Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Ionospheric spatial decorrelation assessment for GBAS daytime operations in Brazil

Hyeyeon Chang, Moonseok Yoon, Sam Pullen, Leonardo Marini-Pereira and Jiyun Lee
NAVIGATION: Journal of the Institute of Navigation June 2021, 68 (2) 391-404; DOI: https://doi.org/10.1002/navi.418
Hyeyeon Chang
1Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Moonseok Yoon
1Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sam Pullen
2Department of Aeronautics and Astronautics, Stanford University, Stanford, California, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leonardo Marini-Pereira
3Research Division, Institute of Airspace Control (ICEA), São José dos Campos, São Paulo, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiyun Lee
1Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abdu, M. A.,
    2. Batista, I. S.,
    3. Takahashi, H.,
    4. MacDougall, J.,
    5. Sobral, J. H.,
    6. Medeiros, A. F., &
    7. Trivedi, N. B.
    (2003). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research: Space Physics, 108(A12). https://doi.org/10.1029/2002JA009721
  2. ↵
    1. Datta-Barua, S.,
    2. Lee, J.,
    3. Pullen, S.,
    4. Luo, M.,
    5. Ene, A.,
    6. Qiu, D., &…
    7. Enge, P.
    (2010). Ionospheric threat parameterization for local area Global-Positioning-System-based aircraft landing systems. Journal of Aircraft, 47(4), 1141–1151. https://doi.org/10.2514/1.46719
  3. ↵
    1. Fukao, S.,
    2. Ozawa, Y.,
    3. Yamamoto, M., &
    4. Tsunoda, R. T.
    (2003). Altitude-extended equatorial spread F observed near sunrise terminator over Indonesia. Geophysical Research Letters, 30(22). https://doi.org/10.1029/2003GL018383
  4. ↵
    1. Guo, K.,
    2. Liu, Y.,
    3. Zhao, Y., &
    4. Wang, J.
    (2017). Analysis of ionospheric scintillation characteristics in Sub-Antarctica Region with GNSS data at Macquarie Island. Sensors (Basel, Switzerland), 17(1), 137. https://doi.org/10.3390/s17010137
  5. ↵
    1. Huang, C-S.,
    2. de La Beaujardiere, O.,
    3. Roddy, P. A.,
    4. Hunton, D. E.,
    5. Ballenthin, J. O., &
    6. Hairston, M.
    (2013). Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite. Journal of Geophysical Research: Space Physics, 118(5), 2398–2408. https://doi.org/10.1002/jgra.50252
  6. ↵
    1. Lee, J.,
    2. Pullen, S.,
    3. Datta-Barua, S., &
    4. Enge, P.
    (2007). Assessment of ionosphere spatial decorrelation for Global Positioning System-based aircraft landing systems. Journal of Aircraft, 44(5), 1662–1669. https://doi.org/10.2514/1.28199
  7. ↵
    1. Lee, J.,
    2. Seo, J.,
    3. Park, Y. S.,
    4. Pullen, S., &
    5. Enge, P.
    (2011). Ionospheric threat mitigation by geometry screening in Ground Based Augmentation Systems. Journal of Aircraft, 48(4), 1422–1433. https://doi.org/10.2514/1.C031309
  8. ↵
    1. Lee, J., &
    2. Pullen, S.
    (March 19, 2018). Anomalous Ionospheric Gradients over Brazil during Local Daytime. Brazil GBAS Safety Case, DECEA Meeting, Rio de Janeiro, Brazil.
  9. ↵
    1. Li, G.,
    2. Ning, B.,
    3. Hu, L.,
    4. Liu, L.,
    5. Yue, X.,
    6. Wan, W., …
    7. Liu, J. Y.
    (2010). Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. Journal of Geophysical Research: Space Physics, 115(A4). https://doi.org/10.1029/2009JA014830
  10. ↵
    1. Mayer, C.,
    2. Belabbas, B.,
    3. Jakowski, N.,
    4. Meurer, M., &
    5. Dunkel, W.
    (2009). Ionosphere threat space model assessment for GBAS. Proc. of the 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2009), Savannah, GA, 1091–1099.
  11. ↵
    1. Nishioka, M.,
    2. Saito, A., &
    3. Tsugawa, T.
    (2008). Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. Journal of Geophysical Research: Space Physics, 113(A5). https://doi.org/10.1029/2007JA012605
  12. ↵
    1. Pullen, S.,
    2. Park, Y. S., &
    3. Enge, P.
    (2009). Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS. Radio Science, 44(1), RS0A21. https://doi.org/10.1029/2008RS004084
  13. ↵
    1. Radio Technical Commission for Aeronautics (RTCA) SC-159
    . (2008). Minimum Operational Performance Standards for GPS Local Area Augmentation System Airborne Equipment (RTCA DO-253C) (Vol. 16, pp. 2008). Washington, DC: RTCA, December.
  14. ↵
    1. Saito, S.,
    2. Fujita, S., &
    3. Yoshihara, T.
    (2012). Precise measurements of ionospheric delay gradient at short baselines associated with low latitude ionospheric disturbances. Proc. of the 2012 International Technical Meeting of The Institute of Navigation, Newport Beach, CA, 1445–1450.
  15. ↵
    1. Saito, S.,
    2. Suzuki, S.,
    3. Yamamoto, M.,
    4. Saito, A., &
    5. Chen, C-H.
    (2017). Real-time ionosphere monitoring by three-dimensional tomography over Japan. NAVIGATION, 64(4), 495–504. https://doi.org/10.1002/navi.213
  16. ↵
    “Sunrise and Sunset Times in Rio de Janeiro,” timeanddate.com. Retrieved from www.timeanddate.com/sun/brazil/rio-de-janeiro
  17. ↵
    “NOAA Solar Calculator,” Global Monitoring Laboratory of the National Oceanic and Atmospheric Administration. Retrieved from https://www.esrl.noaa.gov/gmd/grad/solcalc/
  18. ↵
    1. van Graas, F., &
    2. Zhu, Z.
    (2011). Tropospheric delay threats for the Ground Based Augmentation System. Proc. of the 2011 International Technical Meeting of The Institute of Navigation, San Diego, CA, 959–964.
  19. ↵
    1. Venkatesh, K.,
    2. Tulasi Ram, S.,
    3. Fagundes, P. R.,
    4. Seemala, G. K., &
    5. Batista, I. S.
    (2017). Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015. Journal of Geophysical Research: Space Physics, 122(4), 4553–4570. https://doi.org/10.1002/2017JA024009
  20. ↵
    1. Yoon M.,
    2. Kim D., &
    3. Lee J.
    (2017). Validation of ionospheric spatial decorrelation observed during equatorial plasma bubble events. IEEE Transactions on Geoscience and Remote Sensing. 55(1):261–271. https://doi.org/10.1109/tgrs.2016.2604861.
    1. Yoon, M.,
    2. Lee, J.,
    3. Pullen, S.,
    4. Gillespie, J.,
    5. Mathur, N.,
    6. Cole, R., …
    7. Pradipta, R.
    (2017). Equatorial plasma bubble threat parameterization to support GBAS operations in the Brazilian region. NAVIGATION, 64(3), 309–321. https://doi.org/10.1002/navi.203
  21. ↵
    1. Yoshihara T.,
    2. Saito S., &
    3. Fujii N.
    (2010). A study of nominal ionospheric gradient for GBAS (Ground-based Augmentation System) in Japan. Proc. of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, 2689–2694.
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 68 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 68, Issue 2
Summer 2021
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ionospheric spatial decorrelation assessment for GBAS daytime operations in Brazil
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Ionospheric spatial decorrelation assessment for GBAS daytime operations in Brazil
Hyeyeon Chang, Moonseok Yoon, Sam Pullen, Leonardo Marini-Pereira, Jiyun Lee
NAVIGATION: Journal of the Institute of Navigation Jun 2021, 68 (2) 391-404; DOI: 10.1002/navi.418

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Ionospheric spatial decorrelation assessment for GBAS daytime operations in Brazil
Hyeyeon Chang, Moonseok Yoon, Sam Pullen, Leonardo Marini-Pereira, Jiyun Lee
NAVIGATION: Journal of the Institute of Navigation Jun 2021, 68 (2) 391-404; DOI: 10.1002/navi.418
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 DATA
    • 3 IONOSPHERIC GRADIENT ESTIMATION METHOD
    • 4 ESTIMATION OF NOMINAL 𝝈𝐯𝐢𝐠 FOR BRAZIL
    • 5 DEFINITION OF LOCAL DAYTIME
    • 6 TEMPORAL GRADIENT EFFECTS
    • 7 SUMMARY AND REMAINING STEPS
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Stochastic Reachability-Based GPS Spoofing Detection with Chimera Signal Enhancement
  • Navigation Safety Assurance of a KF-Based GNSS/IMU System: Protection Levels Against IMU Failure
  • Spatiotemporal Deep Learning Network for High-Latitude Ionospheric Phase Scintillation Forecasting
Show more Original Article

Similar Articles

Keywords

  • equatorial ionosphere
  • Ground Based Augmentation System (GBAS)
  • ionospheric decorrelation

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire