Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters

Ningbo Wang, Zishen Li, Andrzej Krankowski, and Xingliang Huo
NAVIGATION: Journal of the Institute of Navigation March 2022, 69 (1) navi.509; DOI: https://doi.org/10.33012/navi.509
Ningbo Wang
1Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Zishen Li
1Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrzej Krankowski,
2Space Radio-Diagnostics Research Centre, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xingliang Huo
3State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy of Precision Measurement Science and Technology (APM), CAS, Wuhan 430077, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Gong, X.,
    2. Lou, Y.,
    3. Zheng, F.,
    4. Gu, S.,
    5. Shi, C.,
    6. Liu, J., &
    7. Jing, G.
    (2018). Evaluation and calibration of BeiDou receiver-related pseudorange biases. GPS Solutions, 22. https://doi.org/10.1007/s10291-018-0765-3
  2. ↵
    1. Hauschild, A., &
    2. Montenbruck, O.
    (2016). A study on the dependency of GNSS pseudorange biases on correlator spacing. GPS Solutions, 20(2), 159–171. https://doi.org/10.1007/s10291-014-0426-0
  3. ↵
    1. Hernández-Pajares, M.,
    2. Juan, J. M., &
    3. Sanz, J.
    (1999). New approaches in global ionospheric determination using ground GPS data. Journal of Atmospheric And Solar-Terrestrial Physics, 61(16), 1237–1247. https://doi.org/10.1016/S1364-6826(99)00054-1
    1. Hernández-Pajares, M.,
    2. Roma-Dollase, D.,
    3. Krankowski, A.,
    4. García-Rigo, A., &
    5. Orús-Pérez, R.
    (2017). Methodology and consistency of slant and vertical assessments for ionospheric electron content models. Journal Of Geodesy, 91(12), 1405–1414. https://doi.org/10.1007/s00190-017-1032-z
  4. ↵
    1. Juan, J. M.,
    2. Rius, A.,
    3. Hernández-Pajares, M., &
    4. Sanz, J.
    (1997). A two-layer model of the ionosphere using global positioning system data. Geophysical Research Letters, 24(4), 393–96. https://doi.org/10.1029/97gl00092
  5. ↵
    1. Li, Z.,
    2. Yuan, Y.,
    3. Li, H.,
    4. Ou, J., &
    5. Huo, X.
    (2012). Two-step method for the determination of the differential code biases of COMPASS satellites. Journal Of Geodesy, 86(11), 1059–1076. https://doi.org/10.1007/s00190-012-0565-4
  6. ↵
    1. Li, Z.,
    2. Yuan, Y.,
    3. Fan, L.,
    4. Huo, X., &
    5. Hsu, H.
    (2014). Determination of the differential code bias for current BDS satellites. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 3968–3979. https://doi.org/10.1109/tgrs.2013.2278545
  7. ↵
    1. Li, Z.,
    2. Wang, N.,
    3. Liu, A.,
    4. Yuan, Y.,
    5. Wang, L.,
    6. Hernández-Pajares, M.,
    7. Krankowski, A., &
    8. Yuan, H.
    (2021). Status of CAS global ionospheric maps after the maximum of solar cycle 24. Satellite Navigation, 2(1). https://doi.org/10.1186/s43020-021-00050-2
  8. ↵
    1. Liu, T.,
    2. Zhang, B.,
    3. Yuan, Y.,
    4. Li, Z., &
    5. Wang, N.
    (2019). Multi-GNSS triple-frequency differential code bias (DCB) determination with precise point positioning (PPP). Journal Of Geodesy, 93(5), 765–784. https://doi.org/10.1007/s00190-018-1194-3
  9. ↵
    1. Montenbruck, O.,
    2. Hauschild, A.,
    3. Steigenberger, P.,
    4. Hugentobler, U.,
    5. Teunissen, P., &
    6. Nakamura, S.
    (2013). Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17, 211–222. https://doi.org/10.1007/s10291-012-0272-x
  10. ↵
    1. Montenbruck, O.,
    2. Hauschild, A., &
    3. Steigenberger, P.
    (2014). Differential code bias estimation using multi-GNSS observations and global ionosphere maps. NAVIGATION, 61(3), 191–201. https://doi.org/10.1002/navi.64
  11. ↵
    1. Sanz, J.,
    2. Juan, J. M.,
    3. Rovira-Garcia, A., &
    4. González-Casado, G.
    (2017). GPS differential code biases determination: Methodology and analysis. GPS Solutions, 21(4), 1549–1561. https://doi.org/10.1007/s10291-017-0634-5
  12. ↵
    1. Sardón, E.,
    2. Rius, A., &
    3. Zarraoa, N.
    (1994). Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Science, 29(3), 57–-586. https://doi.org/10.1029/94RS00449
  13. ↵
    1. Shu, B.,
    2. Liu, H.,
    3. Xu, L.,
    4. Gong, X.,
    5. Qian, C.,
    6. Zhang, M., &
    7. Zhang, R.
    (2017). Analysis of satellite-induced factors affecting the accuracy of the BDS satellite differential code bias. GPS Solutions, 21(3), 905–916. https://doi.org/10.1007/s10291-016-0577-2
  14. ↵
    1. Tang, C.,
    2. Hu, X.,
    3. Zhou, S.,
    4. Liu, L.,
    5. Pan, J.,
    6. Chen, L.,
    7. Guo, R.,
    8. Zhu, L.,
    9. Hu, G.,
    10. Li, X.,
    11. He, F., &
    12. Chang, Z.
    (2018). Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. Journal Of Geodesy, 92(10), 1155–1169. https://doi.org/10.1007/s00190-018-1113-7
  15. ↵
    1. Themens, D. R.,
    2. Jayachandran, P. T., &
    3. Langley, R. B.
    (2015). The nature of GPS differential receiver bias variability: An examination in the polar cap region. Journal of Geophysical Research: Space Physics, 120(9), 8155–8175. https://doi.org/10.1002/2015JA021639
  16. ↵
    1. Vergados, P.,
    2. Komjathy, A.,
    3. Runge, T. F.,
    4. Butala, M. D., &
    5. Mannucci, A. J.
    (2016). Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies. Radio Science, 51(7), 1010–1021. https://doi.org/10.1002/2015RS005831
  17. ↵
    1. Wang, N.,
    2. Yuan, Y.,
    3. Li, Z.,
    4. Montenbruck, O., &
    5. Tan, B.
    (2016). Determination of differential code biases with multi-GNSS observations. Journal Of Geodesy, 90(3), 209–228. https://doi.org/10.1007/s00190-015-0867-4
  18. ↵
    1. Wang, N.,
    2. Yuan, Y.,
    3. Li, Z.,
    4. Li, Y.,
    5. Huo, X., &
    6. Li, M.
    (2017). An examination of the Galileo NeQuick model: Comparison with GPS and JASON TEC. GPS Solutions, 21(2), 605–615. https://doi.org/10.1007/s10291-016-0553-x
  19. ↵
    1. Wang, N.,
    2. Li, Z.,
    3. Montenbruck, O., &
    4. Tang, C.
    (2019). Quality assessment of GPS, Galileo, and BeiDou-2/3 satellite broadcast group delays. Advances in Space Research, 64(9), 1764–1779. https://doi.org/10.1016/j.asr.2019.07.029
  20. ↵
    1. Wang, N.,
    2. Li, Z.,
    3. Duan, B.,
    4. Hugentobler, U., &
    5. Wang, L.
    (2020). GPS and GLONASS observable-specific code bias estimation: Comparison of solutions from the IGS and MGEX networks. Journal Of Geodesy, 94(8). https://doi.org/10.1007/s00190-020-01404-5
  21. ↵
    1. Wanninger, L., &
    2. Beer, S.
    (2015). BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solutions, 19(4), 639–648. https://doi.org/10.1007/s10291-014-0423-3
  22. ↵
    1. Wu, Z.,
    2. Zhou, S.,
    3. Hu, X.,
    4. Liu, L.,
    5. Shuai, T.,
    6. Xie, Y.,
    7. Tang, C.,
    8. Pan, J.,
    9. Zhu, L., &
    10. Chang, Z.
    (2018). Performance of the BDS3 experimental satellite passive hydrogen maser. GPS Solutions, 22(2). https://doi.org/10.1007/s10291-018-0706-1
  23. ↵
    1. Xiao, W.,
    2. Liu, W., &
    3. Sun, G.
    (2016). Modernization milestone: BeiDou M2-S initial signal analysis. GPS Solutions, 20(1), 125–133. https://doi.org/10.1007/s10291-015-0496-7
  24. ↵
    1. Yang, Y.,
    2. Li, J.,
    3. Wang, A.,
    4. Xu, J.,
    5. He, H.,
    6. Guo, H.,
    7. Shen, J., &
    8. Dai, X.
    (2014) Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Science China Earth Sciences, 57(1), 144–152. https://doi.org/10.1007/s11430-013-4769-0
  25. ↵
    1. Yang, Y.,
    2. Xu, Y.,
    3. Li, J., &
    4. Yang, C.
    (2018) Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system. Science China Earth Sciences, 61(5), 614–624. https://doi.org/10.1007/s11430-017-9186-9
  26. ↵
    1. Yang, Y.,
    2. Mao, Y., &
    3. Sun, B.
    (2020) Basic performance and future developments of BeiDou global navigation satellite system. Satellite Navigation, 1 (1). https://doi.org/10.1186/s43020-019-0006-0
  27. ↵
    1. Yuan, Y., &
    2. Ou, J.
    (2004) A generalized trigonometric series function model for determining ionospheric delay. Progress in Natural Science, 14(11), 1010–1014. https://doi.org/10.1080/10020070412331344711
  28. ↵
    1. Zhang, B.,
    2. Ou, J.,
    3. Yuan, Y., &
    4. Li, Z.
    (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Science China Earth Sciences, 55(11), 1919–1928. https://doi.org/10.1007/s11430-012-4454-8
  29. ↵
    1. Zhang, B.,
    2. Teunissen, P. J. G.,
    3. Yuan, Y.,
    4. Zhang, X., &
    5. Li, M.
    (2019). A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases. Journal Of Geodesy, 93(1), 19–28. https://doi.org/10.1007/s00190-018-1135-1
  30. ↵
    1. Zhou, R.,
    2. Hu, Z.,
    3. Zhao, Q.,
    4. Li, P.,
    5. Wang, W.,
    6. He, C.,
    7. Cai, C., &
    8. Pan, Z.
    (2018). Elevation-dependent pseudorange variation characteristics analysis for the new-generation BeiDou satellite navigation system. GPS Solutions, 22(3). https://doi.org/10.1007/s10291-018-0726-x
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 1
Spring 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters
Ningbo Wang, Zishen Li, Andrzej Krankowski,, Xingliang Huo
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.509; DOI: 10.33012/navi.509

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters
Ningbo Wang, Zishen Li, Andrzej Krankowski,, Xingliang Huo
NAVIGATION: Journal of the Institute of Navigation Mar 2022, 69 (1) navi.509; DOI: 10.33012/navi.509
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 METHOD
    • 3 DATA SETS
    • 4 RESULTS AND DISCUSSION
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • WAAS and the Ionosphere – A Historical Perspective: Monitoring Storms
  • Coherent Combining and Long Coherent Integration for BOC Signal Acquisition under Strong Interference
Show more Regular Papers

Similar Articles

Keywords

  • BeiDou-3 global system
  • data-pilot bias
  • differential code bias (DCB)
  • inter-signal correction (ISC)
  • station-specific ionospheric modeling

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire