Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Improved Automatic Detection of GPS Satellite Oscillator Anomaly using a Machine Learning Algorithm

Yunxiang Liu, and Y. Jade Morton
NAVIGATION: Journal of the Institute of Navigation March 2022, 69 (1) navi.500; DOI: https://doi.org/10.33012/navi.500
Yunxiang Liu,
Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder Boulder, CO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Y. Jade Morton
Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder Boulder, CO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Benton, C. J., &
    2. Mitchell, C. N.
    (2012). GPS satellite oscillator faults mimicking ionospheric phase scintillation, GPS Solutions. 16(4), 477–482. https://www.doi.org/10.1007/s10291-011-0247-3
  2. ↵
    1. Benton, C. J., &
    2. Mitchell C. N.
    (2014). Further observations of GPS satellite oscillator anomalies mimicking ionospheric phase scintillation, GPS Solutions, 18(3), 387–391. https://www.doi.org/10.1007/s10291-013-0338-4
  3. ↵
    1. Bishop, C.
    (2006). Pattern recognition and machine learning. New York: Springer-Verlag, 2006. https//www.springer.com/us/book/9780387310732
  4. ↵
    1. Blanch, J.,
    2. Walter, T.,
    3. Enge, P.,
    4. Wallner, S.,
    5. Fernandez, F. A.,
    6. Dellago, R.,
    7. Ioannides, R.,
    8. Hernandez, I. F.,
    9. Belabbas, B., &
    10. Rippl, M.
    (2013). Critical elements for a multi-constellation advanced RAIM. NAVIGATION, 60(1), 53–69. https://www.doi.org/10.1002/navi.29
  5. ↵
    1. Breiman, L.
    (2001). Random forests. Machine Learning, 45(1), 5–32. https://www.doi.org/10.1023/A:1010933404324
    CrossRef
  6. ↵
    1. Carrano, C. S.,
    2. Groves, K. M.,
    3. McNeil, W. J., &
    4. Doherty, P. H.
    (2013). Direct measurement of the residual in the ionosphere-free linear combination during scintillation. Proc. of the 2013 International Technical Meeting of the Institute of Navigation, San Diego, CA, 585–596. https://www.ion.org/publications/abstract.cfm?articleID=10893
  7. ↵
    1. Chang, C.-C. &
    2. Lin, C.-J.
    (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://www.doi.org/10.1145/1961189.1961199
  8. ↵
    1. Cobb, H. S.,
    2. Lawrence, D.,
    3. Christie, J.,
    4. Walter, T.,
    5. Chao, Y. C.,
    6. Powell, J. D., &
    7. Parkinson, B.
    (1995). Observed GPS signal continuity interruptions. Proc. of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1995). Palm Springs, CA, 8, 793–795.
    1. Cournapeau, D.
    (n.d.) Multiclass and multilabel algorithms. https://scikit-learn.org/0.15/modules/multiclass.html
  9. ↵
    1. Fernández-Delgado, M.,
    2. Cernadas, E.,
    3. Barro, S., &
    4. Amorim, D.
    (2014). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15, 3133–3181.
  10. ↵
    1. Gordon, S.,
    2. Shallberg, K.,
    3. Ericson, S.,
    4. Grabowski, J.,
    5. Morrissey, T., &
    6. Lorge, F.
    (2009). PRN-21 carrier phase perturbations observed by WAAS. Proc. of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009). Savannah, GA, 1236–1243. https://www.ion.org/publications/abstract.cfm?articleID=8533
  11. ↵
    1. Hansen, A.,
    2. Walter, T.,
    3. Enge, P., &
    4. Lawrence, D.
    (1998). GPS satellite clock event on SVN 27 and its impact on augmented navigation systems. Proc. of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1998). Nashville, TN, 1665–1673. https://www.ion.org/publications/abstract.cfm?articleID=3104
  12. ↵
    1. Heng, L.
    , (2012) Safe satellite navigation with multiple constellations: Global monitoring of GPS and GLONASS signal-in-space anomalies [Doctoral Dissertation, Stanford University].
  13. ↵
    1. Heo, Y.-J.,
    2. Cho, J.-H., &
    3. Heo, M.-B.
    (2012). An approach for GPS clock jump detection using carrier phase measurements in real-time, Journal of Electrical Engineering & Technology, 7(3), 429–435. https://doi.org/10.5370/JEET.2012.7.3.429
  14. ↵
    1. Jiao, Y.
    (2017). Low-latitude ionospheric scintillation signal simulation, characterization, and detection on GPS signals [Doctoral Dissertation, Colorado State University].
  15. ↵
    1. Jiao, Y.,
    2. Hall, J. J., &
    3. Morton, Y. T.
    (2017a). Performance evaluation of an automatic GPS ionospheric phase scintillation detector using a machine-learning algorithm. NAVIGATION, 64(3), 391–402. https://www.doi.org/10.1002/navi.188
  16. ↵
    1. Jiao, Y.,
    2. Hall, J. J., &
    3. Morton, Y. T.
    (2017b). Automatic equatorial GPS amplitude scintillation detection using a machine learning algorithm. IEEE Transactions on Aerospace and Electronic Systems, 53(1), 405–418. https://www.doi.org/10.1109/TAES.2017.2650758
  17. ↵
    1. Liu, Y., &
    2. Morton, Y.
    (2019). Automatic detection of ionospheric scintillationlike GNSS oscillator anomaly using a machine learning algorithm. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019). Miami, FL, 3390–3400. https://doi.org/10.33012/2019.17107
  18. ↵
    1. Liu, Y., and
    2. Morton, Y. J.
    (2020a). Machine learning based Automatic Detection of Ionospheric Scintillation-like GNSS Oscillator Anomaly Using Dual Frequency Signals. Proc. of the 51st Annual Precise Time and Time Interval Systems and Applications Meeting. San Diego, CA, 366–373. https://www.doi.org/10.33012/2020.17311
  19. ↵
    1. Liu, Y., &
    2. Morton, Y. J.
    (2020b). Automatic detection of ionospheric scintillation-like GNSS satellite oscillator anomaly using a machine learning algorithm. NAVIGATION, 67(3), 651–662. https://doi.org/10.1002/navi.385
  20. ↵
    1. Lockheed Martin
    (n.d.) GPS III/IIIF: The next generation of positioning, navigation, and timing. https://www.lockheedmartin.com/en-1034us/products/gps.html
  21. ↵
    1. McCaffrey, A. M., &
    2. Jayachandran, P. T.
    (2019). Determination of the refractive contribution to GPS phase ‘scintillation.’ Journal of Geophysical Research: Space Physics, 124(2), 1454–1469. https://www.doi.org/10.1029/2018JA025759
  22. ↵
    1. Morton, Y. J.,
    2. Yang, Z.,
    3. Breitsch, B.,
    4. Borne, H., &
    5. Rino, C.
    (2020). Chapter 31: Ionospheric effects, monitoring, and mitigation techniques. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications, Volume 1 (pp. 879–937). Wiley-IEEE Press. https://doi.org/10.1002/9781119458449.ch31
  23. ↵
    1. Quinlan, J. R.
    (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://www.doi.org/10.1007/BF00116251
  24. ↵
    1. Ramesh, R. K. H.,
    2. Ugazio, S., &
    3. van Graas, F.
    (2017). Keynote: Characterization of GPS satellite anomalies for SVN 63 (PRN 1) using a dish antenna. Proc. of the ION 2017 Pacific PNT Meeting. Honolulu, HI, 167–182. https://www.doi.org/10.33012/2017.15081
  25. ↵
    1. Shallberg K., &
    2. Sheng, F.
    (2008). WAAS measurement processing; current design and potential improvements. 2008 IEEE/ION Position, Location and Navigation Symposium. Monterey, CA, 253–262. https://www.doi.org/10.1109/PLANS.2008.4570014
  26. ↵
    1. Van Dierendonck, A. J.,
    2. Klobuchar, J., &
    3. Hua, Q.
    (1993). Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. Proc. of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, UT, 1333–1342.
  27. ↵
    1. Vary, N.
    (2012) DR#110: PRN4 carrier phase anomalies cause WAAS SV alerts. WAAS Technical Memorandum, Federal Aviation Administration WJHTC, Atlantic City International Airport, NJ. http://www.nstb.tc.faa.gov/DisplayDiscrepancyReport.htm
  28. ↵
    1. Vioarsson, L.,
    2. Pullen, S.,
    3. Green, G., &
    4. Enge, P.
    (2001). Satellite autonomous integrity monitoring and its role in enhancing GPS user performance. Proc. of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, 690–702.
  29. ↵
    1. Walter, T.,
    2. Blanch, J.,
    3. Phelts, R. E., and
    4. Enge, P.
    (2012). Evolving WAAS to serve L1/L5 users. NAVIGATION, 59(4), 317–327. https://doi.org/10.1002/navi.21
  30. ↵
    1. Walter, T.,
    2. Enge, P., &
    3. DeCleene, B.
    (2003). Integrity lessons from the WAAS integrity performance panel (WIPP). Proc. of the 2003 National Technical Meeting of the Institute of Navigation. Anaheim, CA, 183–194.
  31. ↵
    1. Weiss, M.,
    2. Shome, P., &
    3. Beard, R.
    (2010). On-board GPS clock monitoring for signal integrity. Proc. of the 42nd Annual Precise Time and Time Interval (PTTI) Meeting, Reston, VA, 465–480.
  32. ↵
    1. Yang, H.,
    2. Xu, C., &
    3. Gao, Y.
    (2019). Analysis of GPS satellite clock prediction performance with different update intervals and application to real-time PPP. Survey Review, 51(364), 43–52. https://www.doi.org/10.1080/00396265.2017.1359473
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 1
Spring 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improved Automatic Detection of GPS Satellite Oscillator Anomaly using a Machine Learning Algorithm
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Improved Automatic Detection of GPS Satellite Oscillator Anomaly using a Machine Learning Algorithm
Yunxiang Liu,, Y. Jade Morton
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.500; DOI: 10.33012/navi.500

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Improved Automatic Detection of GPS Satellite Oscillator Anomaly using a Machine Learning Algorithm
Yunxiang Liu,, Y. Jade Morton
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.500; DOI: 10.33012/navi.500
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 METHODOLOGY
    • 3 DATA SET DESCRIPTION AND PERFORMANCE EVALUATION
    • 4 DETECTION RESULTS
    • 5 CONCLUSION AND FUTURE WORK
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Commercial GNSS Radio Occultation on Aerial Platforms With Off-The-Shelf Receivers
  • Improving GNSS Positioning Using Neural-Network-Based Corrections
  • Resilience Monitoring for Multi-Filter All-Source Navigation Framework With Assurance
Show more Original Article

Similar Articles

Keywords

  • global monitoring system
  • GPS
  • machine learning
  • phase scintillation
  • random forest
  • satellite oscillator anomaly
  • signal quality monitoring
  • support vector machine

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire