Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference

Chun Yang, Andrey Soloviev, Ananth Vadlamani, and Joung C. Ha
NAVIGATION: Journal of the Institute of Navigation March 2022, 69 (1) navi.508; DOI: https://doi.org/10.33012/navi.508
Chun Yang
1QuNav, LLC, Ft. Walton Beach, FL, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Andrey Soloviev
1QuNav, LLC, Ft. Walton Beach, FL, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ananth Vadlamani,
1QuNav, LLC, Ft. Walton Beach, FL, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joung C. Ha
2Air Force Research Laboratory WPAFB, OH, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Akopian, D.
    (2001). A fast satellite acquisition method. Proc. of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, 2871–2881. https://www.ion.org/publications/abstract.cfm?articleID=1963
  2. ↵
    1. Barker, B. C.,
    2. Betz, J. W.,
    3. Clark, J. E.,
    4. Correia, J. T.,
    5. Gillis, J. T.,
    6. Lazar, S.,
    7. Rehborn, K. A., &
    8. Straton, J. R.
    (2000). Overview of the GPS M code signal. Proc. of the 2000 National Technical Meeting of the Institute of Navigation, Anaheim, CA, 542–549. https://www.ion.org/publications/abstract.cfm?articleID=66
  3. ↵
    1. Betz, J. W.
    (1984). Performance of the deskewed short-time correlator. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ‘84), San Diego, CA, 628–631, https://doi.org/10.1109/ICASSP.1984.1172294
  4. ↵
    1. Betz, J. W.
    (1999). The offset carrier modulation for GPS modernization. Proc. of the 1999 National Technical Meeting of the Institute of Navigation, San Diego, CA, 639–648. https://www.ion.org/publications/abstract.cfm?articleID=716
  5. ↵
    1. Betz, J. W.
    (2000). Effect of narrowband interference on GPS code tracking accuracy. Proc. of the 2000 National Technical Meeting of the Institute of Navigation, Anaheim, CA, 16–27. https://www.ion.org/publications/abstract.cfm?articleID=3
  6. ↵
    1. Betz, J. W.
    (2001). Effect of partial-band interference on receiver estimation of C/N0: Theory. Proc. of the 2001 National Technical Meeting of the Institute of Navigation, Long Beach, CA, 817–828. https://www.ion.org/publications/abstract.cfm?articleID=195
  7. ↵
    1. Betz, J. W.
    (2015). Engineering satellite-based navigation and timing: Global navigation satellite systems, signals, and receivers. Wiley-IEEE Press.
    1. Betz, J. W.,
    2. Capozza, P., &
    3. Fite, J.
    (2002). System for direct acquisition of received signals (U.S. Patent No. 7,224,721). U.S. Patent and Trademark Office. https://patents.justia.com/patent/7224721
    1. Betz, J. W.,
    2. Capozza, P., &
    3. Fite, J.
    (2007). System for direct acquisition of received signals (U.S. Patent No. 7,447,259). U.S. Patent and Trademark Office. https://patents.justia.com/patent/7447259
  8. ↵
    1. Betz, J. W., &
    2. Cerruti, A. P.
    (2020). Performance of dual-channel codeless and semicodeless processing. NAVIGATION, 67(1), 109–128. https://doi.org/10.1002/navi.347
  9. ↵
    1. Betz, J. W.,
    2. Fite, J. D., &
    3. Capozza, P.T.
    (2004). DirAc: An integrated circuit for direct acquisition of the M-code signal. Proc. of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, 447–456. https://www.ion.org/publications/abstract.cfm?articleID=5677
  10. ↵
    1. Borio, D.
    (2008). FFT sign search with secondary code constraints for GNSS signal acquisition. 2008 IEEE 68th Vehicular Technology Conference, Calgary, AB. https://doi.org/10.1109/VETECF.2008.142
  11. ↵
    1. Borio, D.,
    2. Camoriano, L., &
    3. Presti, L. L.
    (2006a). Impact of acquisition searching strategy on the detection and false alarm probabilities in a CDMA receiver. 2006 IEEE/ION Position, Location, And Navigation Symposium, Coronado, CA, 1100–1107. https://doi.org/10.1109/PLANS.2006.1650716
  12. ↵
    1. Borio, D.,
    2. O’Driscoll, C., &
    3. Lachapelle, G.
    (2009). Coherent, noncoherent, and differentially coherent combining techniques for acquisition of new composite GNSS signals. IEEE Transactions on Aerospace and Electronic Systems, 45(3), 1227–1240. https://doi.org/10.1109/TAES.2009.5259196
  13. ↵
    1. Borio, D.,
    2. Presti, L. L., &
    3. Mulassano, P.
    (2006b). Spectral separation coefficients for digital GNSS receivers. 2006 14th European Signal Processing Conference, Florence, Italy. https://ieeexplore.ieee.org/document/7071499
  14. ↵
    1. Burian, A.,
    2. Lohan, E. S., &
    3. Renfors, M.
    (2006). BPSK-like methods for hybrid-search acquisition of Galileo signals. 2006 IEEE International Conference on Communications, Istanbul, Turkey. https://doi.org/10.1109/ICC.2006.255493
  15. ↵
    1. Corazza, G. E., &
    2. Pedone, R.
    (2007). Generalized and average likelihood ratio testing for post detection integration. IEEE Transactions on Communications, 55(11), 2159–2171. https://doi.org/10.1109/TCOMM.2007.908531
  16. ↵
    1. Dafesh, P.,
    2. Holmes, J. K.,
    3. Cahn, C. R., &
    4. Stansell, T.
    (2002). Description and analysis of time-multiplexed M-code data. Proc. of the 58th Annual Meeting of the Institute of Navigation and CIGTF 21st Guidance Test Symposium, Albuquerque, NM, 598–611. https://www.ion.org/publications/abstract.cfm?articleID=991
  17. ↵
    1. Deambrogio, L.,
    2. Bastia, F.,
    3. Palestini, C.,
    4. Pedone, R.,
    5. Villanti, M., &
    6. Corazza, G. E.
    (2013). Cross-band aided code acquisition in dual-band GNSS receivers. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2533–2545. https://doi.org/10.1109/TAES.2013.6621834
  18. ↵
    1. Dominguez, E.,
    2. Pousinho, A.,
    3. Boto, P.,
    4. Gómez-Casco, D.,
    5. Locubiche-Serra, S.,
    6. Seco-Granados, G.,
    7. López-Salcedo, J. A.,
    8. Fragner, H.,
    9. Zangerl, F.,
    10. Peña, O., &
    11. Jiménez-Baños, D.
    (2016). Performance evaluation of high sensitivity GNSS techniques in indoor, urban, and space environments. Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, 373–393. https://doi.org/10.33012/2016.14677
  19. ↵
    1. Dovis, F. &
    2. Ta, T. H.
    (2012). High sensitivity techniques for GNSS signal acquisition. In S. Jin (Ed.), Global navigation satellite systems: Signal, theory and applications (pp. 3–30). InTech. https://www.doi.org/10.5772/29453
  20. ↵
    1. Esteves, P.,
    2. Sahmoudi, M., &
    3. Boucheret, M.-L.
    (2016). Sensitivity characterization of differential detectors for acquisition of weak GNSS signals. IEEE Transactions on Aerospace and Electronic Systems, 52(1), 20–37. https://doi.org/10.1109/TAES.2015.130470
  21. ↵
    1. Fine, P. &
    2. Wilson, W.
    (1999). Tracking algorithm for GPS offset carrier signals. Proc. of the 1999 National Technical Meeting of the Institute of Navigation, San Diego, CA, 671–676. https://www.ion.org/publications/abstract.cfm?articleID=719
  22. ↵
    1. Fishman, P. M. &
    2. Betz, J. W.
    (2000). Predicting performance of direct acquisition for the M-code signal. Proc. of the 2000 National Technical Meeting of the Institute of Navigation, Anaheim, CA, 574–582. https://www.ion.org/publications/abstract.cfm?articleID=68
  23. ↵
    1. Foucras, M.,
    2. Julien, O.,
    3. Macabiau, C., &
    4. Ekambi, B.
    (2014). Detailed analysis of the impact of the code Doppler on the acquisition performance of new GNSS signals. Proc. of the 2014 International Technical Meeting of the Institute of Navigation, San Diego, CA, 513–524. https://www.ion.org/publications/abstract.cfm?articleID=11520
  24. ↵
    1. Geiger, B. C.,
    2. Vogel, C., &
    3. Soudan, M.
    (2012). Comparison between ratio detection and threshold comparison for GNSS acquisition. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1772–1779. https://doi.org/10.1109/TAES.2012.6178098
  25. ↵
    1. Gómez-Casco, D.,
    2. López-Salcedo, J. A., &
    3. Seco-Granados, G.
    (2020). Optimal post-detection integration techniques for the reacquisition of weak GNSS signals. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2302–2311. https://doi.org/10.1109/TAES.2019.2948449
  26. ↵
    1. Gumbel, E. J.
    (2004). Statistics of extremes. Dover Publications.
  27. ↵
    1. Gunawardena, S.
    (2007). Development of a transform-domain instrumentation global positioning system receiver for signal quality and anomalous event monitoring [Doctoral dissertation, Ohio University]. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1178558967
  28. ↵
    1. Guo, Y.,
    2. Huan, H.,
    3. Tao, R., &
    4. Wang, Y.
    (2017). Long-term integration based on two-stage differential acquisition for weak direct sequence spread spectrum signal. IET Communications, 11(6), 878–886. https://doi.org/10.1049/iet-com.2016.0996
  29. ↵
    1. Gusi, A.,
    2. Closas, P., &
    3. Garcia-Molina, J. A.
    (2016). False lock probability in BOC signals. Proc. of the 2016 International Technical Meeting of the Institute of Navigation, Monterey, CA, 618–623. https://doi.org/10.33012/2016.13440
  30. ↵
    1. Hao, F.,
    2. Yu, B.,
    3. Gan, X.,
    4. Jia, R.,
    5. Zhang, H.,
    6. Huang, L., &
    7. Wang, B.
    (2020). Unambiguous acquisition/tracking technique based on sub-correlation functions for GNSS sine-BOC signals. Sensors, 20(2). https://doi.org/10.3390/s20020485
  31. ↵
    1. Heiries, V.,
    2. Roviras, D.,
    3. Ries, L., &
    4. Calmettes, V.
    (2004). Analysis of non-ambiguous BOC signal acquisition performance. Proc. of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, 2611–2622. https://www.ion.org/publications/abstract.cfm?articleID=5945
  32. ↵
    1. Hodgart, M. S. &
    2. Simons, E.
    (2012). Improvements and additions to the double estimation technique. 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands. https://doi.org/10.1109/NAVITEC.2012.6423053
  33. ↵
    1. Holmes, J. K.,
    2. Raghavan, S.,
    3. Dafesh, P., &
    4. Lazar, S.
    (1999). Effective signal to noise ratio performance comparison of some GPS modernization signals. Proc. of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1999), Nashville, TN, 1755–1762. https://www.ion.org/publications/abstract.cfm?articleID=3329
  34. ↵
    1. Jiao, X.,
    2. Wang, J., &
    3. Li, X.
    (2012). High sensitivity GPS acquisition algorithm based on code Doppler compensation. 2012 IEEE 11th International Conference on Signal Processing, Beijing, China. https://doi.org/10.1109/ICoSP.2012.6491645
  35. ↵
    1. Jiménez-Baños, D.,
    2. Blanco-Delgado, N.,
    3. López-Risueño, G.,
    4. Seco-Granados, G., &
    5. Garcia-Rodríguez, A.
    (2006). Innovative techniques for GPS indoor positioning using a snapshot receiver. Proc. of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 2944–2955. https://www.ion.org/publications/abstract.cfm?articleID=6834
  36. ↵
    1. Julien, O.,
    2. Macabiau, C.,
    3. Cannon, M. E., &
    4. Lachapelle, G.
    (2007). ASPeCT: Unambiguous sine-BOC(n, n) acquisition/tracking technique for navigation applications. IEEE Transactions on Aerospace and Electronic Systems, 43(1), 150–162. https://doi.org/10.1109/TAES.2007.357123
  37. ↵
    1. Kong, S.-H.
    (2015). SDHT for fast detection of weak GNSS signals. IEEE Journal on Selected Areas in Communications, 33(11), 2366–2378. https://doi.org/10.1109/JSAC.2015.2430291
  38. ↵
    1. Kong, S.-H.
    (2017). High Sensitivity and fast acquisition signal processing techniques for GNSS receivers: From fundamentals to state-of-the-art GNSS acquisition technologies. IEEE Signal Processing Magazine, 34(5) 59–71. https://doi.org/10.1109/MSP.2017.2714201
  39. ↵
    1. Krasner, N. F.
    (1997). GPS receiver and method for processing GPS signals, (U.S. Patent No. 5,781,156). U.S. Patent and Trademark Office. https://patents.justia.com/patent/5781156
  40. ↵
    1. Leclère, J.,
    2. Botteron, C., &
    3. Farine, P.-A.
    (2017). High sensitivity acquisition of GNSS signals with secondary code on FPGAs. IEEE Aerospace and Electronic Systems Magazine, 32(8), 46–63. https://doi.org/10.1109/MAES.2017.160176
  41. ↵
    1. Leclère, J.,
    2. Landy, R. J. R., &
    3. Botteron, C.
    (2016). How does one compute the noise power to simulate real and complex GNSS signals? InsideGNSS, 29–33. https://insidegnss.com/how-does-one-compute-the-noise-power-to-simulate-real-and-complex-gnss-signals/
  42. ↵
    1. Li, Y.,
    2. Zeng, T.,
    3. Long, T., &
    4. Wang, Z.
    (2006). Range migration compensation and Doppler ambiguity resolution by Keystone transform. 2006 CIE International Conference on Radar, Shanghai, China. https://doi.org/10.1109/ICR.2006.343404
  43. ↵
    1. Lowe, S. T.
    (1999). Voltage signal-to-noise ratio (SNR) nonlinearity resulting from incoherent summations (Report TMO PR-42-137). The Telecommunications and Mission Operations. https://www.semanticscholar.org/paper/Voltage-Signal-to-Noise-Ratio-(SNR)-Nonlinearity-Lowe/58cce9808fc75ed307c676613f2ba9efabd4bf67
  44. ↵
    1. O’Driscoll, C. &
    2. Curran, J. T.
    (2016). Codeless code tracking of BOC signals. Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, 497–508. https://doi.org/10.33012/2016.14842
  45. ↵
    1. Pany, T.
    (2010). Navigation signal processing for GNSS software receivers, Artech House. https://us.artechhouse.com/Navigation-Signal-Processing-for-GNSS-Software-Receivers-P1325.aspx
  46. ↵
    1. Pany, T.
    (2020). Private communications.
    1. Pany, T.,
    2. Riedl, B.,
    3. Winkel, J.,
    4. Woerz, T.,
    5. Schweikert, R.,
    6. Niedermeier, H.,
    7. Lagrasta, S.,
    8. Lopez-Risueno, G., &
    9. Jiménez-Banos, D.
    (2009). Coherent integration time: The longer the better. InsideGNSS, 52–61. https://www.researchgate.net/publication/308355946_Coherent_integration_time_The_longer_the_better
  47. ↵
    1. Psiaki, M. L.
    (2001). Block acquisition of weak GPS signals in a software receiver. Proc. of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, 2838–2850. https://www.ion.org/publications/abstract.cfm?articleID=1960
  48. ↵
    1. Rodríguez, J. Á. Á,
    2. Pany, T., &
    3. Eissfeller, B.
    (2004). Theory of acquisition algorithms for indoor positioning. 2nd ESA Workshop on Satellite Navigation User Equipment Technologies (NAVITEC’2004), Noordwijk, Netherlands. https://www.researchgate.net/publication/228855044_Theory_on_Acquisition_algorithms_for_indoor_positioning
  49. ↵
    1. Rushanan, J. J. &
    2. Winters, D. W.
    (2010). Modeling distributions of non-coherent integration sidelobes. Proc. of the 2010 International Technical Meeting of the Institute of Navigation, San Diego, CA, 895–908. https://www.ion.org/publications/abstract.cfm?articleID=8870
  50. ↵
    1. Seco-Granados, G.,
    2. López-Salcedo, J.,
    3. Jiménez-Baños, D., &
    4. López-Risueño, G.
    (2012). Challenges in indoor global navigation satellite systems: Unveiling its core features in signal processing. IEEE Signal Processing Magazine, 29(2), 108–131. https://doi.org/10.1109/MSP.2011.943410
  51. ↵
    1. Serna, E. P.,
    2. Thombre, S.,
    3. Valkama, M.,
    4. Lohan, S.,
    5. Syrjälä, V.,
    6. Hurskainen, H., &
    7. Nurmi, J.
    (2010). Local oscillator phase noise effects on GNSS code tracking. InsideGNSS, 52–62. https://www.insidegnss.com/auto/novdec10-Thombre.pdf
  52. ↵
    1. Soloviev, A. &
    2. Dickman, J.
    (2011). Extending GPS carrier phase availability indoors with a deeply integrated receiver architecture. IEEE Wireless Communications, 18(2), 36–44. https://doi.org/10.1109/MWC.2011.5751294
  53. ↵
    1. Soloviev, A. &
    2. Dickman, J.
    (2014). Collaborative signal processing. GPS World. https://www.gpsworld.com/collaborative-signal-processing/
  54. ↵
    1. Soloviev, A.,
    2. Gunawardena, S., &
    3. van Graas, F.
    (2008). Deeply integrated GPS/low-cost IMU for low CNR signal processing: Concept description and in-flight demonstration. NAVIGATION, 55(1), 1–13. https://www.ion.org/publications/abstract.cfm?articleID=102458
  55. ↵
    1. Soloviev, A.,
    2. Toth, C., &
    3. Grejner-Brzezinska, D.
    (2012). Performance of deeply integrated GPS/INS in dense forestry areas. Journal of Applied Geodesy, 6(1). https://doi.org/10.1515/jag-2011-0005
  56. ↵
    1. Strassle, C.,
    2. Megnet, D.,
    3. Mathis, H., &
    4. Burgi, C.
    (2007). The squaring-loss paradox. Proc. of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, 2715–2722. https://www.ion.org/publications/abstract.cfm?articleID=7534
    1. Seppo, T.
    (2005). Combinatorial loss in satellite acquisition. Proc. of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, 890–895. https://www.ion.org/publications/abstract.cfm?articleID=6283
  57. ↵
    1. Svaton, J. &
    2. Vejražka, F.
    (2020). Joint acquisition estimator of modern GNSS tiered signals using block pre-correlation processing of secondary code. Sensors, 20(10), 2965. https://doi.org/10.3390/s20102965
  58. ↵
    1. Turunen, S.
    (2007). Network assistance: What will new GNSS signals bring to it? InsideGNSS, 35–41. https://www.insidegnss.com/auto/igm_035-041.pdf
  59. ↵
    1. Watson, R.,
    2. Lachapelle, G., &
    3. Klukas, R.
    (2006). Testing oscillator stability as a limiting factor in extreme high-sensitivity GPS applications. Proc. of the European Navigation Conference 2006, Manchester, UK. https://www.researchgate.net/publication/229035625_Testing_oscillator_stability_as_a_limiting_factor_in_extreme_high-sensitivity_GPS_applications
  60. ↵
    1. Ward, P. W.
    (2003a). A design technique to remove the correlation ambiguity in binary offset carrier (BOC) spread spectrum signals. Proc. of the 59th Annual Meeting of the Institute of Navigation and CIGTF 22nd Guidance Test Symposium, Albuquerque, NM, 146–155. https://www.ion.org/publications/abstract.cfm?articleID=3844
  61. ↵
    1. Ward, P. W.
    (2003b). M code performance spreadsheet analysis techniques. Proc. of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, 1553–1560. https://www.ion.org/publications/abstract.cfm?articleID=5340
  62. ↵
    1. Woo, K. T.
    (2000). Optimum semicodeless carrier-phase tracking of L2. NAVIGATION, 47(2), 82–99. https://doi.org/10.1002/j.2161-4296.2000.tb00204.x
  63. ↵
    1. Wu, C.,
    2. Xu, L.-P.,
    3. Zhang, H., &
    4. Zhao, W.-B.
    (2015). A block zero-padding method based on DCFT for L1 parameter estimations in weak signal and high dynamic environments. Frontiers of Information Technology & Electronic Engineering, 16, 796–804. https://doi.org/10.1631/FITEE.1500058
  64. ↵
    1. Yang, C. &
    2. Han, S.
    (2006). Block-accumulating coherent integration over extended interval (BACIX) for weak GPS signal acquisition. Proc. of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 2427–2440. https://www.ion.org/publications/abstract.cfm?articleID=6820
  65. ↵
    1. Yang, C. &
    2. Han, S.
    (2007). Tracking of weak GPS signal with BACIX. Proc. of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, 2797–2807. https://www.ion.org/publications/abstract.cfm?articleID=7543
  66. ↵
    1. Yang, C. &
    2. Soloviev, A.
    (2016). Joint acquisition of GNSS codes via coherent combining of multi-frequency composite quadrature signals. Proc. of the 2016 International Technical Meeting of the Institute of Navigation, Monterey, CA, 805–819. https://doi.org/10.33012/2016.13489
  67. ↵
    1. Yang, C.,
    2. Soloviev, A., &
    3. Ha, J. C.
    (2019). Standalone direct acquisition of weak multi-band split-spectrum signals. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3997–4010. https://doi.org/10.33012/2019.17111
  68. ↵
    1. Yang, C.,
    2. Soloviev, A., &
    3. Ha, J. C.
    (2020a). Combining and integration schemes for acquisition of weak GNSS split-spectrum signals. Proc. of the 2020 International Technical Meeting of the Institute of Navigation, San Diego, CA, 713–725. https://doi.org/10.33012/2020.17172
  69. ↵
    1. Yang, C.,
    2. Soloviev, A.,
    3. Vadlamani, A., &
    4. Ha, J. C.
    (2020b). Long coherent combining and integration for BOC signal acquisition under strong interference. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2758–2778. https://doi.org/10.33012/2020.17593
  70. ↵
    1. Yao, Z.
    (2012). Unambiguous processing techniques of binary offset carrier modulated signals. In S. Jin (Ed.), Global navigation satellite systems: Signal, theory, and applications. https://www.doi.org/10.5772/30649
  71. ↵
    1. Ziedan, N. I.
    (2006). GNSS receivers for weak signals. Artech House. https://us.artechhouse.com/GNSS-Receivers-for-Weak-Signals-P969.aspx
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 1
Spring 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference
Chun Yang, Andrey Soloviev, Ananth Vadlamani,, Joung C. Ha
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.508; DOI: 10.33012/navi.508

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference
Chun Yang, Andrey Soloviev, Ananth Vadlamani,, Joung C. Ha
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.508; DOI: 10.33012/navi.508
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 CONCEPT AND ARCHITECTURE
    • 3 KEY ISSUES AND ENABLING TECHNIQUES
    • 4 ANALYSIS OF DIRECT ACQUISITION PERFORMANCE
    • 5. CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters
  • WAAS and the Ionosphere – A Historical Perspective: Monitoring Storms
Show more Regular Papers

Similar Articles

Keywords

  • coherent combining
  • coherent integration
  • direct acquisition
  • split-spectrum signals
  • weak signals

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire