Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

A particle-filtering framework for integrity risk of GNSS-camera sensor fusion

Adyasha Mohanty, Shubh Gupta and Grace Xingxin Gao
NAVIGATION: Journal of the Institute of Navigation December 2021, 68 (4) 709-726; DOI: https://doi.org/10.1002/navi.455
Adyasha Mohanty
Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shubh Gupta
Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Xingxin Gao
Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Al Hage, J. &
    2. El Najjar, M. E. B.
    (2020). Improved outdoor localization based on weighted Kullback-Leibler divergence for measurements diagnosis. IEEE Intelligent Transportation Systems Magazine, 12, 41–56. https://doi.org/10.1109/MITS.2018.2879165
  2. ↵
    1. Al Hage, J.,
    2. Xu, P. &
    3. Bonnifait, P.
    (2018). Bounding localization errors with student distribution for road vehicles. International Technical Symposium on Navigation and Timing, Toulouse, France. https://doi.org/10.31701/itsnt2018.11
    1. Alcantarilla, P. F.,
    2. Nuevo, J. &
    3. Bartoli A.
    (2013). Fast explicit diffusion for accelerated features in nonlinear scale spaces. Proc. of the British Machine Vision Conference 2013, 13.1–13.11. https://doi.org/10.5244/C.27.13
  3. ↵
    1. Bay, H.,
    2. Tuytelaars, T., &
    3. Van Gool, L.
    (2006). SURF: Speeded up robust features, In A. Leonardis, H. Bischof, & A., Pinz (Eds.), Computer Vision – ECCV 2006 (pp. 404–417). Springer. https://doi.org/10.1007/11744023
  4. ↵
    1. Bhamidipati, S. &
    2. Gao, G.
    (2019). SLAM-based integrity monitoring using GPS and fish-eye camera. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019). Miami, FL, 4116–4129. https://doi.org/10.33012/2019.17117
  5. ↵
    1. Bishop, C. M.
    (2006). Pattern recognition and machine learning (information science and statistics).: Springer. https://doi.org/10.5555/1162264
  6. ↵
    1. Bousquet, O.,
    2. Boucheron, S. &
    3. Lugosi, G.
    (2004). Introduction to statistical learning theory. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced Lectures on Machine Learning (pp. 169–207). ML: Summer School on Machine Learning: Springer.
  7. ↵
    1. Bradski, G.
    (2000). The opencv library. Dr. Dobb’s Journal of Software Tools, 122–125.
  8. ↵
    1. Fu, L.,
    2. Zhang, J.,
    3. Li, R.,
    4. Cao, X. &
    5. Wang, J.
    (2015). Vision-aided RAIM: A new method for GPS integrity monitoring in approach and landing phase. Sensors, 15(9). 22854–22873. https://doi.org/10.3390/s150922854
  9. ↵
    1. Gong, Z.,
    2. Liu, P.,
    3. Liu, Q.,
    4. Miao, R. &
    5. Ying, R.
    (2018). Tightly coupled GNSS with stereo camera navigation using graph optimization. Proc. of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, 3070–3077. https://doi.org/10.33012/2018.15959
  10. ↵
    1. Gupta, S. &
    2. Gao, G. X.
    (2019). Particle RAIM for integrity monitoring. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 811–826. https://doi.org/10.33012/2019.16939
  11. ↵
    1. Gustafsson, F.,
    2. Gunnarsson, F.,
    3. Bergman, N.,
    4. Forssell, U.,
    5. Jansson, J.,
    6. Karlsson, R. &
    7. Nordlund, P.
    (2002). Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing, 50(2), 425–437. https://doi.org/10.1109/78.978396
  12. ↵
    1. Chengyan, H.,
    2. Ji, G.,
    3. Xiaochun, L. &
    4. Jun, L.
    (2014). Multipath performance analysis of GNSS navigation signals. 2014 IEEE Workshop on Electronics, Computer and Applications, Ottawa, ON, 379–382. https://doi.org/10.1109/IWECA.2014.6845636
  13. ↵
    1. Kalman, R. E.
    (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552
    CrossRef
  14. ↵
    1. Kullback, S., &
    2. Leibler, R. A.
    (1951). On information and sufficiency. In The Annals of Mathematical Statistics (pp. 79–86). 22. 1. Institute of Mathematical Statistics. https://doi.org/10.1214/aoms/1177729694
    CrossRef
  15. ↵
    1. Lee, Y. C.
    (1986). Analysis of range and position comparison methods as a means to provide GPS integrity in the user receiver. Proc. of the 42nd International Technical Meeting of the Satellite Division of the Institute of Navigation, Seattle, WA, 1–4.
  16. ↵
    1. Lloyd, S.
    (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489
  17. ↵
    1. Lowe, D.
    (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
    CrossRef
  18. ↵
    1. Mohanty, A.,
    2. Gupta, S. &
    3. Gao, G.
    (2020). A particle filtering framework for integrity risk of GNSS-camera sensor fusion. Proc. of the 33nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2440–2452. https://doi.org/10.33012/2020.17660
  19. ↵
    1. Nister, D. &
    2. Stewenius, H.
    (2006). Scalable recognition with a vocabulary tree. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’06), New York, NY. https://doi.org/10.1109/CVPR.2006.264
  20. ↵
    1. Pesonen, H.
    (2011). A framework for Bayesian receiver autonomous integrity monitoring in urban navigation. NAVIGATION, 58(3), 229–240. https://doi.org/10.1002/j.2161-4296.2011.tb02583.x
  21. ↵
    1. Reisdorf, P.,
    2. Pfeifer, T.,
    3. Breßler, J.,
    4. Bauer, S.,
    5. Weissig, P.,
    6. Lange, S.,
    7. Wanielik, G., &
    8. Protzel, P.
    (2016). The problem of comparable GNSS results – an approach for a uniform dataset with low-cost and reference data. In M. Ullmann, & K. El-Khatib (Eds.) VEHIC-ULAR 2016: The 5th International Conference on Advances in Vehicular Systems, Technologies and Applications.
  22. ↵
    1. Rife, J.
    (2012). Collaborative vision-integrated pseudorange error removal: Team-estimated differential GNSS corrections with no stationary reference receiver. IEEE Transactions on Intelligent Transportation Systems, 13(1), 15–24. https://doi.org/10.1109/TITS.2011.2178832
  23. ↵
    1. Rublee, E.,
    2. Rabaud, V.,
    3. Konolige, K. &
    4. Bradski, G.
    (2011). ORB: An efficient alternative to SIFT or SURF. 2011 International Conference on Computer Vision, Barcelona, Spain, 2564–2571. https://doi.org/10.1109/ICCV.2011.6126544
  24. ↵
    1. Šimandl, M. &
    2. Duník, J.
    (2006). Design of derivative-free smoothers and predictors. IFAC Proceedings Volumes, 39, 1240–1245. https://doi.org/10.3182/20060329-3-AU-2901.00200
    1. Seeger, M.
    (2002). Pac-Bayesian generalization error bounds for Gaussian process classification. Journal of Machine Learning Research, 3(2), 233–269. https://doi.org/10.1162/153244303765208386
  25. ↵
    1. Sorenson, H. &
    2. Alspach, D.
    (1971). Recursive bayesian estimation using Gaussian sums. Automatica, 7(4), 465–479. https://doi.org/10.1016/0005-1098(71)90097-5
  26. ↵
    1. Miller, S. M.,
    2. Zhang, X. &
    3. Spanias, A.
    (2015). Multipath effects in GPS receivers. Synthesis Lectures on Communications. https://doi.org/10.2200/S00682ED1V01Y201511COM011
  27. ↵
    1. Tanil, C.,
    2. Khanafseh, S.,
    3. Joerger, M. &
    4. Pervan, B.
    (2018). Sequential integrity monitoring for Kalman filter innovations-based detectors. Proc. of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, 2440–2455. https://doi.org/10.33012/2018.15975
  28. ↵
    1. Tmazirte, N. A.,
    2. El Najjar, M. E.,
    3. Smaili, C. &
    4. Pomorski, D.
    (2012). Multi-sensor data fusion based on information theory: Application to GNSS positioning and integrity monitoring. 2012 15th International Conference on Information Fusion, Singapore, 743–749.
  29. ↵
    1. Valiant, L. G.
    (1984). A theory of the learnable. Proc. of the 16th Annual ACM Symposium on Theory of Computing (STOC ’84), New York, NY, 436–445. https://doi.org/10.1145/800057.808710
  30. ↵
    1. van Erven, T. &
    2. Harremos, P.
    (2014). Rényi divergence and Kullback-Leibler divergence. IEEE Transactions on Information Theory, 60(7), 3797–3820. https://doi.org/10.1109/TIT.2014.2320500
  31. ↵
    1. Vila, J. P. &
    2. Schniter, P.
    (2013). Expectation-maximization Gaussian-mixture approximate message passing. IEEE Transactions on Signal Processing, 61(19), 4658–4672. https://doi.org/10.1109/TSP.2013.2272287
  32. ↵
    1. Wang, X.,
    2. Cui, N. &
    3. Guo, J.
    (2009). Information filtering and its application to relative navigation. Aircraft Engineering and Aerospace Technology, 81(5), 439–444. https://doi.org/10.1108/00022660910983725
  33. ↵
    1. Wang, Z.,
    2. Wu, Y. &
    3. Niu, Q.
    (2020). Multi-sensor fusion in automated driving: A survey. IEEE Access, 8, 2847–2868. https://doi.org/10.1109/ACCESS.2019.2962554
  34. ↵
    1. Zhu, N.,
    2. Marais, J.,
    3. Betaille, D. &
    4. Berbineau, M. Bé
    (2018). GNSS position integrity in urban environments: A review of literature. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2762–2778. https://doi.org/10.1109/TITS.2017.2766768
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 68 (4)
NAVIGATION: Journal of the Institute of Navigation
Vol. 68, Issue 4
Winter 2021
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A particle-filtering framework for integrity risk of GNSS-camera sensor fusion
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
A particle-filtering framework for integrity risk of GNSS-camera sensor fusion
Adyasha Mohanty, Shubh Gupta, Grace Xingxin Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2021, 68 (4) 709-726; DOI: 10.1002/navi.455

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A particle-filtering framework for integrity risk of GNSS-camera sensor fusion
Adyasha Mohanty, Shubh Gupta, Grace Xingxin Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2021, 68 (4) 709-726; DOI: 10.1002/navi.455
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PARTICLE FILTER FRAMEWORK FOR PROBABILISTIC SENSOR FUSION
    • 3 GNSS MODULE: PARTICLE RAIM
    • 4 CAMERA MODULE
    • 5 PROBABILISTIC SENSOR FUSION
    • 6 INTEGRITY RISK BOUNDING
    • 7 EXPERIMENTS
    • 8 RESULTS
    • 9 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • AUTHOR BIOGRAPHIES
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Keywords

  • camera
  • GNSS
  • integrity monitoring
  • particle filter
  • sensor fusion

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire