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Abstract
In this paper, we present an algorithmic framework for signal-geometry-based
approaches of GNSS spoofing detection. We formulate a simple vs. simple
hypothesis test independent of nuisance parameters that results in significantly
reduced missed detection probability compared to prior approaches. It is highly
tractable such that it can be computed online by the receiver. We employ a
hypothesis iteration framework that finds spoofed subsets of satellites efficiently
and accounts for the presence of weak multipath, for a provable decision behav-
ior in safety-of-life applications. We support the theoretical derivations by show-
ing results on previously published simulated and on-air data sets. We validate
the measurement model and show robustness to multipath with flight data from
a Dual Polarization Antenna (DPA) mounted on a C12 aircraft. Finally, we show
the algorithm’s benefit on data recorded during a government-sponsored live
spoofing event.
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1 INTRODUCTION

With around as many GNSS receivers in the world as
people with access to electricity, satellite navigation has
become a ubiquitous technology that is constantly relied
on (European Global Navigation Satellite Systems Agency,
2017). It is being used increasingly to support auton-
omy in applications such as drones, vessels, railway and
autonomous cars. Given the reliance on GNSS in many
autonomous applications, GNSS receivers will need to be
able to provide high integrity in all environments – even in
the presence of interference such as spoofing.
The vulnerability of current receivers to spoofing has

been demonstrated, for example, in (Humphreys et al.,
2008) and (Bhatti & Humphreys, 2017), and GNSS interfer-
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ences are recognized as “serious threats to the continued
safety of air transport” (RASG-MID, 2019).
Robust GNSS spoofing detection is a field of active

research. Many possible detection means have been pro-
posed; however, there is no single panacea. The goal is to
make it much too costly or not worthwhile given the effort
required for an attacker to attempt to overcome our imple-
mented defense. In general, the better our defense, the
more expensive it will be tomount a successful attack. Ref-
erences (Günther, 2014; Jafarnia-Jahromi et al., 2012; Psiaki
& Humphreys, 2016) give overviews of current attack and
defense strategies.
The proposed defenses have benefits and limitations.

For example, monitoring automatic gain control (AGC)/
input power (Akos, 2012), carrier-to-noise ratio (CN0)/
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F IGURE 1 The signal-geometry-based concept from a
bird’s-eye perspective: Genuine signal directions (black) are diverse,
while all spoofing signal directions (red) align [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

signal power and/or the correlation function (Gross et al.,
2019;Manfredini et al., 2018; Pirsiavash et al., 2016;Wesson
et al., 2018) are easy to implement and require no hard-
ware additions. A major limitation of these techniques is
that they work only during the initial capture phase of an
event. These so-called “transient detectors” cannot detect
an attack once the spoofer has captured the receiver. If he
succeeds in dragging the victim off the original correlation
function unnoticed, for example, by jamming the victim’s
receiver first, the attack likely will continue unnoticed.
While the detector presented in (Gross et al., 2019; Wesson
et al., 2018) is designed to detect the jamming attack, it is
unclear how it would differentiate between authentic and
spoofed signals after liftoff.
It is useful to couple a “steady state detection,” whereby

detection can occur at any time, not just during the cap-
ture phase. One steady state detection approach is to use
the spatial diversity present in GNSS signals. Generally
at the expense of hardware changes, like using a dither-
ing antenna (Psiaki et al., 2013), two antennas (Borio &
Gioia, 2016; Psiaki et al., 2014), an entire array of anten-
nas (Appel et al., 2019; Appel et al., 2015; Esswein & Psi-
aki, 2019; Konovaltsev et al., 2014; Konovaltsev et al., 2013;
Magiera &Katulski, 2015;Meurer et al., 2016;Meurer et al.,
2012) or aDual PolarizationAntenna (DPA) (Lo et al., 2018;
Lo et al., 2020), metrics reflecting the different directions
of arrival (DoA)s of the GNSS signals are derived. Under
nominal conditions, thesemetricswill be different for each
satellite as an antenna receives signals from satellites dis-
tributed across the entire sky. Signals transmitted from a
spoofer, on the other hand, will arrive from a single or a
few directions, if an expensive attack using multiple trans-
mitting antennas is mounted. Figure 1 shows a bird’s-eye
view of the concept for four satellites. Angles/directions of

signals i and j are different when coming from the authen-
tic satellites (black arrows) but near identicalwhen coming
from a single spoofing source (red arrow).
This underlines the hypothesis inherent to signal-

geometry-based approaches, that all – or at least multiple
– satellite signals will be broadcasted from the same source
by the attacker. The cited literature demonstrates strong
results for situations when all GPS signals are malicious
and transmitted from a single antenna and shows an
analysis of false alert and missed detection rates for the
respective cases. (Esswein & Psiaki, 2019) specifically
further analyzes its performance in detecting spoofed
subsets through an optimization-based approach.
This paper makes three contributions to spoofing detec-

tion based on measured DoAs.
First, we cast the detection as a hypothesis test that guar-

antees a chosen false alert probability that is theUniformly
Most Powerful Invariant (UMPI) test independent of nui-
sance parameters (Lehmann & Romano, 2005). We formu-
late hypotheses that enable a fast, online computation of
the detection threshold for any DoA-based approach that
has direction measurements at its disposal, like the tech-
niques described by (Appel et al., 2019; Appel et al., 2015;
Esswein & Psiaki, 2019; Konovaltsev et al., 2014; Konoval-
stev et al., 2013; Meurer et al., 2016; Meurer et al., 2012).
We compare our results to several existing approaches
and achieve a more than 50% lower missed detection
probability.
The second contribution is an updated version of a

greedy hypothesis iteration algorithm that we presented
first in (Rothmaier, Chen, & Lo, 2019). It efficiently and
effectively identifies subsets of spoofed satellites, even in
the presence of weak multipath.
As a third contribution, we show how these consider-

ations are necessary for reasonable performance under
real-world conditions. We present flight test data and data
collected during a government-sponsored live spoofing
event to support the theoretical derivations.
The paper covers these contributions in three main sec-

tions, plus a summary and conclusions. Section 2 sets
up a Neyman-Pearson Likelihood Ratio Test (LRT) for
a given maximum false alert probability. We detail the
UMPI-based algorithm and apply it to several approaches
presented in the literature. We show the direct depen-
dence of any DoA-based approach on satellite geometry
andDoAmeasurement accuracy and outline limitations of
the approach.
In Section 3, we present the hypothesis iteration algo-

rithm. It mitigates weak multipath and efficiently detects
subsets of spoofed satellites. We show flight test data that
supports the multipath mitigation.
In Section 4, we present an application of the derived

algorithms. We show an example of the presented
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hypothesis iteration and show the results obtained when
processing data collected during a government-sponsored
live spoofing event with a DPA. The last section summa-
rizes the paper’s contributions and draws conclusions for
future work.

2 THEORETICAL DERIVATIONS

2.1 Detection as a hypothesis test

Using noisy measurements to decide about the presence
of a spoofing attack is a decision under uncertainty.
Therefore, we cast the decision problem as a statistical
hypothesis test. The null hypothesis, from here on denoted
𝐻0, represents the nominal situation without spoofing.
The alternate hypothesis𝐻1 represents a spoofed situation.
The prior probability of a spoofing attack is difficult

to estimate and can vary greatly with time and place of
the application. Therefore, we follow the Neyman-Pearson
paradigm that is independent of prior probabilities (Van
Trees, 2001).
The hypothesis test is the solution to an optimization

problem.Weminimize the probability ofmissed detections
𝑃𝑀𝐷 while satisfying constraints on the false alert probabil-
ity or statistical significance level 𝑃𝐹𝐴𝑚𝑎𝑥 in Equation (1).
An “alert” or “alarm” is equal to the rejection of𝐻0.

min
𝛾

𝑃(logΛ(𝑦) ≥ 𝛾 | 𝐻1)
𝑠.𝑡. 𝑃(logΛ(𝑦) < 𝛾 | 𝐻0) ≤ 𝑃𝐹𝐴𝑚𝑎𝑥, (1)

where 𝛾 is the detection threshold and Λ is the likelihood
ratio

Λ (𝐲) =
𝑝(𝐲 | 𝐻0)
𝑝(𝐲 | 𝐻1) , (2)

for the vector of measurements or evidence 𝐲. An alarm is
raised if logΛ(𝐲) < 𝛾.
The probabilities of Missed Detection (MD) and False

Alert (FA) are represented in (1) by the terms

PMD = 𝑃( logΛ ≥ 𝛾 | 𝐻1)
PFA = 𝑃( logΛ < 𝛾 | 𝐻0). (3)

Equations (1) through (3) constitute a traditional statis-
tical hypothesis test under the Neyman-Pearson paradigm
(Van Trees, 2001).
The threshold 𝛾 is found by solving the quantile func-

tion or inverse cumulative density function (cdf) of the ran-
dom variable logΛ(𝑦) conditioned on 𝑦 ∼ 𝐻0 for 𝑃𝐹𝐴𝑚𝑎𝑥 .
This can be difficult to solve analytically and might have
to be done through Monte Carlo analysis offline as done

by (Psiaki et al., 2014; Rothmaier, Chen, & Lo, 2019). In
the next section, we will phrase hypotheses for DoA-based
approaches such that logΛ(𝑦) can be approximated by a
Normal distribution, leading to a straightforward solution
for the detection threshold that can be calculated online by
the receiver.
The requirement for the approach presented in this

paper is that the measurement’s behavior under nominal
conditions can be exactly defined. This is not the case for
dual-antenna setups used in (Borio & Gioia, 2016; Psiaki
et al., 2014) if the antenna’s attitude is unknown. No pro-
cedure for an online computation of a detection thresh-
old that guarantees a maximum 𝑃𝐹𝐴 has been presented
so far or is known to the authors for these approaches. We
present results applying this paper’s LRT to the approach in
(Borio & Gioia, 2016) for known attitude in Subsection 2.6,
creating a spoofing detection honoring 𝑃𝐹𝐴𝑚𝑎𝑥 for a dual-
antenna setup.

2.2 Gaussian hypothesis formulation
with dimensionality reduction

DoA-based spoofing detection is often formulated as a
Generalized Likelihood Ratio Test (GLRT) (Van Trees,
2001), essentially a two-step process (Borio & Gioia, 2016;
Konovaltsev et al., 2013; Meurer et al., 2012; Psiaki et al.,
2014). First, Maximum Likelihood Estimates (MLEs) of
the antenna’s attitude and the spoofer’s direction are esti-
mated by aligning the measured DoAs with the expected
directions and averaging over the measured DoAs respec-
tively. In a second step, the conditional probabilities used
in Equation (2) are calculated. Using the attitude estimate,
the DoAs measured in an antenna fixed coordinate frame
are rotated into the global frame where they can be com-
pared to the expected directions to derive 𝑝(𝐲 | 𝐻0). Com-
paring the measured DoAs to the MLE of the spoofer’s
direction results in 𝑝(𝐲 | 𝐻1).
In this subsection, we will phrase augmented measure-

ment equations independent of the nuisance parameter’s
attitude and spoofer direction. This results in a Normally
distributed decision variable logΛ, allowing for a fast,
online computation of the decision threshold while
guaranteeing a maximum false alert probability. A sim-
ilar guarantee is possible with the GLRT formulated in
(Konovaltsev et al., 2013; Meurer et al., 2012) but generally
resulting in a higher missed detection probability as we
explore by simulation in Subsection 2.5.
In phrasing augmented measurements independent of

nuisance parameters, we adopt an idea followed in sev-
eral papers such as Magiera and Katulski (2015) and Borio
and Gioia (2016). DoAs to N satellites in view generally
deliver 2𝑁 measurements (e.g. 𝑁 azimuth, 𝑁 elevation).
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The unknown antenna’s attitude contains three degrees of
freedom, reducing the number of equations available for
spoofing detection to 2𝑁 − 3. We therefore phrase 2𝑁 −
3 adjusted measurement equations of great circle arcs
between the satellite DoAs as they are independent of the
antenna’s orientation (Greenwood, 1987).
The noise on each individual DoA measurement is

assumed to be a rotation with zero-mean Normally
distributedmagnitude in an arbitrary direction as it is char-
acterized, for example, in (Appel et al., 2015; Konovalt-
sev et al., 2013; Meurer et al., 2016; Meurer et al., 2012).
Following the elevation-dependent over-bounding Gaus-
sian error model characterized in (Meurer et al., 2016), we
can describe the effect of noise on the measurements as a
quaternion multiplication,

py = pv ⊗ pt (4)

pv =

[
cos

Δ𝑛
2
, 0, sin

Δ𝑛
2
sin 𝛼, sin

Δ𝑛
2
cos 𝛼

]
(5)

𝛼 ∼ U (0, 2𝜋) (6)

Δn ∼ N
(
0, σ2n

)
, (7)

where the true DoA in antenna coordinates is given by
the quaternion pt, the measured DoA by py and the noise
by pv . The ⊗ operator denotes a quaternion multiplica-
tion. The uniformly distributed angle α defines the direc-
tion of the DoA error; Δ𝑛 is the magnitude of the spatial
angle betweenmeasured and trueDoA. The noise variance
𝜎2𝑛 is characterized through the mean squared error as in
(Meurer et al., 2016).
The distribution of the great circle arcs between DoAs

distributed Normally as in Equations (4) through (7) is
nontrivial to describe. Monte Carlo simulations of over 1
million arcs between randomized satellite positions with
DoAmeasurement standard deviations between 3 deg and
15 deg have shown that the following error model over-
bounds themeasurement error.We start by defining a zero-
mean Normal distribution with variance

𝜎2𝑖𝑗 = 𝜎
2
𝑖 + 𝜎

2
𝑗 , (8)

of an arc betweenDoAs i and j. Great circle arcs are further
correlated. Let one great circle arc be between DoAs i and
j and a second arc between DoAs j and k. We model their
correlation coefficient 𝜌𝑖𝑗𝑘 as

𝜌𝑖𝑗𝑘 = 𝑤𝑖𝑗 𝑤𝑗𝑘 cos 𝜁𝑖𝑗𝑘, (9)

where 𝜁𝑖𝑗𝑘 is the spherical angle between the two arcs at
DoA j under nominal conditions and 𝑤𝑖𝑗 , 𝑤𝑗𝑘 are weight
vectors. The spherical angle is given by the spherical law
of cosines

cos 𝜁𝑖𝑗𝑘 =
cos 𝛿𝑖𝑘 − cos 𝛿𝑖𝑗 cos 𝛿𝑗𝑘

sin 𝛿𝑖𝑗 sin 𝛿𝑗𝑘
, (10)

with the great circle arc between DoAs i and j denoted
𝛿𝑖𝑗 . The weight vectors are reducing the correlation coef-
ficient for small arcs. Due to the nonnegativity of great cir-
cle arcs, the Gaussian characterization of Equation (8) is a
poor approximation for small arcs and the correlation is no
longer valid. The weights are calculated by

wij = 1 − exp

(
−
𝛿2
𝑖𝑗

2𝜎2
𝑖𝑗

)
. (11)

We formalize the augmented measurement vector �̄�
using this approximate, over-bounding error model in
Equation (12). Under 𝐻0 we expect the adjusted measure-
ments to represent 2𝑁 − 3 great circle arcs �̄� calculated
from the true azimuth and elevation values. Under𝐻1 the
expected arcs are zero. The adjusted measurement noise ∈̄
is zero-meanGaussianwith the adjusted covariancematrix
R̄.

H0 ∶ y = �̄� + ∈

H1 ∶ y = ∈
𝑤𝑖𝑡ℎ ∈ ∼ 𝑁 (0, R̄) . (12)

Let the nth element of �̄� be the arc between DoAs i and
j. The entry at index (𝑛, 𝑚) of R̄ is then given by

R̄(n,m) =

⎧⎪⎨⎪⎩
𝜎2
𝑖𝑗

𝜌𝑖𝑗𝑘𝜎
2
𝑗

0

𝑖𝑓 𝑛 = 𝑚

𝑒𝑙𝑠𝑒 𝑖𝑓 �̄�(m) = 𝛿𝑗𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (13)

where �̄�(m) = 𝛿𝑗𝑘 indicates that themth element of �̄� is an
arc between DoAs j and k. Matlab code to generate R̄ and
examples comparing the test to the approach presented in
(Appel et al., 2019; Appel et al., 2015) can be found at https:
//github.com/stanford-gps-lab/spoofing-detection.git.
Based on the measurement equations (12), the condi-

tional probabilities 𝑝(�̄� | 𝐻0) and 𝑝(�̄� | 𝐻1) are evalua-
tions of multivariate Normal distributions. UnderH0 with
mean 𝜇0 = �̄� , under H1 with zero mean 𝜇1 = 0 and in
either case with covariance matrix R̄, Equation (2) is then
a special case of the general Gaussian problem (Van Trees,
2001). logΛ(�̄�) develops into the well-known result of

https://github.com/stanford-gps-lab/spoofing-detection.git
https://github.com/stanford-gps-lab/spoofing-detection.git


ROTHMAIER et al. 247

Equation (14).

logΛ (�̄�) = log
𝑝(�̄� | 𝐻0)
𝑝(�̄� | 𝐻1)

= −
1

2

(
(�̄� − 𝜇0)

𝑇
R̄−1 (�̄� − 𝜇0) (14)

− (�̄� − 𝜇1)
𝑇
R̄−1 (�̄� − 𝜇1)

)
logΛ (�̄�) =

(
𝜇𝑇0 − 𝜇

𝑇
1

)
R̄−1 �̄� −

1

2

(
𝜇𝑇0 R̄

−1𝜇0 − 𝜇
𝑇
1 R̄

−1𝜇1
)
.

Substituting in 𝜇0 = �̄� and 𝜇1 = 0 from Equation (12)
results in:

logΛ (�̄�) = �̄�𝑇R̄−1 �̄� −
1

2
�̄�𝑇R̄−1�̄�. (15)

Using the distribution of �̄� under either hypothesis in
Equation (12) we can finally derive the distribution of
logΛ(�̄�) under nominal and spoofed conditions:

logΛ (�̄�) | H0 ∼ 𝑁

(
1

2
�̄�𝑇R̄−1�̄�, �̄�𝑇R̄−1�̄�

)
(16)

logΛ (�̄�) | H1 ∼ 𝑁

(
−
1

2
�̄�𝑇R̄−1�̄�, �̄�𝑇R̄−1�̄�

)
. (17)

The optimization problem formulated in Equation (1) is
now easily solved using the result in Equation (16). The
detection threshold 𝛾 is given by Equation (18), where Φ−1
is the quantile function or inverse cdf of the Standard Nor-
mal distribution.

γ =
1

2
�̄�𝑇R̄−1�̄� + Φ−1

(
𝑃𝐹𝐴𝑚𝑎𝑥

) √
�̄�𝑇R̄−1�̄�. (18)

We note the low computational complexity of the
involved calculations, specifically of the decision threshold
in Equation (18). The size of R̄ and �̄� is naturally bounded
by the number of satellites in view for a given constella-
tion. Φ−1(𝑃𝐹𝐴𝑚𝑎𝑥 ) could be precomputed offline for a cho-
sen false alert probability, or alternatively be implemented
in the form of a lookup table for selected values of 𝑃𝐹𝐴𝑚𝑎𝑥 .
We can calculate the missed detection probability for

a spoofing attack where a set of malicious satellite sig-
nals are radiated from the same direction for a given satel-
lite geometry, measurement accuracy and maximum false
alert probability using Equation (19).

PMD = 1 − Φ
⎛⎜⎜⎝
𝛾 +

1

2
�̄�TR̄−1�̄�√

�̄�TR̄−1�̄�

⎞⎟⎟⎠
= 1 − Φ

(√
�̄�TR̄−1�̄� + Φ−1

(
𝑃𝐹𝐴𝑚𝑎𝑥

))
. (19)

We note that we are using an approximate, overbound-
ing error model. Any measurement including spoofed
measurements �̄� will appear to matchH0 closer than if the
error model were perfect. The result of Equation (19) will
therefore be an optimistic estimate of the true 𝑃𝑀𝐷 .
Nevertheless, the results from Equations (18) and (19)

underline the direct dependency of DoA-based detection
techniques on satellite geometry and measurement accu-
racy. A larger value of the Mahalanobis distance �̄�TR̄−1�̄�
represents a more powerful test. We graphically explore
this relationship in Subsection 2.4.

2.3 Selection of 𝟐𝑵 − 𝟑 arcs

Wehave now set up augmentedmeasurement equations to
phrase hypotheses independent of the antenna’s attitude
and the spoofer’s direction. But we have left some ambigu-
ity.𝑁(𝑁 − 1)∕2 great circle arcs can be spanned between𝑁
DoAs, but �̄� only comprises 2𝑁 − 3 independent arcs such
that R̄ remains full rank. If 𝑁 ≥ 4 there is more than one
possible set of independent arcs that can be selected. The
set of arcs S that minimizes 𝑃𝑀𝐷 is the solution to an opti-
mization problem. Leveraging Equation (19) we can cast it
as follows

max
s

�̄�TR̄−1�̄�

𝑠.𝑡. det R̄ ≠ 0.
(20)

Equation (20) is a maximization over solutions to a
Boolean satisfiability problem,which is in generalNP-hard
to solve (Cook, 1971).
For the algorithm to be executed online by a receiver, we

therefore resort to random sampling. A sample is accepted
if it is feasible in terms of the constraint and leads to
a covariance matrix with a conditioning number below
10𝑁∕3. A well-conditioned covariance matrix indicates a
diverse set of arcs resulting both in a numerically stable
inversion and a powerful test. Around one-third of sam-
ples meet these requirements. A selection of arcs is there-
fore easily found. All results shown in the remainder of this
paper were produced following this approach.

2.4 Limit case of two satellites

To illustrate the performance of the detection, we show
an analysis of the most challenging scenario for a detec-
tion method based on DoAs. It is the case when only two
satellite signals are broadcasted from the same direction.
In this case the augmented measurement vector is the
scalar length of the great circle arc between the two satel-
lites. The covariancematrix is modeled by R̄ = 2𝜎2 for the
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F IGURE 2 Spoofing detection probability using two satellites
as a function of maximum false alert probability, satellite separation
and measurement accuracy [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

measurement standard deviation 𝜎. We show the proba-
bility of detection 𝛽 = 1 − 𝑃𝑀𝐷 calculated using Equa-
tion (19) in Figure 2. We plot it against the great circle
arc �̄� = Δ𝜃 between the two satellites normalized by the
measurement standard deviation 𝜎 for differentmaximum
false alert probabilities. Figure 2 shows that to be able to
detect a spoofer that radiates only two satellite signals from
the same direction reliably, the satellite spacing should be
around seven-to-10 times the measurement standard devi-
ation.

2.5 Comparison to a GLRT on 𝟐𝑵
measurements

When using the optimal set of great circle arcs as defined
by Equation (20), the simple vs. simple LRT with detec-
tion threshold given by Equation (18) is the most powerful
test independent of the nuisance parameters; it presents
a UMPI test (Lehmann & Romano, 2005). However, it is
not strictly more powerful than a GLRT on 2𝑁 measure-
ments as presented in (Konovaltsev et al., 2014; Konovalt-
sev et al., 2013;Meurer et al., 2016; Konovaltsev et al., 2012).
We further accept a reduction in test power when choos-
ing a suboptimal set of great circle arcs as described in
the previous subsection and by employing the conserva-
tive error model described in Subsection 2.2. To validate
and justify this paper’s approach, we examine its missed
detection probability through simulations and compare it
against the approach in the cited literature.

F IGURE 3 Average probability of missed detection among all
subsets of n out of 9 satellites for the GLRT and UMPI test. The
results for the GLRT are calculated by Equation (21); the results
from the UMPI are based on Monte Carlo simulations [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

In Figure 3 we display average 𝑃𝑀𝐷 values for varying
numbers of spoofed satellites. All results are based on the
same constellation of nine satellites with azimuth and ele-
vation values distributed randomly about the sky. For each
number of satellites between four and nine, we compute
the 𝑃𝑀𝐷 for every possible subset of satellites. The detec-
tion thresholds are set to satisfy 𝑃𝐹𝐴𝑚𝑎𝑥 = 10

−7 per mea-
surement epoch. Testing all subsets of four to nine spoofed
satellites requires a total of 382 tests. Each individual test
threshold is therefore set to satisfy 𝑃𝐹𝐴 < 10−7 ∕ 382. The
DoA standard deviation is set to 𝜎𝑖 = 12 𝑑𝑒𝑔.

The satellites not in the subset are considered neither in
the test nor in the attitude estimation of the GLRT. This
is meant to reflect a scenario where a spoofer is broad-
casting only a subset of satellite signals from one direction
but possibly broadcasts the other signals from other direc-
tions. The 𝑃𝑀𝐷 values in Figure 3 are averaged over all sub-
sets for each number of satellites in the spoofed subset. All
𝑃𝑀𝐷 values of this paper’s approach are computed through
106 Monte Carlo simulations, as the analytic expression in
Equation (19) is optimistic. The 𝑃𝑀𝐷 of the GLRT is calcu-
lated by

PMD = P2N−3, λ

(
𝐶−12𝑁−3

(
1 − 10−7 ∕ 382

))
, (21)

where 𝐶−1
𝑘

is the inverse chi-squared cdf with 𝑘 degrees
of freedom. Pk, λ is the cdf of the noncentral chi-squared
distribution with 𝑘 degrees of freedom and noncentrality
parameter 𝜆 given by (Konovaltsev et al., 2014).

𝜆 =

𝑁∑
𝑛=1

(
𝜓𝑛
𝜎𝑛

)2
(22)

where 𝜓𝑛 is the spatial angle between the nth pre-
dicted ephemeris-based DoA and spoofed DoA as in
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(Konovaltsev et al., 2014; Konovaltsev et al., 2013; Meurer
et al., 2016; Meurer et al., 2012).
As we can see in Figure 3, in the simulated scenario the

UMPI test presented in this paper outperforms the GLRT
from the cited literature with a more than 50% lower
missed detection rate. This result is just one qualitative
comparison of the approaches under the described attack
scenario. The underlying code is accessible at https:
//github.com/stanford-gps-lab/spoofing-detection.git for
the interested reader and to facilitate further comparisons.

2.6 Application to a dual-antenna setup
with known attitude

Setups of two closely spaced antennas are capable of deriv-
ing a spatial metric by measuring the difference in carrier
phase (Borio & Gioia, 2016; Psiaki et al., 2014). The follow-
ing brief derivation leverages the approximations justified
in (Borio & Gioia, 2016) and equally considers the integer
ambiguities as random variables. Specifically, the spatial
angle between a line connecting the two antenna phase
centers and the direction of the signal from the ith satel-
lite is characterized by

Δ 𝜑𝑖 =
𝐷

𝜆
cos 𝛼𝑖 + Δ𝑁𝑖 +

𝑐

𝜆

(
𝑑𝑇2 − 𝑑𝑇1

)
+
1

𝜆
Δ𝜂𝑖, (23)

where Δ𝜑𝑖 is the single difference in carrier phase in units
of cycles,𝐷 is the distance between the antenna phase cen-
ters, 𝜆 is the signal wave length, 𝛼𝑖 is the spatial angle, Δ𝑁𝑖
is the cycle ambiguity as an integer, c is the speed of light,
𝑑𝑇𝑗 is the clock error of the jth receiver. The noise on the
ithmeasurement Δ𝜂𝑖 is the ith element of the noise vector
𝚫𝛈.

𝚫𝛈 ∼ 𝑁 (0, R) with R = diag
(
𝜎21, … , 𝜎

2
𝑛

)
(24)

A procedure to characterize the 𝜎𝑖 ’s is given in (Borio &
Gioia, 2016).
Under nominal conditions, the spatial angle is different

for every satellite. Spoofed satellite signals coming from the
same direction have the same spatial angle. No threshold
computation guaranteeing a 𝑃𝐹𝐴𝑚𝑎𝑥 has been presented in
the literature for this setup, nor is one possible with this
paper’s approach, due to the nonlinearity of the cosine
function.
If the antenna’s attitude is known, however, this paper’s

approach applies. Single differences of 𝑁 satellites deliver
𝑁 independent measurements. The unknown spoofer’s
direction forms one nuisance parameter. Therefore, we
phrase 𝑁 − 1 double difference equations as the dif-
ferences between carrier phase single difference mea-

surements. The vector of 𝑁 − 1 double differences is
given by

𝚫2𝛗 = A 𝚫𝛗 =
𝐷

𝜆
A cos �̂� + A 𝚫𝐍 +

1

𝜆
A 𝚫𝛈, (25)

where �̂� represents the vector of expected spatial angles
given the known or estimated attitude. The matrix A gen-
erates differences between the ith and jth measurement.
Without loss of generality we can assume the measure-
ments in𝚫𝛗 to be sortedwith increasing �̂�𝑖 . A is then given
by

A =

⎡⎢⎢⎢⎢⎢⎣

−1 1

0 −1
⋯
0 0

0 0

⋮ ⋱ ⋮

0 0

0 0
⋯

1 0

−1 1

⎤⎥⎥⎥⎥⎥⎦
∈ 𝑅𝑁−1 𝑥 𝑁. (26)

We can now define the behavior under nominal and
spoofed conditions, where spoofed conditions assume all
signals being broadcasted from the same direction.

H0∶𝑓
(
𝚫2𝛗
)
=

𝐷

𝜆
A cos �̂�+

1

𝜆
𝚫2𝜂

H1 ∶𝑓
(
𝚫2𝛗
)
=

1

𝜆
Δ2𝜂

with 𝚫2𝜂 ∼ 𝑁
(
0, ARAT

)
,

(27)
where the function 𝑓(𝑥) is defined as

𝑓 (𝑥) = 𝑥 − 𝑟𝑜𝑢𝑛𝑑 (𝑥) . (28)

The attitude information is only knownwith finite preci-
sion. An error in attitude 𝜀𝑎 causes an error in carrier phase
single difference that is given in the unit of length by

𝜀𝑆𝐷 = 𝐷 (cos (𝛼 + 𝜀𝑎) − cos 𝛼) . (29)

For small attitude errors we can approximate this error
by a first order Taylor expansion and further simplify the
expression leveraging the small angle assumption.

𝜀𝑆𝐷 = −𝐷 sin (𝛼 + 𝜀𝑎) 𝜀𝑎

= −𝐷 (sin 𝛼 + cos 𝛼 𝜀𝑎) 𝜀𝑎

≈ −𝐷 sin 𝛼𝜀𝑎.

(30)

Thanks to this approximately linear relationship, we can
now model uncertainty in attitude by an elevated uncer-
tainty in carrier phase single differences. We define and
work with the updated variance of the ith single difference
measurement �̃�2

𝑖
.

�̃�2
𝑖
= 𝜎2

𝑖
+ (𝐷 sin 𝛼𝑖)

2
𝜎2𝑎. (31)

https://github.com/stanford-gps-lab/spoofing-detection.git
https://github.com/stanford-gps-lab/spoofing-detection.git
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F IGURE 4 Pdfs estimated through Monte Carlo simulations
and theoretical measurement model for different measurement
standard deviations σ [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and
www.ion.org]

To examine this algorithm’s performance and validate
the errormodel, we runMonte Carlo simulations for a sce-
nario of𝑁 = 6 satellites with randomized geometries.We
set 𝜎𝑎 = 2◦, a realistic root mean squared error for a small
low-cost attitude determination system (Hyyti & Visala,
2015). Similar to (Borio & Gioia, 2016), we consider val-
ues of 𝜎𝑖 between 0.5 cm and 3 cm. In Figure 4, we com-
pare the empirical pdfs of logΛ for nominal (blue) and
spoofed (red) measurements, all normalized by the mean
and standard deviation of logΛ under nominal conditions
as given by (16). Black lines are Standard Normal pdfs, rep-
resenting the measurement model. We can see the mea-
surements adhering to the Gaussianmodel under nominal
conditions. The randomized geometry flattens the distri-
bution under spoofed conditions.
In Figure 5 we show the Receiver Operating Character-

istics (ROCs) (Van Trees, 2001) for various values of 𝜎𝑖 to
facilitate a comparison with (Borio & Gioia, 2016), again
with 𝜎𝑎 = 2◦. We obtain high values of the detection prob-
ability 𝑃𝐷 already for small values of 𝑃𝐹𝐴𝑚𝑎𝑥 . Adding atti-
tude information results in higher detection performance
than in (Borio & Gioia, 2016) and more importantly allows
for the detection threshold being set to guarantee a con-
straint on false alerts.

3 HYPOTHESIS ITERATION

Except for the analysis in Section 2.5, the derivations so
far have only considered the simple “all satellites spoofed
from the same transmitter” or “all satellites nominal”
hypothesis. We have shown in (Rothmaier et al., 2019)

F IGURE 5 ROC curves for attitude uncertainty σα = 2 deg for
different carrier phase measurement standard deviations σ [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

that conditions are rarely this clean under real-world
conditions. In the following, we present strategies to deal
with violations to either simple hypothesis that represent
updated versions of our approach presented in (Rothmaier
et al., 2019). We suggest applying all of the following
procedures to each GNSS constellation separately, as a
separate attack has to be launched for each constellation.
The presented techniques further come without perfor-

mance guarantees but rather are computationally cheap
heuristics that have worked well in our experience.

3.1 Nominal conditions

Under nominal conditions, DoA measurements are
affected by multipath as reported, for example, in (Kono-
valtsev et al., 2013) for an antenna array or in (Rothmaier
et al., 2019) and (Egea-Roca et al., 2018) for a Dual Polar-
ization Antenna (DPA), thereby violating the assumption
of zero-mean Normally distributed measurement errors.
To find a tradeoff between mitigating the effect of

multipath on false alerts without dramatically reducing
the detection capability of the test, we leverage another
integrity algorithm already in place: Receiver Autonomous
Integrity Monitoring (RAIM). In its aviation implemen-
tation, it detects faults on single GPS satellites, while
Advanced RAIM (ARAIM) is designed to capture faults on
multiple satellites and constellation-wide faults by using
satellites frommany constellations (Blanch et al., 2014).We
can safely exclude a single GPS satellite from the hypoth-
esis test, since protection against wrong information from
a single satellite is provided by RAIM. At each epoch we
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F IGURE 6 Normalized azimuth measurement error in flight from a Dual Polarization Antenna (DPA) mounted on a C12 aircraft. In a)
for all measurements, in b) for the measurements after the multipath mitigation. The black line is a Standard Normal distribution and
represents the measurement model [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

exclude the satellite from the computation that has the
most negative contribution to logΛ(�̄�) when normalized
using its distribution under nominal conditions given by
Equation (16) (and therefore the largest contribution to an
alert). Depending on how �̄� is calculated, this can be done
using an analytical expression of the gradient of the nor-
malized logΛ(�̄�) w.r.t. each satellite. Given the simplic-
ity of the involved calculations and small domain of the
problem, a global search over all𝑁 versions of the normal-
ized logΛ(�̄�), eachwith one satellite removed, can be done
without problem. The index of the satellite to be excluded
𝑖∗ is formally determined using Equation (32), where the
subscript i denotes variables without the excluded ith satel-
lite.

𝑖∗ = arg max
𝑖

⎛⎜⎜⎜⎝
logΛ (�̄�𝐢) −

1

2
�̄�𝑇
𝑖 R̄

−1
𝑖
�̄�𝑖√

�̄�𝑇
𝑖 R̄

−1
𝑖
�̄�𝑖

⎞⎟⎟⎟⎠
= argmax

𝑖

⎛⎜⎜⎜⎝
�̄�𝑇
𝑖
R̄−1
𝑖
�̄�𝑖√

�̄�𝑇
𝑖
R̄−1
𝑖
�̄�𝑖

−
√
�̄�𝑇
𝑖
R̄−1
𝑖
�̄�𝑖

⎞⎟⎟⎟⎠ . (32)

A new set of arcs will have to be chosen for most of the
N subsets as outlined in Subsection 2.3.
Removing a single satellite is not sufficient to compen-

sate for the effect of multipath in a dense urban envi-
ronment. While this technique can still be used under
these conditions, the Gaussian error model likely will
not over-bound the measurement errors. This results in
a false alert probability higher than what is guaran-
teed. While other mitigations may be possible under such
conditions, robust performance has yet to be demon-
strated for any DoA-based technique. This paper focuses
on first solving the more benign situation with few
faults.

As an application example, in Figure 6, we show the
normalized error of azimuthal DoA measurements from
a DPA mounted on a C12 aircraft in flight, both before
and after the multipath mitigation step. The flight profile
included various climbs, descends and turns with up to
60 deg bank.An extensive description of the data collection
campaign is given by (Fulton et al., 2020). Assuming coor-
dinated turns, pitch and bank are roughly estimated from
the GNSS velocity vector. Based on 5 hours of flight data,
the measurement standard deviation is inflated as a linear
function of bank angle 𝜃. (Rothmaier et al., 2019) describes
in detail how to estimate themeasurement standard devia-
tion 𝜎 for the DPA. After inflation due to the aircraft’s bank
angle, it is given by

�̃� = 𝜎

(
1 +

𝜃

60◦

)
. (33)

The black line shows a Standard Normal probabil-
ity density function (pdf) for comparison, representing
the measurement model including inflated measurement
uncertainty. Before themitigation step, themeasured error
distribution has tails stronger than a Standard Normal
distribution; after the mitigation the Standard Normal dis-
tribution over-bounds the measurement error. This guar-
antees a conservative alert behavior that satisfies the false
alert probability constraint and validates the multipath
mitigation strategy.

3.2 Spoofed conditions

Amore dramatic simplification is inherent to the “all satel-
lites spoofed from the same transmitter” hypothesis. Vio-
lations of the assumption that all signals will come from
the same direction under spoofed conditions can easily
be imagined. Either the receiver has not locked onto all
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signals emitted by the spoofer and is still tracking some
authentic satellite signals, or the attacker is using mul-
tiple antennas to transmit signals from multiple sources.
We have shown in (Rothmaier et al., 2019) that the first is
often the case, reducing the detection capability if it is not
accounted for. And while the latter attack scenario is dif-
ficult to mount, it is possible – especially for the case of a
cooperative victim (Psiaki & Humphreys, 2016).
Few DoA-based approaches specifically deal with this

simplification. Reference (Psiaki et al., 2014) briefly sug-
gests an M-ary hypothesis test, thereby increasing the
complexity of calculating a robust decision threshold.
(Meurer et al., 2012) already presents an interesting iter-
ative approach but is constrained by computational limi-
tations due to a necessary attitude computation for each
possible subset and the large number of subsets. Reference
(Esswein & Psiaki, 2019) examines the issue more exten-
sively and suggests an exhaustive search over all (1 + 𝑆)𝑁
possible combinations of nominal and spoofed subsets for
𝑁 satellites and 𝑆 possible spoofer antennas. This comes
with two drawbacks. One is the obvious computational
load associated with the large number of possible com-
binations that are being considered, especially since a
nonconvex optimization problem is solved for each com-
bination. The second drawback is the more subtle aspect
that to guarantee a certain false alert probability per mea-
surement epoch, the false alert probability used to com-
pute the threshold as in Equation (18) has to be adjusted by
a factor equal to the number of combinations considered
at that epoch. We have done so in our results presented
in Subsection 2.5. Testing for several hundred hypotheses
in parallel may not be a computational burden for future
receivers. To nevertheless offer a computationally cheaper
alternative, we show an updated version of the greedy iter-
ative algorithm to find the largest subsets that justify rais-
ing an alarm introduced in (Rothmaier, Chen, & Lo, 2019).
The algorithm starts by testing all𝑁 satellites of a constel-
lation in view. If no alarm is raised, all subsets of 𝑁 − 1
satellites are examined and the one resulting in the lowest
normalized logΛ(�̄�) is selected. If it does not cause an
alarm, all 𝑁 − 2 subsets reachable by removing one more
satellite from the selected set are examined. Again, the sub-
set resulting in the lowest normalized logΛ(�̄�) is selected
and tested. Satellites are removed in this greedy manner
until an alarm is raised or no more satellites remain.
To ensure the validity of the measurement model, we

further apply the multipath mitigation step of (32) before
testing logΛ(�̄�𝑖∗ ) < 𝛾𝑖∗ . If the test is negative, the ith satel-
lite is added back to the consideration before the next sub-
set reduction.
While this algorithm might seem cumbersome, it only

considers a limited number of satellite subsets for a
minimal computational load while ensuring the validity of

themeasurementmodel at every step. It follows the follow-
ing pseudocode:

1. Start with set S of all satellites in view
2. While |𝐒| ≥minimum number of satellites

a. Remove ith satellite using Equation (32)
# to ensure error bound model

b. Calculate logΛ(�̄�), 𝛾
c. If logΛ(�̄�) < 𝛾 break; else

# stop if current set S causes alarm
d. Remove jth satellite using Equation (34)

# next smaller subset, this reduces |S| by 1

2𝑁 − 3 adjusted measurement equations are used to
compute logΛ(�̄�) in Step 2.b, requiring aminimumof𝑁 =

2 satellites. One is removed in the multipath consideration
Step 2.a, constraining the theoretical minimum number of
satellites for Step 2 to𝑁𝑚𝑖𝑛 = 3. A higher value can be used
to reduce, for example, the computational load.
The main step is the removal of a satellite in Step 2.d.

Analogous but opposite to the satellite selection due to
multipath, we now remove the satellite whose removal
leads to the smallest normalized logΛ(�̄�). The index of
the satellite to be removed 𝑗∗ is formally determined using
Equation (34),where the subscript jdenotes a variable after
the exclusion of the jth satellite.

𝑗∗ = argmin
𝑗

⎛⎜⎜⎜⎝
�̄�𝑇
𝑗
R̄−1
𝑗
�̄�𝑗√

�̄�𝑇
𝑗
R̄−1
𝑗
�̄�𝑗

−
√
�̄�𝑇
𝑗
R̄−1
𝑗
�̄�𝑗

⎞⎟⎟⎟⎠ . (34)

We note the small number of subsets that are
overall considered. For subsets of 𝐾 spoofed satellites

among a total of 𝑁 satellites, 1 +
∑𝑁−𝐾

𝑘 = 1(𝑁 − 𝑘 + 1) =

1 +
1

2
(𝑁2 + 𝑁 − (𝐾2 + 𝐾)) subsets are considered. In the

above example of 𝑁 = 10 satellites and the extreme case
of 𝐾 = 2 spoofed satellites, 53 subsets are considered,
while the exhaustive global search of (Esswein & Psiaki,
2019) evaluated 1,024 combinations.
This greedy minimization algorithm does not necessar-

ily find the subset with the globally smallest normalized
logΛ(�̄�). In return, it comes with significantly reduced
computational complexity. Results on test data from a
government-sponsored live spoofing event that we present
in the next section show strong results of this approach,
despite the possibility of working with subsets that rep-
resent local instead of global minima. The best choice of
approach will depend on the receiver’s capabilities and
application and is up to the designer.
We summarize the algorithm presented in the last two

subsections in a block diagram in Figure 7, starting from
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F IGURE 7 Block diagram summarizing the LRT with
dimensionality reduction and hypothesis iteration

the measured DoAs 𝐲 with measurement uncertainty R
and the ephemeris-based directions 𝜙. We reference the
key equations used in each step.

4 APPLICATION EXAMPLE USING
AZIMUTH-ONLYMEASUREMENTS

In this section, we apply the algorithmic derivations
in the previous sections to data collected with a Dual
Polarization Antenna (DPA) during a government-
sponsored live spoofing event. It is the antenna archi-
tecture that was used to collect the flight data shown
in Figure 6 and that has been presented in (Chen et al.,
2018; Chen et al. 2017; McMilin, 2016). Specifically,
we define the measurement model for azimuth-only
DoAs, show an example of the presented hypothesis
iteration and give statistics on the algorithm’s overall
performance.

4.1 Problem formulation using
azimuth-only measurements

The DPA architecture developed at Stanford delivers
azimuthal DoA measurements that can be used for spoof-
ing detection (Chen et al., 2018; Chen et al., 2017; Lo et al.,
2020;McMilin, 2016; Rothmaier, Chen, Lo,&Powell, 2019).
At the price of increased measurement noise, the DPA
delivers DoAs from a single element antenna. The DoA
computation is based on the phase difference between
Right Hand and Left Hand Circular Polarized (RHCP and
LHCP, respectively) signals. (Lo et al., 2020) presents the
derivation of azimuth measurements from the phase dif-
ference in more detail. GNSS signals are generally RHCP
signals, but a significant LHCP signal component has been
observed by several groups (Egea-Roca et al., 2018; Esswein
& Psiaki, 2019). Due to the azimuth determination proce-
dure of the DPA, the measurements come with a 180 deg
ambiguity.

Azimuth measurements are affected by the antenna’s
attitude. For most aircraft we can assume coordinated
turns and a pitch angle similar to the flight path angle.
Pitch and bank can then be roughly estimated from the
GNSS velocity vector, as we have done for the results
shown in Figure 6. Similar considerations can be made for
many applications on land vehicles. Ships in heavy seas
or highly maneuverable fighter aircraft do not allow for
these considerations and violate small angle assumptions
on pitch and bank. The setup considered in the remain-
der of this paper is not applicable to these applications
without additional information, for example, from an
IMU.
With pitch and bank estimated or constrained we then

phrase an augmented measurement vector �̄� of size 𝑁 − 1
that contains the differences of 𝑁 DoA azimuth measure-
ments as defined in Equation (35). The expected measure-
ments under nominal conditions are similarly the differ-
ences of azimuth directions 𝜙 of the satellites.

ȳ1 = y2 − y1

ȳ2 = y3 − y2

…

ȳN−1 = yN − yN−1.

(35)

Without loss of generality we assume that 𝐲 and 𝜙 are
sorted according to increasing true azimuths. We formu-
late the adjusted measurement vector after the dimension-
ality reduction under either hypothesis in Equation (36).

H0 ∶ y = A𝜙 + ∈

H1 ∶ y = ∈
with ∈ ∼ N

(
0,R
)
;R = ARAT,

(36)
where thematrix A is defined by Equation (26) and R is the
covariance matrix of the original DoA measurements. Its
derivation for the DPA is presented in (Rothmaier, Chen,
& Lo, 2019).
Due to the 180 deg ambiguity of the DPA, the vectors �̄�

and �̄� generally consist of values in the range [−𝜋∕2, 𝜋∕2).
However, for �̄� to be Normally distributed about �̄�, some
of its values need to be corrected by a multiple of 𝜋. We
illustrate this with a simple example using scalar values.
Let �̄� = 1.5 and �̄� = −1.5with R̄ = 𝜎2 = 0.1. Likely �̄� =
−1.5 + 𝜋 ≈ 1.64 is the correct value for the random vari-
able, as it is less than 1𝜎 away from its expected value �̄�
(the original value −1.5 is more than 9𝜎 away). These cor-
rections can be easily applied as long as 𝜎 ≪ 𝜋. Without
the 180 deg ambiguity the same logic would apply for the
range [−𝜋, 𝜋), as it does for any other modded random
variable. The interested reader is referred to the discussion
in Section 4 of (Borio & Gioia, 2016) where the situation is
addressed for variables in a range of [−0.5, 0.5).
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F IGURE 8 Skyplot in a) and decision variable space in b) for all GPS satellites in view. Satellite G11 is removed by the multipath
mitigation step. Figure b) shows pdfs of expected distributions under H0 (blue) and H1 (red), thresholds depending on the maximum false
alert probability as dashed vertical lines and the measured value as solid line [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

This procedure will inevitably at some point apply a
correction incorrectly, as the more probable option is not
always the right one. Any error introducedmoves themea-
surement closer to its mean under nominal conditions and
therefore likely leads to an increase in logΛ(�̄�), thereby
ensuring that the constraint on a maximum false alert
probability is met. To be conservative and rule out the cor-
ner case where this is not the case, we could opt to only
apply the correction if it in fact leads to a higher value of
logΛ(�̄�).
It is difficult to exactly quantify the impact of this proce-

dure on the number of alerts under spoofed conditions, but
as long as 𝜎 ≪ 𝜋 holds, the impact is expected to be small.
Examining the results with and without this correction on
the data from the live spoofing conditions has shown lim-
ited impact even for considerablemeasurement uncertain-
ties of 𝜎 ≤ 𝜋∕6.
Applying Equation (36) to Equations (15) and (18) results

in the straightforward formulation of the log likelihood
ratio in Equation (37) and detection threshold in Equa-
tion (38).

logΛ (�̄�) = 𝜙TATR̄−1 �̄� −
1

2

(
𝜙TATR̄−1A𝜙

)
(37)

γ =
1

2
𝜙TATR̄−1A𝜙 + Φ−1

(
𝑃𝐹𝐴𝑚𝑎𝑥

) √
𝜙TATR̄−1A𝜙.

(38)

4.2 The hypothesis iteration

To illustrate the greedy hypothesis iteration algorithm
described in the previous subsection, we present an
example of a successful detection of a spoofed subset dur-
ing the government-sponsored live spoofing event. All

azimuthmeasurements shown in the following plots come
with standard deviations between 15 and 30 deg. Fig-
ure 8a) shows a skyplot for all GPS satellites in view. The
ephemeris-based satellite positions are marked as red cir-
cles on the skyplot; positions based on the ephemeris-
based elevation but estimated azimuth directions are
shown as blue +. The absolute azimuth values are of
no importance in the spoofing detection, as only the dif-
ference between measurements is considered. Figure 8a)
shows azimuths rotated by an MLE of the antenna’s head-
ing for illustration. The MLE is calculated by solving
the segmented optimization problem neatly described in
Appendix A of (Borio & Gioia, 2016).
We can see some satellites detected to come from very

similar azimuths (G5, G7, G8, G23, G27, G28, G30), match-
ing the spoofed hypothesis. Others (G9, G11, G13, G17
and G20) are coming from different directions, matching
the nominal hypothesis. We circle satellite G11 to indi-
cate that has been identified for exclusion by the multi-
path detection algorithm presented in the previous sub-
section. It is ignored in the spoofing detection algorithm
and in the values shown in Figure 8 b). Figure 8 b) shows
the logΛ(�̄�) decision space. We plot pdfs of logΛ(�̄�) under
nominal (blue, right-hand side) and spoofed (red, left-hand
side) conditions. Vertical dashed lines represent detection
thresholds for different values of 𝑃𝐹𝐴𝑚𝑎𝑥 . The blue solid
vertical line indicates the value of logΛ(�̄�) given the mea-
sured azimuth values. We can see a range of aspects from
these two figures:

∙ The distributions expected under 𝐻0 and 𝐻1 (blue and
red curve) of logΛ(�̄�) are well-separated. This corre-
sponds to a large Mahalanobis distance �̄�TR̄−1�̄� and a
powerful detection test as we would expect from a full
sky with 𝑁 = 12 satellites in view.
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F IGURE 9 Decision spaces for consecutive removal of satellites G17, G20 and G13. Satellite G11 is removed by the multipath step after
each satellite removal. The decision variable log Λ(y) moves further left with each removal, until it finally crosses the 10−8 line in subplot c)
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

∙ The measurement 𝐲 and its associated logΛ(�̄�) match
neither expected distribution well. This reflects the cir-
cumstance that 𝐲 is a mix of spoofed and nominal mea-
surements.

∙ We are confident enough to raise an alarm if the maxi-
mum false alert probability is 10−6, but not if it is 10−7
or lower; the blue line is to the left of the black 10−6 line
but to the right of the 10−7 line.

In Figure 9 a) through c) we show the logΛ(�̄�) deci-
sion spaces for the next three iterations of the subset selec-
tion, removing satellites G17, then G20, and finally G13.
G11 is selected in each case for exclusion in the multipath
mitigation step. We can see the theoretical distributions
under 𝐻0 and 𝐻1 move closer together with each satel-
lite exclusion, corresponding to a smallerMahalanobis dis-
tance �̄�TR̄−1�̄� after the removal of a satellite. At each step,
logΛ(�̄�) moves further left and crosses the 10−8 line after
the third removal.
At this point an alarm is raised. A subset of satellites

has been identified for which the null hypothesis can be
rejected with a false alarm probability of less than 10−8 per
measurement.
Different actions are possible when raising an alarm

for a subset of satellites. The most conservative course of
action is to declare the entire constellation unusable. Espe-
cially if only a small subset of satellites has been identi-
fied as spoofed, the entire procedure could be run again on
the remaining satellites, to find additional spoofing sources
or hopefully identify satellites as useable despite a spoofed
subset.
In the latter course of action, we recommend changing

the philosophy behind selecting the detection threshold.
As a spoofer has already been identified, a constraint on
false alert probability is no longer sensible. The goal of
recursively searching for additional spoofed subsets rather
has the inverse motivation: to find subsets of satellites that
can be trusted despite the presence of a spoofing attack.
Therefore, the threshold should be set to satisfy a con-

straint on maximum missed detection probability by solv-
ing the quartile function of the distribution of logΛ(�̄�)
under𝐻1 given by Equation (17).

4.3 Performance statistic under live
spoofing conditions

We tested the algorithm developed in the past two sections
on GPS and GLONASS data collected during a live spoof-
ing event sponsored by theUnited States government. Data
was recorded during a total of 39 episodes of spoofing,
always from a single source transmitter. Each constellation
was processed separately, for a total of 442 measurement
epochs, of which 129 were spoofed during the 39 episodes
of consecutive spoofing. During most spoofed epochs, we
received a mix of genuine and spoofed signals.
To underline the necessity of the hypothesis iteration but

also show results for options of different computational
efforts, we show the results for three different processing
methods.Method 1 only considers the “all nominal” vs. “all
spoofed” hypothesis. Method 2 allows for the exclusion of
one satellite from the computation to mitigate the effect of
multipath as presented in Subsection 3.1. Method 3 takes
full advantage of the algorithm presented in Section 3, iter-
ating on subsets down to four satellites andmitigatingmul-
tipath at each step.
The following results are for a maximum false alert

probability of 𝑃𝐹𝐴𝑚𝑎𝑥 = 10
−7. Table 1 shows the numer-

ical results for the three methods. For each method, we
indicate the detected epochs and the number of episodes
of spoofing during which at least one alarm was raised.
We also note the number of false alarms and, more impor-
tantly, the smallest logΛ(�̄�) − 𝛾 normalized by its expected
standard deviation under nominal conditions 𝜎𝐻0 . Epochs
with logΛ(�̄�) − 𝛾 < 0 result in an alarm. How far below or
above indicates the margin by which a (false) alarm was
raised or not.
In Figure 10 we show histograms of the same logΛ(�̄�) −

𝛾 values normalized by 𝜎𝐻0 for the three approaches,
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TABLE 1 Result summary using three different processing approaches on the data collected during the live spoofing event. One hundred
twenty-nine epochs were spoofed during 39 episodes of consecutive spoofing

Method 1
Binary Hypotheses

Method 2
Binary Hypotheses,
Multipath Mitigation

Method 3
Hypothesis Iteration,
Multipath Mitigation

Detections 29 episodes / 57 epochs 18 episodes / 30 epochs 25 episodes / 47 epochs
False Alerts 24 0 0
Min log𝚲(�̄�) − 𝛾 while nominal −8.33 𝜎𝐻0 1.57 𝜎𝐻0 1.45 𝜎𝐻0

F IGURE 10 Distributions of the normalized decision variable when using Method 1 (left), Method 2 (center) and Method 3 (right). An
alarm is raised for any epoch with a negative value [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

separated into nominal epochs (blue bars) and spoofed
epochs (red bars). The values of 𝛾 include the inflation of
𝑃𝐹𝐴𝑚𝑎𝑥 during the subset iteration algorithm described in
the previous section.
The majority of measurements labelled as “spoofed” in

the experiment contain amix of spoofed andnominal satel-
lites, creating a challenging detection scenario. The DPA
comes with a simple architecture, small size and cost, but
its azimuthmeasurements have a standard deviation of 15–
30 deg with a periodicity of only 180 deg. This combination
naturally results in a significant number of missed detec-
tions. Therefore, the presented results should be compared
on a relative basis to evaluate the success of the presented
algorithms in a very challenging detection scenario.
The first method alarms during 57 out of 129 spoofed

epochs, but also raises 24 false alarms. The smallest value
of logΛ(�̄�) encountered during nominal conditions is
8.33 𝜎𝐻0 below the threshold, indicating a very strong con-
fidence of the algorithm that spoofing is present. This poor
performance is visible in the left histogram of Figure 10,
where 24 nominal epochs are depicted below0 correspond-
ing to false alarms. Actually spoofed and actually nominal
epochs are overall not very well-separated. The recorded
data clearly does not match the measurement models for
“all nominal” and “all spoofed” well.
The second method has fewer detections, alarming only

in 30 out of 129 spoofed epochs. It raises no more false
alarms; the smallest log Λ(�̄�) is 1.57 𝜎𝐻0 above the thresh-
old. Removing one satellite from the consideration at each
epoch has reduced the number of detections noticeably

but made a dramatic difference toward avoiding false
alarms. This can be observed in the middle histogram of
Figure 10, where the nominal values are now comfortably
above 0. However, the spoofed epochs are still not very
well-separated from the nominal ones.
The third method alarms correctly 47 out of 129 epochs

without raising a false alarm, a significant increase. The
lowest log Λ(�̄�) during nominal conditions has barely
changed to 1.45 𝜎𝐻0 above the threshold. On the right his-
togram of Figure 10 the truly nominal and truly spoofed
cases now seem much better separated with less extreme
values. The truly nominal cases follow a distribution that
roughly resembles a Gaussian distribution, as it is mod-
elled. The subset iteration algorithm has increased the
number of detections bymore than 50%without noticeably
impacting the guarantee on false alarms. Introducing the
more realistic hypotheses has led to a better identification
of both nominal and spoofed cases.
A significant number of attacks remained undetected

even when using Method 3. These were challenging detec-
tion scenarios where only a small number of closely
aligned satellites were spoofed. Given the large measure-
ment uncertainty of the DPA, rejecting 𝐻0 is not pos-
sible in these cases. This circumstance is reflected in a
high expected probability of missed detection as given by
Equation (19). Among all undetected epochs, the average
expected 𝑃𝑀𝐷 is 79%. More than two-thirds of the unde-
tected epochs correspond to 𝑃𝑀𝐷 values above 80%. Know-
ing of its low detection power, the detector can at least
inform the user that it is unable to protect against spoofing.
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Given the stochastic nature of the spoofing detection
algorithm, the probability of at least one alert increases as
more measurements are taken. An attack is more likely to
be discovered the longer it persists. As we outlined in the
previous section, once the attack is detected the philosophy
behind setting the detection threshold changes to a con-
straint on maximummissed detection probability.

5 SUMMARY AND CONCLUSIONS

This paper presents an algorithmic framework for direc-
tion of arrival (DoA)-based spoofing detection. We phrase
hypothesis under dimensionality reduction to be used in
the Uniformly Most Powerful Invariant (UMPI) test inde-
pendent of the nuisance parameters antenna attitude and
spoofer direction. The resulting detection threshold com-
putation is highly tractable and can be done online by the
receiver. We demonstrate that the algorithm outperforms
previous approaches by performing simulations very sim-
ilar to cited literature.
We present a hypothesis iteration algorithm that effi-

ciently breaks the M-ary hypothesis test of detecting a
spoofed subset of satellites or multiple spoofing sources
down into a sequence of binary tests and mitigates the
effect of weakmultipath.We demonstrate flight test data of
a Dual Polarization Antenna (DPA) that validates a Gaus-
sian measurement model after the multipath mitigation.
We finally present results of the algorithmwhen used on

noise-affected measurements taken during a government-
sponsored live spoofing event. The hypothesis iteration
algorithm identifies many spoofed subsets of satellites
using low-quality azimuth-only DoAmeasurements while
guaranteeing a maximum false alert probability.
Future work includes examining the algorithm’s per-

formance under more severe multipath conditions, to
determine at what point the considerations around the
“nominal” hypothesis from Section 3.1 are insufficient.
Most missed detections during the live spoofing event

were in situations where a subset of satellites that is closely
spaced in the sky was spoofed. This emphasizes a limita-
tion of any signal-geometry-based detection approach. For
a more powerful detector, sequential detection algorithms
and the inclusion of additional metrics like pseudorange
residuals as suggested in (Esswein & Psiaki, 2019), AGC or
autocorrelation function should be explored. Further work
will focus on leveraging the LRT-based detection frame-
work as the foundation for such a combination.

ACKNOWLEDGEMENTS
The authors thank the Federal Aviation Administration
(FAA) and the Stanford Center for Position Navigation and
Time (SCPNT) for sponsoring this research. The authors

also thank the United States government for providing us
with an opportunity to test under live GPS spoofing. Spe-
cial thanks go to the entire team of the Air Force Test Cen-
ter at Edwards Air Force Base and the 586th Flight Test
Squadron for their support leading up to and the conduct-
ing of the flight tests. The authors thank Professor J. David
Powell for his invaluable advice and guidance during this
research.

ORCID
FabianRothmaier https://orcid.org/0000-0002-9215-
9881
ShermanLo https://orcid.org/0000-0002-4814-6506
ToddWalter https://orcid.org/0000-0002-3257-3175

REFERENCES
Akos, D.M. (2012). Who’s afraid of the spoofer? GPS/GNSS spoofing
detection via automatic gain control (AGC). NAVIGATION, 59(4),
281–290. https://doi.org/10.1002/navi.19

Appel, M., Iliopoulos, A., Fohlmeister, F., Pérez Marcos, E., Cuntz,
M., Konovaltsev, A., . . . Meurer, M. (2019). Experimental valida-
tion of GNSS repeater detection based on antenna arrays for mar-
itime applications. CEAS Space Journal, 11(1), 7–19. https://doi.
org/10.1007/s12567-018-0232-6

Appel, M., Konovaltsev, A., & Meurer, M. (2015). Robust spoofing
detection and mitigation based on direction of arrival estimation.
Proc. of the 28th International Technical Meeting of the Satellite
Division of The Institute of Navigation, Tampa, FL, 3335–3344.

Bhatti, J. A., & Humphreys, T. E. (2017). Hostile control of ships via
false GPS signals: Demonstration and detection. NAVIGATION,
64, 51–66. https://doi.org/10.1002/navi.183

Blanch, J.,Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl,M., . . . Kropp,
V. (2014). Baseline advanced RAIM user algorithm and possible
improvements. IEEE Transactions on Aerospace and Electronic
Systems, 51(1), 713–732. https://doi.org/10.1109/TAES.2014.130739

Borio, D., & Gioia, C. (2016). A sum-of-squares approach to GNSS
spoofing detection. IEEE Transactions on Aerospace and Elec-
tronic Systems, 52(4), 1756–1768. https://doi.org/10.1109/TAES.
2016.150148

Chen, Y. H., Lo, S., Perkins, A., Rothmaier, F., Akos, D. M., & Enge, P.
(2018). Demonstrating single element null steering antenna direc-
tion finding for interference detection. Proc. of the 2018 Interna-
tional Technical Meeting of The Institute of Navigation, Reston, VA,
240–259. https://doi.org/10.33012/2018.15598

Chen, Y. H., Rothmaier, F., Akos, D., Lo, S., & Enge, P. (2017).
Towards a practical single element null steering antenna, Proc. of
the 2017 International Technical Meeting of The Institute of Naviga-
tion, Monterey, CA, 879–889. https://doi.org/10.33012/2017.14954

Cook, S. A. (1971). The complexity of theorem-proving procedures.
Proc. of the Annual ACM Symposium on Theory of Computing, 151–
158. https://doi.org/10.1145/800157.805047

Egea-Roca, D., Tripiana-Caballero, A., López-Salcedo, J. A., Seco-
Granados, G., De Wilde, W., Bougard, B., & Popugaev, A. (2018).
GNSS measurement exclusion and weighting with a dual polar-
ized antenna: The FANTASTIC project. Proc. of the 2018 8th Inter-
national Conference on Localization and GNSS, Guimaraes, Portu-
gal, 1-6. https://doi.org/10.1109/ICL-GNSS.2018.8440897

https://orcid.org/0000-0002-9215-9881
https://orcid.org/0000-0002-9215-9881
https://orcid.org/0000-0002-9215-9881
https://orcid.org/0000-0002-4814-6506
https://orcid.org/0000-0002-4814-6506
https://orcid.org/0000-0002-3257-3175
https://orcid.org/0000-0002-3257-3175
https://doi.org/10.1002/navi.19
https://doi.org/10.1007/s12567-018-0232-6
https://doi.org/10.1007/s12567-018-0232-6
https://doi.org/10.1002/navi.183
https://doi.org/10.1109/TAES.2014.130739
https://doi.org/10.1109/TAES.2016.150148
https://doi.org/10.1109/TAES.2016.150148
https://doi.org/10.33012/2018.15598
https://doi.org/10.33012/2017.14954
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/ICL-GNSS.2018.8440897


258 ROTHMAIER et al.

Esswein, M. C., & Psiaki, M. L. (2019). GNSS anti-spoofing for a
multi-element antenna array. Proc. of the 32nd International Tech-
nical Meeting of the Satellite Division of the Institute of Navigation,
Miami, FL, 3197–3214. https://doi.org/10.33012/2019.17062

European Global Navigation Satellite Systems Agency. GNSS Mar-
ket Report (2017). InGNSSMarket Report. https://doi.org/10.2878/
0426

Fulton, C., Lee, C., Wright, D., Eastburg, G., Rivey, J., Whitney, S., &
Atkins, T. (2020). Flight testing of advanced receiver autonomous
integrity monitoring and dual polarized antenna. 2020 IEEE/ION
Position, Location and Navigation Symposium, PLANS, Portland,
OR, 515–527. https://doi.org/10.1109/PLANS46316.2020.9109903

Greenwood, D. T. (1987). Principles of Dynamics, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall.

Gross, J. N., Kilic, C., & Humphreys, T. E. (2019). Maximum-
likelihood power-distortion monitoring for GNSS-Signal authen-
tication. IEEE Transactions on Aerospace and Electronic Systems,
55(1), 469–475. https://doi.org/10.1109/TAES.2018.2848318

Günther, C. (2014). A survey of spoofing and counter-measures.NAV-
IGATION, 61(3), 159–177. https://doi.org/10.1002/navi.65

Humphreys, T. E., Ledvina, B. M., Psiaki, M. L., Hanlon, B. W. O.,
& Kintner, P. M. (2008). Assessing the spoofing threat : Develop-
ment of a portable GPS civilian spoofer. Proc. of the 21st Interna-
tional Technical Meeting of the Satellite Division of The Institute of
Navigation, Savannah, GA, 2314–2325.

Hyyti, H., & Visala, A. (2015). A DCM based attitude estimation algo-
rithm for low-cost MEMS IMUs. International Journal of Naviga-
tion and Observation, 1–18. https://doi.org/10.1155/2015/503814

Jafarnia-Jahromi, A., Broumandan, A., Nielsen, J., & Lachapelle,
G. (2012). GPS vulnerability to spoofing threats and a review of
antispoofing techniques. International Journal of Navigation and
Observation, 1–16. https://doi.org/10.1155/2012/127072

Konovaltsev, A., Caizzone, S., Cuntz, M., & Meurer, M. (2014).
Autonomous spoofing detection and mitigation with a miniatur-
ized adaptive antenna array. Proc. of the 27th International Tech-
nical Meeting of the Satellite Division of The Institute of Navigation,
Tampa, FL, 2853–2861.

Konovaltsev, A., Cuntz, M., Haettich, C., & Meurer, M. (2013) Per-
formance analysis of joint multi-antenna spoofing detection and
attitude estimation. Proc. of the 2013 International Technical Meet-
ing of the Institute of Navigation, San Diego, CA, 864–872.

Lehmann, E. L., & Romano, J. P. (2005). Testing Statistical
Hypotheses (3rd ed.). New York: Springer. https://doi.org/10.1007/
0-387-27605-X

Lo, S., Chen, Y. H., Jain, H., & Enge, P. (2018). Robust GNSS spoof
detection using direction of arrival: Methods and practice. Proc. of
the 31st International Technical Meeting of the Satellite Division of
the Institute of Navigation, Miami, FL, 2891–2906. https://doi.org/
10.33012/2018.15900

Lo, S., Chen, Y. H., Rothmaier, F., Zhang, G., & Lee, C. (2020). Devel-
oping a dual polarization antenna (DPA) for high dynamic applica-
tions. Proc. of the 2020 International Technical Meeting of the Insti-
tute of Navigation, San Diego, CA, 1001–1020. https://doi.org/10.
33012/2020.17193

Magiera, J., & Katulski, R. (2015). Detection and mitigation of GPS
spoofing based on antenna array processing. Journal of Applied
Research and Technology, 13(1), 45–57. https://doi.org/10.1016/
S1665-6423(15)30004-3

Manfredini, E. G., Akos, D.M., Chen, Y. H., Lo, S., Walter, T., & Enge,
P. (2018). Effective GPS spoofing detection utilizing metrics from

commercial receivers. Proc. of the 2018 International Technical
Meeting of The Institute of Navigation, Reston, VA, 672–689. https:
//doi.org/10.33012/2018.15595

McMilin, E. (2016). Single antenna null-steering for GPS & GNSS
aerial applications (Ph.D. dissertation). Stanford, CA: Stanford
University.

Meurer, M., Konovaltsev, A., Appel, M., & Cuntz, M. (2016).
Direction-of-arrival assisted sequential spoofing detection and
mitigation. Proc. of the 2016 International Technical Meeting of The
Institute of Navigation, Monterey, CA, 181–192. https://doi.org/10.
33012/2016.13395

Meurer, M., Konovaltsev, A., Cuntz, M., & Hättich, C. (2012). Robust
joint multi-antenna spoofing detection and attitude estimation
using direction assisted multiple hypothese RAIM. Proceedings of
the 25th Meeting of the Satellite Division of the Institute of Naviga-
tion, Nashville, TN, 3007–3016.

Pirsiavash, A., Broumandan, A., & Lachapelle, G. (2016). Two-
dimensional signal quality monitoring for spoofing detection. Pre-
sented at Navitec, Noordwijk, Netherlands: ESA/ESTEC.

Psiaki, M. L., & Humphreys, T. E. (2016). GNSS spoofing and detec-
tion. Proc. of the IEEE, 104(6), 1258–1270. https://doi.org/10.1109/
JPROC.2016.2526658

Psiaki, M. L., O’Hanlon, B.W., Powell, S. P., Bhatti, J. A., Humphreys,
T. E., & Schofield, A. (2014). GNSS spoofing detection using two-
antenna differential carrier phase. Proc. of the 27th International
Technical Meeting of the Satellite Division of The Institute of Navi-
gation, Tampa, FL, 2776–2800.

Psiaki, M. L., Powell, S. P., & O’Hanlon, B. W. (2013). GNSS spoofing
detection using high-frequency antennamotion and carrier-phase
data. Proc. of the 26th International Technical Meeting of the Satel-
lite Division of the Institute of Navigation, Nashville, TN, 2949–2991.

Regional Aviation Safety Group for the Middle East Region
(RASG-MID). (2019). Guidance material related to GNSS
vulnerabilities. RASG-MID Safety Advisory, (14). ICAO.
https://www.icao.int/MID/Documents/2017/RASG-MID6/
RSA%2014-GNSS%20Vulnerabilities.pdf.

Rothmaier, F., Chen, Y. H., Lo, S., & David Powell, J. (2019). Single
GNSS antenna heading estimation. Proc. of the 32nd International
Technical Meeting of the Satellite Division of the Institute of Naviga-
tion, Miami, FL, 2159–2171. https://doi.org/10.33012/2019.16915

Rothmaier, F., Chen, Y., & Lo, S. (2019). Improvements to steady state
spoof detection with experimental validation using a dual polar-
ization antenna. Proc. of the 32nd International Technical Meeting
of the Satellite Division of the Institute of Navigation, Miami, FL,
967–983. https://doi.org/10.33012/2019.16989

Van Trees, H. L. (2001). Detection, Estimation, and Modulation The-
ory, Part I, New York: JohnWiley & Sons.: https://doi.org/10.1002/
0471221082

Wesson, K. D., Gross, J. N., Humphreys, T. E., & Evans, B. L. (2018).
GNSS signal authentication via power and distortion monitoring.
IEEETransactions onAerospace andElectronic Systems, 54(2), 739–
754. https://doi.org/10.1109/TAES.2017.2765258

How to cite this article: Rothmaier F, Chen Y-H,
Lo S, Walter T. GNSS spoofing detection through
spatial processing. NAVIGATION.
2021;68(2):243–258. https://doi.org/10.1002/navi.420

https://doi.org/10.33012/2019.17062
https://doi.org/10.2878/0426
https://doi.org/10.2878/0426
https://doi.org/10.1109/PLANS46316.2020.9109903
https://doi.org/10.1109/TAES.2018.2848318
https://doi.org/10.1002/navi.65
https://doi.org/10.1155/2015/503814
https://doi.org/10.1155/2012/127072
https://doi.org/10.1007/0-387-27605-X
https://doi.org/10.1007/0-387-27605-X
https://doi.org/10.33012/2018.15900
https://doi.org/10.33012/2018.15900
https://doi.org/10.33012/2020.17193
https://doi.org/10.33012/2020.17193
https://doi.org/10.1016/S1665-6423(15)30004-3
https://doi.org/10.1016/S1665-6423(15)30004-3
https://doi.org/10.33012/2018.15595
https://doi.org/10.33012/2018.15595
https://doi.org/10.33012/2016.13395
https://doi.org/10.33012/2016.13395
https://doi.org/10.1109/JPROC.2016.2526658
https://doi.org/10.1109/JPROC.2016.2526658
https://www.icao.int/MID/Documents/2017/RASG-MID6/RSA%2014-GNSS%20Vulnerabilities.pdf
https://www.icao.int/MID/Documents/2017/RASG-MID6/RSA%2014-GNSS%20Vulnerabilities.pdf
https://doi.org/10.33012/2019.16915
https://doi.org/10.33012/2019.16989
https://doi.org/10.1002/0471221082
https://doi.org/10.1002/0471221082
https://doi.org/10.1109/TAES.2017.2765258
https://doi.org/10.1002/navi.420

	GNSS spoofing detection through spatial processing
	Abstract
	1 | INTRODUCTION
	2 | THEORETICAL DERIVATIONS
	2.1 | Detection as a hypothesis test
	2.2 | Gaussian hypothesis formulation with dimensionality reduction
	2.3 | Selection of arcs
	2.4 | Limit case of two satellites
	2.5 | Comparison to a GLRT on measurements
	2.6 | Application to a dual-antenna setup with known attitude

	3 | HYPOTHESIS ITERATION
	3.1 | Nominal conditions
	3.2 | Spoofed conditions

	4 | APPLICATION EXAMPLE USING AZIMUTH-ONLY MEASUREMENTS
	4.1 | Problem formulation using azimuth-only measurements
	4.2 | The hypothesis iteration
	4.3 | Performance statistic under live spoofing conditions

	5 | SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES


