Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X-ray pulsars

Jiangkai Liu, Wenbin Wang, Hao Zhang, Leizheng Shu and Yang Gao
NAVIGATION: Journal of the Institute of Navigation December 2021, 68 (4) 687-708; DOI: https://doi.org/10.1002/navi.451
Jiangkai Liu
1University of Chinese Academy of Sciences
2Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenbin Wang
2Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Hao Zhang
2Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leizheng Shu
2Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yang Gao
1University of Chinese Academy of Sciences
2Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Anderson, K. D. &
    2. Pines, D. J.
    (2014). Methods of pulse phase tracking for X-ray pulsar based spacecraft navigation using low flux pulsars. SpaceOps 2014 Conference, Pasadena, CA. https://doi.org/10.2514/6.2014-1858
  2. ↵
    1. Bezrouk, C. J. &
    2. Parker, J.
    (2014). Long duration stability of distant retrograde orbits. AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA. https://doi.org/10.2514/6.2014-4424
  3. ↵
    1. Branduardi-Raymont, G.,
    2. Sembay, S. F.,
    3. Eastwood, J. P.,
    4. Sibeck, D. G.,
    5. Abbey, T. A.,
    6. Brown, P.,
    7. Carter, J. A.,
    8. Carr, C. M.,
    9. Forsyth, C.,
    10. Kataria, D.,
    11. Kemble, S.,
    12. Milan, S. E.,
    13. Owen, C. J.,
    14. Peacocke, L.,
    15. Read, A. M.,
    16. Coates, A. J.,
    17. Collier, M. R.,
    18. Cowley, S. W. H.,
    19. Fazakerley, A. N., …
    20. Yeoman, T. K.
    (2011). AXIOM: advanced X-ray imaging of the magnetosphere. Experimental Astronomy, 33(2–3), 403–443. https://doi.org/10.1007/s10686-011-9239-0
  4. ↵
    1. Broucke, R. A.
    (1968). Periodic orbits in the restricted three-body problem with Earth-Moon masses (Technical Report No. 32–1168). Jet Propulsion Laboratory, California Institute of Technology. https://ntrs.nasa.gov/api/citations/19680013800/downloads/19680013800.pdf
  5. ↵
    1. Buist, P. J.,
    2. Engelen, S.,
    3. Noroozi, A.,
    4. Sundaramoorthy, P.,
    5. Verhagen, S., &
    6. Verhoeven, C.
    (2011). Overview of pulsar navigation: Past, present and future trends. NAVIGATION, 58(2), 153–164. https://doi.org/10.1002/j.2161-4296.2011.tb01798.x
  6. ↵
    1. Chen, P. -T.,
    2. Speyer, J. L.,
    3. Bayard, D. S., &
    4. Majid, W. A.
    (2017) Autonomous navigation using X-ray pulsars and multirate processing. Journal of Guidance, Control, and Dynamics, 40(9). https://doi.org/10.2514/1.G002705
  7. ↵
    1. Chen, P. -T.
    (2018). Pulsar-based navigation and timing: Analysis and estimation [Doctoral dissertation, University of California]. https://escholarship.org/uc/item/8jm6v2x9
  8. ↵
    1. Chen, P.-T.,
    2. Zhou, B.,
    3. Speyer, J. L.,
    4. Bayard, D. S.,
    5. Majid, W. A., &
    6. Wood, L. J.
    (2020). Aspects of pulsar navigation for deep space mission applications. The Journal of the Astronautical Sciences, 67(2), 704–739. https://doi.org/10.1007/s40295-019-00209-9
  9. ↵
    1. Chester, T. J &
    2. Butman, S. A.
    (1981). Navigation using X-ray pulsars (TDA Progress Report No. 42–63). Jet Propulsion Laboratory. https://ipnpr.jpl.nasa.gov/progress_report/42-63/63F.PDF
  10. ↵
    1. Deneva, J. S.,
    2. Ray, P. S.,
    3. Lommen, A.,
    4. Ransom, S. M.,
    5. Bogdanov, S.,
    6. Kerr, M.,
    7. Wood, K. S.,
    8. Arzoumanian, Z.,
    9. Black, K.,
    10. Doty, J.,
    11. Gendreau, K. C.,
    12. Guillot, S.,
    13. Harding, A.,
    14. Lewandowska, N.,
    15. Malacaria, C.,
    16. Markwardt, C. B.,
    17. Price, S.,
    18. Winternitz, L. B.,
    19. Wolff, M. T.,
    20. Guillemot, L., …
    21. Zhu, W. W.
    (2019). High-precision X-ray timing of three millisecond pulsars with NICER: Stability estimates and comparison with radio. The Astrophysical Journal, 874(2), 160. https://doi.org/10.3847/1538-4357/ab0966
  11. ↵
    1. Dirkx, D.
    (2015). Interplanetary laser ranging: Analysis for implementation in planetary science missions [Doctoral dissertation, Delft University of Technology].
  12. ↵
    1. Downs, G. S.
    (1974). Interplanetary navigation using pulsating radio sources (Technical Report No. 32–1594). Jet Propulsion Laboratory, California Institute of Technology.
  13. ↵
    1. Edwards, R. T.,
    2. Hobbs, G. B., &
    3. Manchester, R. N.
    (2006). TEMPO2, a new pulsar timing package - II. The timing model and precision estimates. Monthly Notices of the Royal Astronomical Society, 372(4), 1549–1574. https://doi.org/10.1111/j.1365-2966.2006.10870.x
    CrossRef
  14. ↵
    1. Emadzadeh, A. A., &
    2. Speyer, J. L.
    (2010). On modeling and pulse phase estimation of X-ray pulsars. IEEE Transactions on Signal Processing, 58(9), 4484–4495. https://doi.org/10.1109/tsp.2010.2050479
  15. ↵
    1. Emadzadeh, A. A., &
    2. Speyer, J. L.
    (2011). Navigation in Space by X-ray Pulsars. Springer Science & Business Media.
  16. ↵
    1. Golshan, A. R, &
    2. Sheikh, S. I.
    (2007). On pulse phase estimation and tracking of variable celestial X-ray sources. Proc. of the 63rd Annual Meeting of the Institute of Navigation. Cambridge, MA, 413–422. https://www.ion.org/publications/abstract.cfm?articleID=7225
  17. ↵
    1. Graven, P.,
    2. Collins, J.,
    3. Sheikh, S.,
    4. Hanson, L. J.,
    5. Ray, P. &
    6. Wood, K.
    (2008). XNAV for deep space navigation. 31st Annual AAS Guidance and Control Conference, Breckinridge, CO.
  18. ↵
    1. Hanson, J.,
    2. Sheikh, S.,
    3. Graven, P., &
    4. Collins, J.
    (2008). Noise analysis for X-ray navigation systems. 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, 704–713. https://doi.org/10.1109/PLANS.2008.4570028
  19. ↵
    1. Hill, K. A.
    (2007). Autonomous navigation in liberation point orbits [Doctoral dissertation, University of Colorado].
  20. ↵
    1. Hong, J., &
    2. Romaine, S.
    (2016). Miniature lightweight X-ray optics (MiXO) for surface elemental composition mapping of asteroids and comets. Earth, Planets and Space, 68(35). https://doi.org/10.1186/s40623-016-0409-1
  21. ↵
    1. Hutsell, S. T.
    (1995). Relating the Hadamard variance to MCS Kalman filter clock estimation. 27th Annual Precise Time and Time Interval Applications and Planning Meeting, San Diego, CA.
  22. ↵
    1. Kay, S. M.
    (1993). Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Prentice Hall PTR.
    1. Konopliv, A. S.,
    2. Park, R. S.,
    3. Yuan, D. -N.,
    4. Asmar, S. W.,
    5. Watkins, M. M.,
    6. Williams, J. G.,
    7. Fahnestock, E.,
    8. Kruizinga, G.,
    9. Paik, M.,
    10. Strekalov, D.,
    11. Harvey, N.,
    12. Smith, D. E., &
    13. Zuber, M. T.
    (2013). The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. Journal of Geophysical Research: Planets, 118(7), 1415–1434. https://doi.org/10.1002/jgre.20097
  23. ↵
    1. Lam, T. &
    2. Whiffen, G. J.
    (2005). Exploration of distant retrograde orbits around Europa. 15th AAS/AIAA Space Flight Mechanics Meeting, Copper Mountain, CO.
  24. ↵
    1. Lewis, P. A. W., &
    2. Shedler, G. S.
    (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Research Logistics Quarterly, 26(3), 403–413. https://doi.org/10.1002/nav.3800260304
    CrossRef
  25. ↵
    1. Liu, J.,
    2. Ma, J.,
    3. Tian, J. -W.,
    4. Kang, Z. -W., &
    5. White, P.
    (2010). X-ray pulsar navigation method for spacecraft with pulsar direction error. Advances in Space Research, 46(11), 1409–1417. https://doi.org/10.1016/j.asr.2010.08.019
  26. ↵
    1. Mitchell, J. W.,
    2. Winternitz, L. B.,
    3. Hassouneh, M. A.,
    4. Price, S. R.,
    5. Semper, S. R.,
    6. Yu, W. H.,
    7. Ray, P. S.,
    8. Wolff, M. T.,
    9. Kerr, M.,
    10. Wood, K. S.,
    11. Arzoumanian, Z.,
    12. Gendreau, K. C.,
    13. Guillemot, L.,
    14. Cognard, I., &
    15. Demorest, P.
    (2018) SEXTANT X-ray pulsar navigation demonstration: Initial on-orbit results. 41st Annual American Astronautical Society (AAS) Guidance and Control Conference, Breckenridge, USA.
  27. ↵
    1. Montenbruck, O., &
    2. Gill, E.
    (2011). Satellite Orbits: Models, Methods and Applications (2nd ed.). Springer Science & Business Media.
  28. ↵
    1. NuSTAR team
    . (2014). NuSTAR Observatory Guide v1.0 [pdf file]. https://heasarc.gsfc.nasa.gov/docs/nustar/NuSTAR_observatory_guide-v1.0.pdf.
  29. ↵
    1. Pasupathy, R.
    (2011). Generating nonhomogeneous Poisson processes. Wiley Encyclopedia of Operations Research and Management Science. https://doi.org/10.1002/9780470400531.eorms0356
  30. ↵
    1. Perera, B. P.,
    2. DeCesar, M. E.,
    3. Demorest, P. B.,
    4. Kerr, M.,
    5. Lentati, L.,
    6. Nice, D. J.,
    7. Oslowski, S.,
    8. Ransom, S. M.,
    9. Keith, M.,
    10. Arzoumanian, Z.,
    11. Bailes, M.,
    12. Baker, P. T.,
    13. Bassa, C. G.,
    14. Bhat, N. D. R.,
    15. Brazier, A.,
    16. Burgay, M.,
    17. Burke-Spolaor, S.,
    18. Caballero, R. N.,
    19. Champion, D. J., …
    20. Zhu, X. J.
    (2019). The international pulsar timing array: Second data release. Monthly Notices of the Royal Astronomical Society, 490(4), 4666–4687. https://doi.org/10.1093/mnras/stz2857
  31. ↵
    1. Piriz, R.,
    2. Garbin, E.,
    3. Roldan, P.,
    4. Keith, M.,
    5. Shaw, B.,
    6. Shemar, S.,
    7. Burrows, K.,
    8. Davis, J. &
    9. Binda, S.
    (2019). PulChron: A pulsar time scale demonstration for PNT systems. Proc. of the 50th Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, VA, 191–205. https://doi.org/10.33012/2019.16753
  32. ↵
    1. Qian Y.
    (2013). Research on autonomous navigation and station keeping for quasi-periodic orbit in the Earth-Moon system (in Chinese) [Doctoral dissertation, Harbin Institute of Technology].
  33. ↵
    1. Rawley, L. A.,
    2. Taylor, J. H.,
    3. Davis, M. M., &
    4. Allan, D. W.
    (1987). Millisecond pulsar PSR 1937+21: A highly stable clock. Science, 238(4828), 761–765. https://doi.org/10.1126/science.238.4828.761
    Abstract/FREE Full Text
  34. ↵
    1. Ray, P. S.,
    2. Kerr, M.,
    3. Parent, D.,
    4. Abdo, A. A.,
    5. Guillemot, L.,
    6. Ransom, S. M.,
    7. Rea, N.,
    8. Wolff, M. T.,
    9. Makeev, A.,
    10. Roberts, M. C. E.,
    11. Camilo, F.,
    12. Dormody, M.,
    13. Freire, P. C. C.,
    14. Grove, J. E.,
    15. Gwon, C.,
    16. Harding, A. K.,
    17. Johnston, S.,
    18. Keith, M.,
    19. Kramer, M., …
    20. Ziegler, M.
    (2011). Precise γ-ray timing and radio observations of 17 Fermi γ-ray pulsars. The Astrophysical Journal Supplement Series, 194(2), 17. https://doi.org/10.1088/0067-0049/194/2/17
  35. ↵
    1. Ray, P. S.,
    2. Wood, K. S., &
    3. Wolff, M. T.
    (2017). Characterization of pulsar sources for X-ray navigation. https://arxiv.org/abs/1711.08507
  36. ↵
    1. Razzano M.
    (2007). Model and simulation of gamma-ray pulsar emission in GLAST [Doctoral dissertation, University of Pisa].
  37. ↵
    1. Runnels, J. T., &
    2. Gebre-Egziabher, D.
    (2017). Recursive range estimation using astrophysical signals of opportunity. Journal of Guidance, Control, and Dynamics, 40(9), 2201–2213. https://doi.org/10.2514/1.g002650
  38. ↵
    1. Sala, J.,
    2. Urruela, A.,
    3. Villares, X.,
    4. Estalella, R., &
    5. Paredes, J. M.
    (2004). Feasibility study for a spacecraft navigation system relying on pulsar timing information (European Space Agency Advanced Concepts Team ARIADNA Study).
  39. ↵
    1. Sheikh, S. I.,
    2. Hanson, J. E.,
    3. Graven, P. H., &
    4. Pines, D. J.
    (2011). Spacecraft navigation and timing using X-ray pulsars. NAVIGATION, 58(2), 165–186. https://doi.org/10.1002/j.2161-4296.2011.tb01799.x
  40. ↵
    1. Sheikh, S. I., &
    2. Pines, D. J.
    (2006). Recursive estimation of spacecraft position and velocity using X-ray pulsar time of arrival measurements. NAVIGATION, 53(3), 149–166. https://doi.org/10.1002/j.2161-4296.2006.tb00380.x
    1. Sheikh, S. I.,
    2. Pines, D. J.,
    3. Ray, P. S.,
    4. Wood, K. S.,
    5. Lovellette, M. N., &
    6. Wolff, M. T.
    (2006). Spacecraft navigation using X-Ray pulsars. Journal of Guidance, Control, and Dynamics, 29(1), 49–63. https://doi.org/10.2514/1.13331
    CrossRef
  41. ↵
    1. Shuai, P.,
    2. Li, M.,
    3. Chen, S., &
    4. Huang, Z.
    (2009). The principle and method of X-ray pulsar navigation system (in Chinese). Beijing, Chinese Aerospace Press.
    1. Standish, E. M.
    (1998). JPL Planetary and Lunar Ephemerides, DE405/LE405 (Interoffice Memorandum312.F-98-048). Jet Propulsion Laboratory.
  42. ↵
    1. Strange, N.,
    2. Landau, D.,
    3. McElrath, T.,
    4. Lantoine, G. &
    5. Lam, T.
    (2013). Overview of mission design for NASA Asteroid Redirect Robotic Mission concept. 33rd International Electric Propulsion Conference (IEPC2013), Washington, D.C. http://hdl.handle.net/2014/44361
  43. ↵
    1. Stupl, J.,
    2. Ebert, M.,
    3. Mauro, D.,
    4. Hong, J.,
    5. Romaine, S.,
    6. Kenter, A.,
    7. Evans, J.,
    8. Kraft, R.,
    9. Nittler, L.,
    10. Crawford, I.,
    11. Kring, D.,
    12. Petro, N.,
    13. Gendreau, K.,
    14. Mitchell, J.,
    15. Winternitz, L.,
    16. Masterson, R.,
    17. Prigozhin, G.,
    18. Wickizer, B.,
    19. Bonner, K., …
    20. Nguyen, D.
    (2018). CubeX: A compact X-ray telescope enables both X-ray fluorescence imaging spectroscopy and pulsar timing based navigation. 32nd Annual AIAA/USU Conference on Small Satellites, Logan UT.
    1. Tapley, B.,
    2. Ries, J.,
    3. Bettadpur, S.,
    4. Chambers, D.,
    5. Cheng, M.,
    6. Condi, F.,
    7. Gunter, B.,
    8. Kang, Z.,
    9. Nagel, P.,
    10. Pastor, R.,
    11. Pekker, T.,
    12. Poole, S., &
    13. Wang, F.
    (2005). GGM02 – An improved Earth gravity field model from GRACE. Journal of Geodesy, 79(8), 467–478. https://doi.org/10.1007/s00190-005-0480-z
    CrossRefGeoRefWeb of Science
  44. ↵
    1. Turner, G.
    (2016). Results of long-duration simulation of distant retrograde orbits. Aerospace, 3(4), 37. https://doi.org/10.3390/aerospace3040037
  45. ↵
    1. Vivekanand, M.
    (2020). The 31 yr rotation history of the millisecond pulsar J1939+2134 (B1937+21). The Astrophysical Journal, 890(2), 143. https://iopscience.iop.org/article/10.3847/1538-4357/ab6f75
  46. ↵
    1. Wang, W.,
    2. Shu, L.,
    3. Liu, J., &
    4. Gao, Y.
    (2019). Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAI-SON considering dynamic and clock model errors. NAVIGATION, 66(4), 781–802. https://doi.org/10.1002/navi.340
  47. ↵
    1. Winternitz, L. B.,
    2. Bamford, W.,
    3. Long, A., &
    4. Hassouneh, M.
    (2019). GPS based autonomous navigation study for the lunar gateway. 42nd Annual American Astronautical Society (AAS) Guidance, Navigation, and Control Conference, Breckenridge, CO.
  48. ↵
    1. Winternitz, L. B.,
    2. Mitchell, J. W.,
    3. Hassouneh, M. A.,
    4. Price, S. R.,
    5. Semper, S. R.,
    6. Yu, W. H.,
    7. Ray, P. S.,
    8. Wolff, M. T.,
    9. Kerr, M.,
    10. Wood, K. S.,
    11. Arzoumanian, Z.,
    12. Gendreau, K. C.,
    13. Guillemot, L.,
    14. Cognard, I.,
    15. Demorest, P.,
    16. Stappers, B. &
    17. Lyne, A.
    (2018). SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results. 2018 SpaceOps Conference, Marseille, France. https://doi.org/10.2514/6.2018-2538
  49. ↵
    1. Winternitz, L. B.,
    2. Hassouneh, M. A.,
    3. Mitchell, J. W.,
    4. Valdez, J. E.,
    5. Price, S. R.,
    6. Semper, S. R.,
    7. Yu, W. H.,
    8. Ray, P. S.,
    9. Wood, K. S.,
    10. Arzoumanian, Z. &
    11. Gendreau, K. C.
    (2015). X-ray pulsar navigation algorithms and testbed for SEXTANT. 2015 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/aero.2015.7118936
  50. ↵
    1. Xue, M.,
    2. Li, X.,
    3. Fu, L.,
    4. Fang, H.,
    5. Sun, H., &
    6. Shen, L.
    (2015). X-ray pulsar-based navigation using pulse phase and Doppler frequency measurements. Science China Information Sciences, 58(12), 1–14. https://doi.org/10.1007/s11432-015-5460-1
    CrossRef
  51. ↵
    1. Zhang, X.,
    2. Shuai, P.,
    3. Huang, L.,
    4. Chen, S., &
    5. Xu, L.
    (2017). Mission overview and initial observation results of the X-ray pulsar navigation-I satellite. International Journal of Aerospace Engineering, 2017, 1–7. https://doi.org/10.1155/2017/8561830
  52. ↵
    1. Zheng, S.,
    2. Ge, M.,
    3. Han, D.,
    4. Wang, W.,
    5. Chen, Y.,
    6. Lu, F.,
    7. Bao, T.,
    8. Chai, J.,
    9. Dong, Y.,
    10. Feng, M.,
    11. He, J.,
    12. Huang, Y.,
    13. Kong, M.,
    14. Li, H.,
    15. Li, L.,
    16. Li, Z.,
    17. Liu, J.,
    18. Liu, X.,
    19. Shi, H., …
    20. Zhang, S.
    (2017). Test of pulsar navigation with POLAR on TG-2 space station. SCIENTIA SINICA Physica, Mechanica & Astronomica, 47(9). https://doi.org/10.1360/sspma2017-00080
  53. ↵
    1. Zheng, S.,
    2. Zhang, S. N.,
    3. Lu, F.,
    4. Wang, W.,
    5. Gao, Y.,
    6. Li, T.,
    7. Song, L.,
    8. Ge, M.,
    9. Han, D.,
    10. Chen, Y.,
    11. Xu, Y.,
    12. Cao, X.,
    13. Liu, C.,
    14. Zhang, S.,
    15. Qu, J.,
    16. Chang, Z.,
    17. Chen, G.,
    18. Chen, L.,
    19. Chen, T. X., …
    20. Zou, C. L.
    (2019). In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite. The Astrophysical Journal Supplement Series, 244(1), 1. https://doi.org/10.3847/1538-4365/ab3718
  54. ↵
    1. Zucca, C., &
    2. Tavella, P.
    (2005). The clock model and its relationship with the Allan and related variances. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(2), 289–296. https://doi.org/10.1109/tuffc.2005.1406554
    PubMed
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 68 (4)
NAVIGATION: Journal of the Institute of Navigation
Vol. 68, Issue 4
Winter 2021
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X-ray pulsars
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X-ray pulsars
Jiangkai Liu, Wenbin Wang, Hao Zhang, Leizheng Shu, Yang Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2021, 68 (4) 687-708; DOI: 10.1002/navi.451

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Autonomous orbit determination and timekeeping in lunar distant retrograde orbits by observing X-ray pulsars
Jiangkai Liu, Wenbin Wang, Hao Zhang, Leizheng Shu, Yang Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2021, 68 (4) 687-708; DOI: 10.1002/navi.451
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 TECHNICAL BACKGROUND
    • 3 SIMULATING PHOTON TIMESTAMPS
    • 4 XPNAV ALGORITHMS
    • 5 MONTE CARLO SIMULATIONS AND PERFORMANCE ASSESSMENT
    • 6 CONCLUSIONS
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENT
    • Footnotes
    • REFERENCES
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • autonomous navigation
  • distant retrograde orbit
  • timekeeping
  • X-ray pulsars

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire