Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Deriving Accurate Time from Assisted GNSS Using Extended Ambiguity Resolution

Ryan Blay, Boyi Wang and Dennis M. Akos
NAVIGATION: Journal of the Institute of Navigation March 2021, 68 (1) 217-229; DOI: https://doi.org/10.1002/navi.412
Ryan Blay
1Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Boyi Wang
1Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado, USA
2School of Electronic Information and Communications, Huazhong University of Science and Technology, Hubei, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Dennis M. Akos
1Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Agarwal, N.,
    2. Basch, J.,
    3. Beckmann, P.,
    4. Bharti, P.,
    5. Bloebaum, S.,
    6. Casadei, S.,
    7. Chou, A.,
    8. Enge, P.,
    9. Fong, W.,
    10. Hathi, N.,
    11. Mann, W.,
    12. Sahai, A.,
    13. Stone, J.,
    14. Tsitsiklis, J., &
    15. Van Roy, B.
    (2002). Algorithms for GPS operation indoors and downtown. GPS Solutions, 6(3), 149–160. https://doi.org/10.1007/s10291-002-0028-0.
  2. ↵
    1. Akopian, D., &
    2. Syrjarinne, J.
    (2002, April). A network aided iterated LS method for GPS positioning and time recovery without navigation message decoding. 2002 IEEE Position Location and Navigation Symposium, Palm Springs, CA, 77–84. https://doi.org/10.1109/PLANS.2002.998892
  3. ↵
    1. Akopian, D., &
    2. Syrjarinne, J.
    (2009). A fast positioning method without navigation data decoding for assisted GPS receivers. IEEE Transactions on Vehicular Technology, 58(8), 4640–4645. https://doi.org/10.1109/TVT.2009.2019073
  4. ↵
    1. Bissig, P.,
    2. Eichelberger, M., &
    3. Wattenhofer, R.
    (2017, April). Fast and robust GPS fix using one millisecond of data. 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Pittsburgh, PA, 223–234.
  5. ↵
    1. Borre, K.,
    2. Akos, D. M.,
    3. Bertelsen, N.,
    4. Jensen, S. H., &
    5. Rinder, P.
    (2007). A software-defined GPS and Galileo receiver: A single-frequency approach. Birkhauser Boston.
  6. ↵
    1. Cheong, J. W.,
    2. Wu, J., &
    3. Dempster, A.
    (2014). Dichotomous search of coarse time error in collective detection for GPS signal acquisition. GPS Solutions, 19(1), 61–72. https://doi.org/10.1007/s10291-014-0365-9
  7. ↵
    1. Dovis, F.,
    2. Lesca, R.,
    3. Margaria, D.,
    4. Boiero, G., &
    5. Ghinamo, G.
    (2008, May). An assisted high-sensitivity acquisition technique for GPS indoor positioning. 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, 1350–1361. https://doi.org/10.1109/PLANS.2008.4570123
  8. ↵
    1. Glennon, E. P., &
    2. Bryant, R. C.
    (2005, September). Solution of timing errors for AGPS. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, 136–141.
  9. ↵
    1. GPS.gov
    . (2010). Global Positioning System Wing (GPSW) systems engineering & integration interface specification IS-GPS-200 revision E. https://www.gps.gov/technical/icwg/
  10. ↵
    1. Huang, G., &
    2. Akopian, D.
    (2013, September). A-GPS assistance network delay modeling and estimation over mobile networks. Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS + 2013), Nashville, TN, 1944–1950. https://www.ion.org/publications/abstract.cfm?articleID=11233
  11. ↵
    1. Huang, G.,
    2. Akopian, D., &
    3. Chen, C. L. P.
    (2014). Measurement and modeling of network delays for MS-based A-GPS assistance delivery. IEEE Transactions on Instrumentation and Measurement, 63(8), 1896–1906. https://doi.org/10.1109/TIM.2014.2302238
  12. ↵
    1. Huang, G.,
    2. Akopian, D., &
    3. Chen, C. L. P.
    (2015). Network delay modeling for assisted GPS. IEEE Transactions on Aerospace and Electronic Systems, 51(1), 52–64. https://doi.org/10.1109/TAES.2014.120686
  13. ↵
    1. Huang, G.,
    2. Miller, M. M., &
    3. Akopian, D.
    (2016). Inference of network delays for SUPL 3.0-based assisted GNSS. GPS Solutions, 21, 651–661. https://doi.org/10.1007/s10291-016-0549-6
  14. ↵
    1. Kaplan, E.
    (2017). Understanding GPS/GNSS: Principles and applications. Artech House.
  15. ↵
    1. Li, J.
    (2010, February). Eliminating abnormal positioning bias with translation technology in AGPS method. 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 570–574. https://doi.org/10.1109/ICCAE.2010.5451818
  16. ↵
    1. Li, J.
    (2012, April). The analysis of positioning bias without current navigation data. 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 1369–1372. https://doi.org/10.1109/CECNet.2012.6201886
  17. ↵
    1. Muthuraman, K.,
    2. Brown, J., &
    3. Chansarkar, M.
    (2012, January). Coarse time navigation: Equivalence of algorithms and reliability of time estimates. Proceedings of the 2012 International Technical Meeting of The Institute of Navigation, Newport Beach, CA, 1115–1138. www.ion.org/publications/abstract.cfm?articleID=10010
  18. ↵
    1. Natali, F.
    (1986). Noise performance of a cross-product AFC with decision feedback for DPSK signals. IEEE Transactions on Communications, 34(3), 303–307. https://doi.org/10.1109/TCOM.1986.1096521
  19. ↵
    1. Open Mobile Alliance
    . (2012). Secure user plane location architecture (OMA-AD-SUPL-V2_0-20120417-A). https://www.openmobilealliance.org/release/SUPL/V2_0-20120417-A/OMA-AD-SUPL-V2_0-20120417-A.pdf
  20. ↵
    1. Otaegui, O.,
    2. Lucas, N., &
    3. Rohmer, G.
    (2006, September). A hybrid architecture for high sensitivity standalone and assisted Galileo/GPS receivers. Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 2361–2369. https://www.ion.org/publications/abstract.cfm?articleID=6982
  21. ↵
    1. Sirola, N.
    (2001). A method for GPS positioning without current navigation data (Master’s thesis). Tampere University of Technology, Tampere.
  22. ↵
    1. Sirola, N., &
    2. Syrjarinne, J.
    (2002, September). GPS position can be computed without the navigation data. Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, 2741–2744.
  23. ↵
    1. Syrjarinne, J.
    (2000, July). Time recovery through fusion of inaccurate network timing assistance with GPS measurements. Proceedings of the Third International Conference on Information Fusion, Paris, France. https://doi.org/10.1109/IFIC.2000.859864
  24. ↵
    1. Syrjarinne, J.
    (2001). Wireless-assisted GPS: Keeping time with mobiles. GPS World, 12(1), 22–31.
  25. ↵
    1. Vallina-Rodriguez, N.,
    2. Crowcroft, J.,
    3. Finamore, A.,
    4. Grunenberger, Y., &
    5. Papagiannaki, K.
    (2013). When assistance becomes dependence: Characterizing the costs and inefficiencies of A-GPS. Mobile Computing and Communications Review, 17, 3–14.
  26. ↵
    1. Van Diggelen, F., &
    2. Abraham, C.
    (2007, September). Coarse-time AGPS; Computing TOW from pseudorange measurements, and the effect on HDOP. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX, 357–367.
  27. ↵
    1. Van Diggelen, F. S. T.
    (2009). A-GPS: Assisted GPS, GNSS, and SBAS. Artech House.
  28. ↵
    1. Wang, B.,
    2. Ruane, L.,
    3. Blay, R., &
    4. Akos, D. M.
    (2019, September). Assisted GNSS: An open source SDR-based approach. Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS + 2019), Miami, FL, 2940–2949. https://doi.org/10.33012/2019.17015https://doi.org/10.33012/2019.17015
  29. ↵
    1. Weber, G.,
    2. Dettmering, D.,
    3. Gebhard, H., &
    4. Kalafus, R.
    (2005, September). Networked transport of RTCM via internet protocol (Ntrip)… IP-streaming for real-time GNSS applications. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, 2243–2247.
  30. ↵
    1. Weng, C.,
    2. Chien, Y.,
    3. Chen, C.,
    4. Huang, K., &
    5. Yau, W.
    (2011, September). An efficient method of self-generated assistance data for fast-fix applications. Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, 3967–3974. https://www.ion.org/publications/abstract.cfm?articleID=9954
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 68 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 68, Issue 1
Spring 2021
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deriving Accurate Time from Assisted GNSS Using Extended Ambiguity Resolution
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Deriving Accurate Time from Assisted GNSS Using Extended Ambiguity Resolution
Ryan Blay, Boyi Wang, Dennis M. Akos
NAVIGATION: Journal of the Institute of Navigation Mar 2021, 68 (1) 217-229; DOI: 10.1002/navi.412

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Deriving Accurate Time from Assisted GNSS Using Extended Ambiguity Resolution
Ryan Blay, Boyi Wang, Dennis M. Akos
NAVIGATION: Journal of the Institute of Navigation Mar 2021, 68 (1) 217-229; DOI: 10.1002/navi.412
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 REVIEW OF A-GNSS RECEIVER
    • 3 IMPACT OF DIFFERENT AMBIGUITY TIMES
    • 4 SAMPLE SOLUTION
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • REFERENCES
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Thirty Years of Maintaining WGS 84 with GPS
  • Doppler Positioning Using Multi-Constellation LEO Satellite Broadband Signals as Signals of Opportunity
  • Federated Learning of Jamming Classifiers: From Global to Personalized Models
Show more Original Article

Similar Articles

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire