Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

Detecting Slowly Accumulating Faults Using a Bank of Cumulative Innovations Monitors in Kalman Filters

John D. Quartararo, and Steven E. Langel
NAVIGATION: Journal of the Institute of Navigation March 2022, 69 (1) navi.507; DOI: https://doi.org/10.33012/navi.507
John D. Quartararo,
Electronic Systems Innovation Center, The MITRE Corporation, Bedford, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Steven E. Langel
Electronic Systems Innovation Center, The MITRE Corporation, Bedford, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abramowitz, M.,
    2. Stegun, I. A., &
    3. Romer, R. H.
    (1988). Handbook of mathematical functions with formulas, graphs, and mathematical tables. American Journal of Physics, 56. https://doi.org/10.1119/1.15378
  2. ↵
    1. Bhatti, U., &
    2. Ochieng, W.
    (2007). Failure modes and models for integrated GPS/INS systems. The Journal of Navigation, 60(2), 327–348. https://doi.org/10.1017/S0373463307004237
  3. ↵
    1. Blanch, J.,
    2. Ene, A.,
    3. Walter, T., &
    4. Enge, P.
    (2007). An optimized multiple hypothesis RAIM algorithm for vertical guidance. Proc. of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, 2924–2933. https://www.ion.org/publications/abstract.cfm?articleID=7644
  4. ↵
    1. Borio, D.,
    2. Anantharamu, P. B., &
    3. Lachapelle, G.
    (2010). Semi-analytic simulations: An extension to unambiguous BOC tracking. Proc. of the 2010 International Technical Meeting of the Institute of Navigation, San Diego, CA, 1023–1036. https://www.ion.org/publications/abstract.cfm?articleID=8882
  5. ↵
    1. Brown, R. G., &
    2. Hwang, P. Y. C.
    (2012). Introduction to random signals and applied Kalman filtering with MATLAB exercises (4th ed.). John Wiley & Sons, Inc.
  6. ↵
    1. Coelho, C.
    (2020). On the distribution of linear combinations of chi-square random variables. In A. Bekker, D.-G. Chen, & J. T. Ferreira (Eds.). Computational and methodological statistics and biostatistics (pp. 211–252). https://doi.org/10.1007/978-3-030-42196-0_9
  7. ↵
    1. Crespillo, O. G.,
    2. Grosch, A.,
    3. Skaloud, J., &
    4. Meurer, M.
    (2017). Innovation vs residual KF based GNSS/INS autonomous integrity monitoring in single fault scenario. Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 2126–2136. https://doi.org/10.33012/2017.15136
  8. ↵
    1. Diesel, J., &
    2. Luu, S.
    (1995). GPS/IRS AIME: Calculation of thresholds and protection radius using chi-square methods. Proc. of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1995), Palm Springs, CA, 1959–1964. https://www.ion.org/publications/abstract.cfm?articleID=2520
  9. ↵
    1. Grewal, M. S., &
    2. Andrews, A. P.
    (2014). Kalman filtering: Theory and practice with MATLAB (4th ed.). Wiley-IEEE Press.
  10. ↵
    1. Groves, P. D.
    (2015). Principles of GNSS, inertial, and multisensor integrated navigation systems 2nd ed. [book review]. IEEE Aerospace and Electronic Systems Magazine, 30(2), 26–27. https://doi.org/10.1109/MAES.2014.14110
  11. ↵
    1. Hailperin, T.
    (1965). Best possible inequalities for the probability of a logical function of events. The American Mathematical Monthly, 72(4), 343–359. https://doi.org/10.2307/2313491
  12. ↵
    1. Joerger, M., &
    2. Pervan, B.
    (2013). Kalman filter-based integrity monitoring against sensor faults. Journal of Guidance, Control, and Dynamics, 36(2), 349–361. https://doi.org/10.2514/1.59480
  13. ↵
    1. Kujur, B.,
    2. Khanafseh, S., &
    3. Pervan, B.
    (2020). A solution separation monitor using INS for detecting GNSS spoofing. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 3210–3226. https://www.ion.org/publications/abstract.cfm?articleID=17535
  14. ↵
    1. Kujur, B.,
    2. Tanil, C.,
    3. Khanafseh, S., &
    4. Pervan, B.
    (2019). Sensitivity of innovation monitors to uncertainty in error modeling. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3266–3274. https://www.ion.org/publications/abstract.cfm?articleID=17066
  15. ↵
    1. Lee, Y. C.
    (1988). New concept for independent GPS integrity monitoring. NAVIGATION, 35(2), 239–254. https://doi.org/10.1002/j.2161-4296.1988.tb00954.x
  16. ↵
    1. Markley, F. L.
    (2003). Attitude error representations for Kalman filtering. Journal of Guidance, Control, and Dynamics, 26(2). https://doi.org/10.2514/2.5048
  17. ↵
    1. Mehra, R. K., &
    2. Peschon, J.
    (1971). An innovations approach to fault detection and diagnosis in dynamic systems. Automatica, 7(5), 637–640. https://doi.org/10.1016/0005-1098(71)90028-8
  18. ↵
    1. Quartararo, J. D.,
    2. Cerruti, A.,
    3. Miller, S.,
    4. Shapiro, A., &
    5. Singh, R.
    (2016). Providing flexible integrated navigation tools and implementations to the PNT community. In Proceedings of the 2016 ION Joint Navigation Conference, Dayton, OH, 284–301.
  19. ↵
    1. Quartararo, J. D., &
    2. Langel, S. E.
    (2020). Detecting slowly accumulating faults using a bank of cumulative innovations monitors in Kalman filters. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2367–2381. https://www.ion.org/publications/abstract.cfm?articleID=17655
  20. ↵
    1. Rife, J.
    (2013). The effect of uncertain covariance on a chi-square integrity monitor. NAVIGATION, 60(4), 291–303. https://doi.org/10.1002/navi.45
  21. ↵
    1. Spilker J. J. Jr..,
    2. Axelrad, P.,
    3. Parkinson, B. W., &
    4. Enge, P.
    (1996). Global positioning system: Theory and applications (vol. 1). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.866388
  22. ↵
    1. Stengel, R. F.
    (2012). Optimal control and estimation. Dover Publications.
  23. ↵
    1. Sturza, M. A.
    (1988). Navigation system integrity monitoring using redundant measurements. NAVIGATION, 35(4), 483–501. https://doi.org/10.1002/j.2161-4296.1988.tb00975.x
  24. ↵
    1. Tanil, C.,
    2. Khanafseh, S.,
    3. Joerger, M.,
    4. Kujur, B.,
    5. Kruger, B.,
    6. de Groot, L., &
    7. Pervan, B.
    (2019). Optimal INS/GNSS coupling for autonomous car positioning integrity. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3123–3140. https://doi.org/10.33012/2019.17013
  25. ↵
    1. Tanil, C.,
    2. Khanafseh, S.,
    3. Joerger, M., &
    4. Pervan, B.
    (2018). An INS monitor to detect GNSS spoofers capable of tracking vehicle position. IEEE Transactions on Aerospace and Electronic Systems, 54(1), 131–143. https://doi.org/10.1109/TAES.2017.2739924
  26. ↵
    1. Todling, R.
    (2000). Estimation theory and atmospheric data assimilation. In P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. G. Prinn, & D. E. Hartley (Eds.). Inverse methods in global biogeochemical cycles (vol. 114, pp. 49–65). https://doi.org/10.1029/GM114p0049
  27. ↵
    1. WG-C ARAIM Subgroup
    . (2016). WG-C ARAIM subgroup, milestone 3 report (Tech. Rep.). EU-US Cooperation on Satellite Navigation, Working Group C - ARAIM Technical Subgroup.
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 1
Spring 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Detecting Slowly Accumulating Faults Using a Bank of Cumulative Innovations Monitors in Kalman Filters
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Detecting Slowly Accumulating Faults Using a Bank of Cumulative Innovations Monitors in Kalman Filters
John D. Quartararo,, Steven E. Langel
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.507; DOI: 10.33012/navi.507

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Detecting Slowly Accumulating Faults Using a Bank of Cumulative Innovations Monitors in Kalman Filters
John D. Quartararo,, Steven E. Langel
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.507; DOI: 10.33012/navi.507
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Summary
    • 1 INTRODUCTION
    • 2 MOTIVATION FOR MULTI-MONITOR APPROACH
    • 3 ALGORITHM DESCRIPTIONS
    • 4 IMPLEMENTATION DETAILS
    • 5 ANALYSIS METHODS
    • 6 RESULTS
    • 7 SUMMARY
    • 8 FUTURE WORK
    • HOW TO CITE THIS ARTICLE
    • APPENDIX A: EFFECT OF MONITOR CROSS-CORRELATION ON FALSE ALARM RATE
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters
  • WAAS and the Ionosphere – A Historical Perspective: Monitoring Storms
  • Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference
Show more Regular Papers

Similar Articles

Keywords

  • anti-spoofing
  • fault detection
  • GNSS
  • GPS
  • inertial
  • innovations monitoring
  • Kalman filtering
  • sensor fusion

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire