Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

GNSS interference mitigation: A measurement and position domain assessment

Daniele Borio and Ciro Gioia
NAVIGATION: Journal of the Institute of Navigation March 2021, 68 (1) 93-114; DOI: https://doi.org/10.1002/navi.391
Daniele Borio
European Commission, Joint Research Centre (JRC), Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Ciro Gioia
European Commission, Joint Research Centre (JRC), Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bastide, F.,
    2. Chatre, E.,
    3. Macabiau, C., &
    4. Roturier, B.
    (2004, January). GPS L5 and GALILEO E5a/E5b signal-to-noise density ratio degradation due to DME/TACAN signals: Simulations and theoretical derivation. Proceedings of the 2004 National Technical Meeting of The Institute of Navigation, San Diego, CA, 1049–1062.
  2. ↵
    1. Bastide, F.,
    2. Macabiau, C.,
    3. Akos, D. M., &
    4. Roturier, B.
    (2003, September). Assessment of L5 receiver performance in presence of interference using a realistic receiver simulator. Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, 142–152.
  3. ↵
    1. Betz, J. W.
    (2000, January). Effect of narrowband interference on GPS code tracking accuracy. Proceedings of the National Technical Meeting of The Institute of Navigation, Anaheim, CA, 16–27.
  4. ↵
    1. Betz, J. W.
    (2001, January). Effect of partial-band interference on receiver estimation of C/N0: Theory. Proceedings of the National Technical Meeting of The Institute of Navigation, Long Beach, CA, 817–828.
  5. ↵
    1. Borio, D.
    (2017a). Myriad non-linearity for GNSS robust signal processing. IET Radar Sonar and Navigation, 11(10), 1467–1476. https://doi.org/10.1049/iet-rsn.2016.0610
  6. ↵
    1. Borio, D.
    (2017b, May). Robust signal processing for GNSS. Proceedings of the 2017 European Navigation Conference (ENC), Lausanne, Switzerland, 150–158. https://doi.org/10.1109/EURONAV.2017.7954204
  7. ↵
    1. Borio, D.,
    2. Camoriano, L., &
    3. Lo Presti, L.
    (2008). Two-pole and multi-pole notch filters: A computationally effective solution for GNSS interference detection and mitigation. IEEE Systems Journal, 2(1), 38–47. https://doi.org/10.1109/JSYST.2007.914780
  8. ↵
    1. Borio, D.,
    2. Camoriano, L., &
    3. Mulassano, P.
    (2006, September). Analysis of the one-pole notch filter for interference mitigation: Wiener solution and loss estimations. Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 1849–1860.
  9. ↵
    1. Borio, D., &
    2. Cano, E.
    (2013). Optimal Global Navigation Satellite System pulse blanking in the presence of signal quantisation. IET Signal Processing, 7(5), 400–410. https://doi.org/10.1049/iet-spr.2012.0199
  10. ↵
    1. Borio, D., &
    2. Closas, P.
    (2018). Complex signum non-linearity for robust GNSS signal processing. IET Radar Sonar and Navigation, 12(8), 900–909. https://doi.org/10.1049/iet-rsn.2017.0552
  11. ↵
    1. Borio, D., &
    2. Closas, P.
    (2019). Robust transform domain signal processing for GNSS. NAVIGATION, 66(2), 305–323. https://doi.org/10.1002/navi.300
    1. Borio, D.,
    2. Dovis, F.,
    3. Kuusniemi, H., &
    4. Presti, L. L.
    (2016). Impact and detection of GNSS jammers on consumer grade satellite navigation receivers. Proceedings of the IEEE, 104(6), 1233–1245. https://doi.org/10.1109/JPROC.2016.2543266
  12. ↵
    1. Borio, D., &
    2. Gioia, C.
    (2020, January). Robust interference mitigation: A measurement and position domain assessment. Proceedings of the 2020 International Technical Meeting of The Institute of Navigation, San Diego, CA, 274–288. https://doi.org/10.33012/2020.1714
    1. Borio, D.,
    2. O’Driscoll, C., &
    3. Fortuny, J.
    (2012, December). GNSS jammers: Effects and countermeasures. Proceedings of the 6th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands, 1–7. https://doi.org/10.1109/NAVITEC.2012.6423048
  13. ↵
    1. Calmettes, V.,
    2. Pradeilles, F., &
    3. Bousquet, M.
    (2001, September). Study and comparison of interference mitigation techniques for GPS receiver. Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS), Salt Lake City, UT, 957–968.
  14. ↵
    1. Cutright, C.,
    2. Burns, J. R., &
    3. Braasch, M.
    (2003, June). Characterization of narrow-band interference mitigation performance versus quantization error in software radios. Proceedings of the 59th Annual Meeting of The Institute of Navigation and CIGTF 22nd Guidance Test Symposium, Albuquerque, NM, 323–332.
  15. ↵
    1. De Wilde, W.,
    2. Sleewaegen, J. M.,
    3. Bougard, B., &
    4. Van Hees, J.
    (2015, September). Advanced interference detection and mitigation in Septentrio’s high precision receivers. Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), Tampa, FL, 1656–1683.
  16. ↵
    1. Di Grazia, D.,
    2. Cardineau, D., &
    3. Pisoni, F.
    (2019, September). A NAVIC enabled hardware receiver for the Indian mass market. Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, 189–199. https://doi.org/10.33012/2019.16979
  17. ↵
    1. Gao, G. X.,
    2. Heng, L.,
    3. Hornbostel, A.,
    4. Denks, H.,
    5. Meurer, M.,
    6. Walter, T., &
    7. Enge, P.
    (2013). DME/TACAN interference mitigation for GNSS: Algorithms and flight test results. GPS Solutions, 17, 561–573. https://doi.org/10.1007/s10291-012-0301-9
  18. ↵
    1. Gao, G. X.,
    2. Sgammini, M.,
    3. Lu, M., &
    4. Kubo, N.
    (2016). Protecting GNSS receivers from jamming and interference. Proceedings of the IEEE, 104(6), 1327–1338. https://doi.org/10.1109/JPROC.2016.2525938
  19. ↵
    1. Gevargiz, J.,
    2. Rosenmann, M.,
    3. Das, P., &
    4. Milstein, L. B.
    (1984, October). A comparison of weighted and non-weighted transform domain processing systems for narrowband interference excision. IEEE Military Communications Conference, Los Angeles, CA, 474–477. https://doi.org/10.1109/MILCOM.1984.4794896
  20. ↵
    1. Gioia, C.
    (2014). GNSS Navigation in difficult environments: Hybridization and reliability (Doctoral dissertation, University Parthenope of Naples, Naples, Italy). https://pang.uniparthenope.it/sites/default/files/PhD_thesis_CG.pdf
  21. ↵
    1. Gioia, C., &
    2. Borio, D.
    (2016). A statistical characterization of the Galileo-to-GPS inter-system bias. Journal of Geodesy, 90(11), 1279–1291. https://doi.org/10.1007/s00190-016-0925-6
  22. ↵
    1. Giordanengo, G.
    (2009). Impact of Notch Filtering on Tracking Loops for GNSS Applications (Doctoral dissertation, Politecnico di Torino, Torino, Italy). https://schulich.ucalgary.ca/labs/position-location-and-navigation/files/position-location-and-navigation/giordanengo2009_phd.pdf
  23. ↵
    1. Hegarty, C. J.
    (2011). Analytical model for GNSS receiver implementation losses. NAVIGATION, 58(1), 29–44. https://doi.org/10.1002/j.2161-4296.2011.tb01790.x
  24. ↵
    1. Hegarty, C.,
    2. Van Dierendonck, A. J.,
    3. Bobyn, D.,
    4. Tran, M., &
    5. Grabowski, J.
    (2000, June). Suppression of pulsed interference through blanking. Proceedings of the IAIN World Congress and the 56th Annual Meeting of The Institute of Navigation, San Diego, CA, 399–408.
  25. ↵
    1. Hoffmann-Wellenhof, B.,
    2. Lichtenegger, H., &
    3. Collins, J.
    (1992). Global positioning system: Theory and practice. Springer.
  26. ↵
    1. Huber, P. J.
    (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1), 73–101. https://doi.org/10.1214/aoms/1177703732
    CrossRefWeb of Science
  27. ↵
    1. Huber, P. J., &
    2. Ronchetti, E. M.
    (2009). Robust statistics (2nd ed.). Wiley.
  28. ↵
    1. Ioannides, R.T.,
    2. Pany, T., &
    3. Gibbons, G.
    (2016). Known vulnerabilities of global navigation satellite systems, status, and potential mitigation techniques. Proceedings of the IEEE, 104(6), 1174–1194. https://doi.org/10.1109/JPROC.2016.2535898
  29. ↵
    1. Kaplan, E. D., &
    2. Hegarty, C.
    (Eds.). (2005). Understanding GPS: Principles and applications (2nd ed.). Artech House Publishers.
  30. ↵
    1. Kuusniemi, H.
    (2005). User-level reliability and quality monitoring in satellite-based personal navigation (Doctoral dissertation, Tampere University of Technology, Tampere, Finland). https://www.ucalgary.ca/engo_webdocs/other/Dissertation_Heidi_Kuusniemi__Sep05.pdf
  31. ↵
    1. Medina, D.,
    2. Li, H.,
    3. Vilà-Valls, J., &
    4. Closas, P.
    (2019). Robust statistics for GNSS positioning under harsh conditions: A useful tool? Sensors, 19(24), 5402. https://doi.org/10.3390/s19245402
  32. ↵
    1. Misra, P., &
    2. Enge, P.
    (2006). Global positioning system: Signals, measurements, and performance (2nd ed.). Ganga-Jamuna Press.
  33. ↵
    1. Mitch, R. H.,
    2. Dougherty, R. C.,
    3. Psiaki, M. L.,
    4. Powell, S. P.,
    5. O’Hanlon, B. W.,
    6. Bhatti, J. A., &
    7. Humphreys, T.E.
    (2011, September). Signal characteristics of civil GPS jammers. Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, 1907–1919.
  34. ↵
    1. Musemeci, L., &
    2. Dovis, F.
    (2015a). Interference mitigation based on transformed domain techniques. In F. Dovis (Ed.), GNSS interference threats and countermeasures (pp. 149–178). Artech House.
  35. ↵
    1. Musemeci, L., &
    2. Dovis, F.
    (2015b). Classical digital signal processing countermeasures to interference in GNSS. In F. Dovis (Ed.), GNSS interference threats and countermeasures (pp. 127–148). Artech House.
  36. ↵
    1. Pattinson, M.,
    2. Lee, S.,
    3. Bhuiyan, Z.,
    4. Thombre, S.,
    5. Manikundalam, V., &
    6. Hill, S.
    (2017). STRIKE3 consortium: Draft standards for receiver testing against threats. http://www.aic-aachen.org/strike3/downloads/STRIKE3_D42_Test_Standards_v2.0.pdf
  37. ↵
    1. Peng, S., &
    2. Morton, Y.
    (2013). A USRP2-based reconfigurable multi-constellation multi-frequency GNSS software receiver front end. GPS Solutions, 17(1), 89–102. https://doi.org/10.1007/s10291-012-0263-y
  38. ↵
    1. Qin, W.,
    2. Dovis, F.,
    3. Troglia Gamba, M., &
    4. Falletti, E.
    (2019, January). A comparison of optimized mitigation techniques for swept-frequency jammers. Proceedings of the International Technical Meeting of The Institute of Navigation, Reston, VA, 233–247. https://doi.org/10.33012/2019.16691
    1. Qin, W.,
    2. Troglia Gamba, M.,
    3. Falletti, E., &
    4. Dovis, F.
    (2019, September). Effects of optimized mitigation techniques for swept-frequency jammers on tracking loops. Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3275–3284. https://doi.org/10.33012/2019.17067
  39. ↵
    1. Raasakka, J., &
    2. Orejas, M.
    (2014, May). Analysis of notch filtering methods for narrowband interference mitigation. Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 1282–1292. https://doi.org/10.1109/PLANS.2014.6851503
  40. ↵
    1. Raimondi, M.,
    2. Macabiau, C., &
    3. Julien, O.
    (2008, January). Frequency domain adaptive filtering against pulsed interference: Performance analysis over Europe. Proceedings of the National Technical Meeting of The Institute of Navigation, San Diego, CA, 164–176
  41. ↵
    1. Rao, M.,
    2. O’Driscoll, C.,
    3. Borio, D., &
    4. Fortuny, J.
    (2014). LightSquared effects on estimated C/N0, pseudoranges and positions. GPS Solutions, 18, 1–13. https://doi.org/10.1007/s10291-012-0304-6
  42. ↵
    1. Rugamer, A.,
    2. Joshi, S.,
    3. van der Merwe, J. R.,
    4. Garzia, F.,
    5. Felber, W.,
    6. Wendel, J., &
    7. Schubert, F. M.
    (2017, September). Chirp mitigation for wideband GNSS signals with filter bank pulse blanking. Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017), Portland, OR, 3924–3940. https://doi.org/10.33012/2017.15289
  43. ↵
    1. Strang, G., &
    2. Borre, K.
    (1997). Linear algebra, geodesy, and GPS. Wellesley-Cambrdige Press.
  44. ↵
    1. Troglia Gamba, M.,
    2. Falletti, E.,
    3. Rovelli, D., &
    4. Tuozzi, A.
    (2012, September). FPGA implementation issues of a two-pole adaptive notch filter for GPS/Galileo receivers. Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), Nashville, TN, 3549–3557.
  45. ↵
    1. Tsui, J. B. Y.
    (2004). Fundamentals of global positioning system receivers: A software approach (2nd ed.). Wiley-Interscience.
  46. ↵
    1. Van Dierendonck, A. J.
    (1996). GPS receivers. In B. W. Parkinson, P. Enge, P. Axelrad, & J. J. Spilker, Jr. (Eds.), Global positioning system: Theory and applications. Vol. 1 of progress in astronautics and aeronautics (pp. 329–407). American Institute of Aeronautics and Astronautics.
  47. ↵
    1. Wang, S.,
    2. An, J.,
    3. Wang, A., &
    4. Bu, X.
    (2010). A minimum value based threshold setting strategy for frequency domain interference excision. IEEE Signal Processing Letters, 17(5), 501–504. https://doi.org/10.1109/LSP.2009.2035414
  48. ↵
    1. Wendel, J.,
    2. Schubert, F. M.,
    3. Rügamer, A., &
    4. Taschke, S.
    (2016, September). Limits of narrowband interference mitigation using adaptive notch filters. Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), Portland, OR, 286–294. https://doi.org/10.33012/2016.14799
  49. ↵
    1. Willems, T., &
    2. De Wilde, W.
    (2013, January). Theory and practice of the interference mitigation technology (AIM+) in Septentrio receivers. Proceedings of the International Technical Meeting of The Institute of Navigation, San Diego, CA, 835–842. https://www.ion.org/publications/abstract.cfm?articleID=10872
  50. ↵
    1. Young, J. A., &
    2. Lehnert, J. S.
    (1998). Analysis of DFT-based frequency excision algorithms for direct-sequence spread-spectrum communications. IEEE Transactions on Communications, 46(8), 1076–1087. https://doi.org/10.1109/26.705409
  51. ↵
    1. Young, J. A., &
    2. Lehnert, J. S.
    (1999). Performance metrics for windows used in real-time DFT-based multiple-tone frequency excision. IEEE Transactions on Signal Processing, 47(3), 800–812. https://doi.org/10.1109/78.747785
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 68 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 68, Issue 1
Spring 2021
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
GNSS interference mitigation: A measurement and position domain assessment
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
GNSS interference mitigation: A measurement and position domain assessment
Daniele Borio, Ciro Gioia
NAVIGATION: Journal of the Institute of Navigation Mar 2021, 68 (1) 93-114; DOI: 10.1002/navi.391

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
GNSS interference mitigation: A measurement and position domain assessment
Daniele Borio, Ciro Gioia
NAVIGATION: Journal of the Institute of Navigation Mar 2021, 68 (1) 93-114; DOI: 10.1002/navi.391
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 GNSS INTERFERENCE MITIGATION
    • 3 MEASUREMENT AND POSITION DOMAIN ANALYSIS
    • 4 LOSS OF EFFICIENCY
    • 5 EXPERIMENTAL SETUP
    • 6 EXPERIMENTAL RESULTS
    • 7 CONCLUSIONS
    • HOW TO CITE THIS ARTICLE
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • adaptive notch filter
  • GNSS
  • interference
  • Jammming
  • Robust Interference Mitigation

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire