. Denver Regional Council of Governments (DRCOG)
    . (2016). Building roofprints 2016 [Data]. DRCOG. Retrieved from https://data.drcog.org/dataset/building-roofprints-2016
  8. ↵
    1. Google
    (2020). Google maps data help [Online]. Google. Retrieved from https://support.google.com/mapsdata/answer/6261838?hl=en
  9. ↵
    1. Groves, P.
    (2011). Shadow matching: A new GNSS positioning technique for urban canyons. The Journal of Navigation, 64(3), 417–430. https://doi.org/10.1017/S0373463311000087
    1. Groves, P.
    (2013). Multipath vs. NLOS signals. Inside GNSS, November/December, 40–42. Retrieved from https://www.insidegnss.com/auto/novdec13-Solutions.pdf
  10. ↵
    1. Groves, P., &
    2. Adjrad, M.
    (2017a). Enhancing micro air vehicle navigatin in dense urban areas using 3D mapping aided GNSS. In 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017), pp. 2994–3009. https://doi.org/10.33012/2017.15211
  11. ↵
    1. Groves, P., &
    2. Adjrad, M.
    (2017b). Likelihood-based GNSS positioning using LOS/NLOS predictions from 3D mapping and pseudoranges. GPS Solutions, 21, 1805–1816. https://doi.org/10.1007/s10291-017-0654-1
  12. ↵
    1. Groves, P., &
    2. Jiang, Z.
    (2013). Height aiding, C/N0 weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas. The Journal of Navigation, 66(5), 653–669. https://doi.org/10.1017/S0373463313000350
  13. ↵
    1. Groves, P.,
    2. Jiang, Z.,
    3. Rudi, M., &
    4. Strode, P.
    (2013). A portfolio approach to NLOS and multipath mitigation in dense urban areas. In Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), pp. 3231–3247. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=11264
  14. ↵
    1. Groves, P.,
    2. Jiang, Z.,
    3. Wang, L., &
    4. Ziebart, M.
    (2012). Intelligent urban positioning using multi-constellation GNSS with 3D mapping and NLOS. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (Ion GNSS 2012), pp. 458–472. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=10262
  15. ↵
    1. Hsu, L.,
    2. Gu, Y., &
    3. Kamijo, S.
    (2016). 3D building model-based pedestrian positioning method using GPS/GLOANSS/QZSS and its reliability calculation. GPS Solutions, 20, 413–428. https://doi.org/10.1007/s10291-015-0451-7
  16. ↵
    1. International Telecommunication Union—Radiocommunication Sector
    (2015). Effects of building materials and structures (Recommendation ITU-R P.2040-1). Retrieved from https://www.itu.int/rec/R-REC-P.2040-1-201507-I/en
  17. ↵
    1. Kbayer, N.,
    2. Sahmoudi, M., &
    3. Chaumette, E.
    (2015). Robust GNSS navigation in urban environments by bounding NLOS bias of GNSS pseudoranges using a 3D city model. In Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), pp. 2410–2420. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=12830
  18. ↵
    1. Kumar, R., &
    2. Petovello, M. G.
    (2014). A novel GNSS positioning technique for improved accuracy in urban canyon scenarios using 3D city model. In Proceedings of the 27th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 2139–2148. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=12508
  19. ↵
    1. Meguro, J.
    (2009). GPS multipath mitigation for urban area using omnidirectional infrared camera. IEEE Transactions on Intelligent Transportation Systems, 10(1), 22–30. https://doi.org/10.1109/TITS.2008.2011688
  20. ↵
    1. Miura, S.,
    2. Hsu, L.-T.,
    3. Chen, F., &
    4. Kamijo, S.
    (2015). GPS error correction with pseudorange evaluation using three-dimensional maps. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3104–3115. https://doi.org/10.1109/TITS.2015.2432122
  21. ↵
    1. Obst, M.,
    2. Bauer, S., &
    3. Wanielik, G.
    (2012). Urban multipath detection and mitigation with dynamic 3D maps for reliable land vehicle localization. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, pp. 685–691. https://doi.org/10.1109/PLANS.2012.6236944
    1. OpenStreetMap
    (2020). OpenStreetMap. [Online]. Retrieved from https://www.openstreetmap.org/
  22. ↵
    1. Peyraud, S.,
    2. Bétaille, D.,
    3. Renault, S.,
    4. Ortiz, M.,
    5. Mougel, F.,
    6. Meizel, D., &
    7. Peyret, F.
    (2013). About non-line-of-sight satellite detection and exclusion in a 3D map-aided localization algorithm. Sensors, 13(1) 829–847. https://doi.org/10.3390/s130100829
  23. ↵
    1. Pharr, M., &
    2. Humphreys, G.
    (2010). Physically based rendering: From theory to implementation. Burlington, MA: Morgan Kaufmann.
  24. ↵
    1. Strandjord, K., &
    2. Axelrad, P.
    (2018). Framework and techniques for cooperative group situational awareness in urban environments. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), pp. 253–270. https://doi.org/10.33012/2018.15835
  25. ↵
    1. Strizic, L.,
    2. Akos, D., &
    3. Lo, S.
    (2018). Crowdsourcing GNSS jamming detection and localization. In Proceedings of the 2018 International Technical Meeting of The Institute of Navigation, pp. 626–641. https://doi.org/10.33012/2018.15546
  26. ↵
    1. Suzuki, T.
    (2016). Integration of GNSS positioning and 3D map using particle filter. In Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), pp. 1296–1304. https://doi.org/10.33012/2016.14857
  27. ↵
    1. Suzuki, T., &
    2. Kubo, N.
    (2012). GNSS positioning with multipath simulation using 3D surface model in urban canyon. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 438–447. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=10260
  28. ↵
    1. Tanwar, S., &
    2. Gao, G.
    (2018). Decentralized collaborative localization in urban in urban environments using 3D-Mapping-Aided (3DMA) GNSS and inter-agent ranging. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), pp. 2352–2363. https://doi.org/10.33012/2018.15951
  29. ↵
    1. U. S. C. Bureau
    (2019). Annual estimates of the resident population for incorporated places of 50,000 or more, ranked by July 1, 2018 population: April 1, 2010 to July 1, 2018. Population Division.
  30. ↵
    1. Wang, L.,
    2. Groves, P., &
    3. Ziebart, M.
    (2012a). Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models. The Journal of Navigation, 65(3), 459–476. https://doi.org/10.1017/S0373463312000082
  31. ↵
    1. Wang, L.,
    2. Groves, P., &
    3. Ziebart, M.
    (2012b). GNSS shadow matching: Improving urban positioning accuracy using a 3D city model with optimized visibility prediction scoring. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), pp. 423–437. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=10259
  32. ↵
    1. Wang, L.,
    2. Groves, P., &
    3. Ziebart, M.
    (2015). Smartphone shadow matching for better cross-street GNSS positioning in urban environments. The Journal of Navigation, 68(3), 411–433. https://doi.org/10.1017/S0373463314000836
  33. ↵
    1. Yozevitch, R., &
    2. Ben Moshe, B.
    (2015). A robust shadow matching algorithm for GNSS positioning. NAVIGATION, 62(2), 95–109. https://doi.org/10.1002/navi.85
  34. ↵
    1. Zimmermann, F.,
    2. Schmitz, B.,
    3. Klingbeil, L., &
    4. Kuhlmann, H.
    (2019). GPS multipath analysis using fresnel zones. Sensors, 19(1), 25. https://doi.org/10.3390/s19010025
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 67 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 67, Issue 3
Fall 2020
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improved urban navigation with shadow matching and specular matching
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Improved urban navigation with shadow matching and specular matching
Kirsten L. Strandjord, Penina Axelrad, Shan Mohiuddin
NAVIGATION: Journal of the Institute of Navigation Sep 2020, 67 (3) 547-565; DOI: 10.1002/navi.378

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Improved urban navigation with shadow matching and specular matching
Kirsten L. Strandjord, Penina Axelrad, Shan Mohiuddin
NAVIGATION: Journal of the Institute of Navigation Sep 2020, 67 (3) 547-565; DOI: 10.1002/navi.378
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 BACKGROUND
    • 3 DATA COLLECTION
    • 4 METHOD
    • 5 ANALYSIS
    • 6 RESULTS
    • 7 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGEMENTS
    • APPENDIX
    • Footnotes
    • REFERENCES
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire