Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Multi-Epoch 3D-Mapping-Aided Positioning using Bayesian Filtering Techniques

Qiming Zhong and Paul D. Groves
NAVIGATION: Journal of the Institute of Navigation June 2022, 69 (2) navi.515; DOI: https://doi.org/10.33012/navi.515
Qiming Zhong
University College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Paul D. Groves
University College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Amt, J. H., &
    2. Raquet, J. F.
    (2006). Positioning for range-based land navigation systems using surface topography. Proc. of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 1494–1505. https://www.ion.org/publications/abstract.cfm?articleID=6773
  2. ↵
    1. Betaille, D.,
    2. Peyret, F.,
    3. Ortiz, M.,
    4. Miquel, S., &
    5. Fontenay, L.
    (2013). A new modeling based on urban trenches to improve GNSS positioning quality of service in cities. IEEE Intelligent Transportation Systems Magazine, 5(3), 59–70. https://doi.org/10.1109/MITS.2013.2263460
  3. ↵
    1. Bradbury, J.,
    2. Ziebart, M.,
    3. Cross, P. A.,
    4. Boulton, P., &
    5. Read, A.
    (2007). Code multipath modelling in the urban environment using large virtual reality city models: Determining the local environment. The Journal of Navigation, 60(1), 95–105. https://doi.org/10.1017/S0373463307004079
  4. ↵
    1. Ercek, R.,
    2. De Doncker, P., &
    3. Grenez, F.
    (2006). NLOS-multipath effects on pseudo-range estimation in urban canyons for GNSS applications. 2006 First European Conference on Antennas and Propagation, Nice, France. https://doi.org/10.1109/eucap.2006.4584889
  5. ↵
    European GSA. (2018). GNSS User Technology Report Issue 2. European Global Navigation Satellite Systems Agency. https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf
  6. ↵
    1. Groves, P. D.
    (2013). Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech House.
  7. ↵
    1. Groves, P. D., &
    2. Jiang, Z.
    (2013). Height aiding, C/N0 weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas. The Journal of Navigation, 66(5), 653–669. https://doi.org/10.1017/S0373463313000350
  8. ↵
    1. Groves, P. D.,
    2. Jiang, Z.,
    3. Rudi, M., &
    4. Strode, P.
    (2013). A portfolio approach to NLOS and multipath mitigation in dense urban areas. Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 3231–3247. https://www.ion.org/publications/abstract.cfm?articleID=11264
  9. ↵
    1. Groves, P. D.,
    2. Zhong, Q.,
    3. Faragher, R., &
    4. Esteves, P.
    (2020). Combining inertially-aided extended coherent integration (supercorrelation) with 3D-mapping-aided GNSS. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2327–2346. https://doi.org/10.33012/2020.17767
  10. ↵
    1. Gu, Y., &
    2. Kamijo, S.
    (2017). GNSS positioning in deep urban city with 3D map and double reflection. 2017 European Navigation Conference (ENC), Lausanne, Switzerland. https://doi.org/10.1109/EURONAV.2017.7954196
  11. ↵
    1. Hsu, L. -T.,
    2. Gu, Y., &
    3. Kamijo, S.
    (2015). NLOS correction/exclusion for GNSS measurement using RAIM and city building models. Sensors, 15(7), 17329–17349. https://doi.org/10.3390/s150717329
  12. ↵
    1. Hsu, L. -T.,
    2. Gu, Y., &
    3. Kamijo, S.
    (2016). 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS Solutions, 20(3), 413–428. https://doi.org/10.1007/s10291-015-0451-7
  13. ↵
    1. Isaacs, J. T.,
    2. Irish, A. T.,
    3. Quitin, F.,
    4. Madhow, U., &
    5. Hespanha, J. P.
    (2014). Bayesian localization and mapping using GNSS SNR measurements. 2014 IEEE/ION Position, Location, and Navigation Symposium (PLANS 2014), Monterey, CA. https://doi.org/10.1109/PLANS.2014.6851402
  14. ↵
    1. Ji, S.,
    2. Chen, W.,
    3. Ding, X.,
    4. Chen, Y.,
    5. Zhao, C., &
    6. Hu, C.
    (2010). Potential benefits of GPS/GLONASS/GALILEO integration in an urban canyon – Hong Kong. The Journal of Navigation, 63(4), 681–693. https://doi.org/10.1017/S0373463310000081
  15. ↵
    1. McGraw, G. A.,
    2. Groves, P. D., &
    3. Ashman, B. W.
    (2020). Robust positioning in the presence of multipath and NLOS GNSS signals. In Y. T. Jade Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. Gao (Eds.), Position, navigation, and timing technologies in the 21st century: Integrated satellite navigation, sensor systems, and civil applications, volume 1 (pp. 551–589). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119458449.ch22
  16. ↵
    1. Misra, P., &
    2. Enge, P.
    (2010). Global positioning system: Signals, measurements, and performance. Ganga-Jamuna Press.
  17. ↵
    1. Ng, H. -F., &
    2. Hsu, L. -T.
    (2021). 3D mapping database-aided GNSS RTK and its assessments in urban canyons. IEEE Transactions on Aerospace and Electronic Systems, 57(5), 3150–3166. https://doi.org/10.1109/TAES.2021.3069271
  18. ↵
    1. Ng, H. -F.,
    2. Zhang, G., &
    3. Hsu, L. -T.
    (2020). A computation effective range-based 3D mapping aided GNSS with NLOS correction method. The Journal of Navigation, 73(6), 1202–1222. https://doi.org/10.1017/S037346332000003X
  19. ↵
    1. Nur, K.,
    2. Feng, S.,
    3. Ling, C., &
    4. Ochieng, W.
    (2013). Integration of GPS with a WiFi high accuracy ranging functionality. Geo-Spatial Information Science, 16(3), 155–168. https://doi.org/10.1080/10095020.2013.817106
  20. ↵
    1. Obst, M.,
    2. Bauer, S., &
    3. Wanielik, G.
    (2012). Urban multipath detection and mitigation with dynamic 3D maps for reliable land vehicle localization. Proc. of the 2012 IEEE/ION Position, Location, and Navigation Symposium, Myrtle Beach, SC, 685–691. https://doi.org/10.1109/PLANS.2012.6236944
  21. ↵
    1. Peyraud, S.,
    2. Bétaille, D.,
    3. Renault, S.,
    4. Ortiz, M.,
    5. Mougel, F.,
    6. Meizel, D., &
    7. Peyret, F.
    (2013). About non-line-of-sight satellite detection and exclusion in a 3D map-aided localization algorithm. Sensors, 13(1), 829–847. https://doi.org/10.3390/s130100829
  22. ↵
    1. Suzuki, T.
    (2016). Integration of GNSS positioning and 3D map using particle filter. Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, 1296–1304. https://doi.org/10.33012/2016.14857
  23. ↵
    1. Suzuki, T., &
    2. Kubo, N.
    (2013). Correcting GNSS multipath errors using a 3D surface model and particle filter. Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 1583–1595. https://www.ion.org/publications/abstract.cfm?articleID=11171
  24. ↵
    1. Suzuki, T., &
    2. Kubo, N.
    (2015). Simulation of GNSS satellite availability in urban environments using Google Earth. Proc. of the ION 2015 Pacific PNT Meeting, Honolulu, HI, 1069–1079. https://www.ion.org/publications/abstract.cfm?articleID=12782
  25. ↵
    1. Usman, M.,
    2. Asghar, M. R.,
    3. Ansari, I. S.,
    4. Granelli, F., &
    5. Qaraqe, K. A.
    (2018). Technologies and solutions for location-based services in smart cities: Past, present, and future. IEEE Access, 6, 22240–22248. https://doi.org/10.1109/ACCESS.2018.2826041
  26. ↵
    1. van Diggelen, F.
    (2021a). End game for urban GNSS: Google’s use of 3D building models. Inside GNSS. https://insidegnss.com/end-game-for-urban-gnss-googles-use-of-3d-building-models
  27. ↵
    1. van Diggelen, F.
    (2021b). Google’s use of 3D building models to solve urban GNSS. ION ITM/PTTI 2021.
  28. ↵
    1. Wang, L.
    (2015). Investigation of shadow matching for GNSS positioning in urban canyons [Doctoral dissertation, University College London]. UCL Discovery. https://discovery.ucl.ac.uk/id/eprint/1464060
  29. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2012). Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models. The Journal of Navigation, 65(3), 459–476. https://doi.org/10.1017/S0373463312000082
  30. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2013). Urban positioning on a smartphone: Real-time shadow matching using GNSS and 3D city models. Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 1606–1619. https://www.ion.org/publications/abstract.cfm?articleID=11339
  31. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2015). Smartphone shadow matching for better cross-street GNSS positioning in urban environments. The Journal of Navigation, 68(3), 411–433. https://doi.org/10.1017/S0373463314000836
  32. ↵
    1. Ward, P. W.,
    2. Betz, J. W., &
    3. Hegarty, C. J.
    (2017). GNSS Disruptions. In E. D. Kaplan & C. Hegarty (Eds.), Understanding gps/gnss - principles and applications (3rd ed., pp. 549–617). Artech House.
  33. ↵
    1. Yozevitch, R., &
    2. ben Moshe, B.
    (2015). A robust shadow matching algorithm for GNSS positioning. NAVIGATION, 62(2), 95–109. https://doi.org/10.1002/navi.85
    1. Zhang, G.,
    2. Ng, H. -F.,
    3. Wen, W., &
    4. Hsu, L. -T.
    (2020). 3D mapping database aided GNSS based collaborative positioning using factor graph optimization. IEEE Transactions on Intelligent Transportation Systems, 22(10), 6157–6187. https://doi.org/10.1109/tits.2020.2988531
    1. Zhang, G.,
    2. Wen, W.,
    3. Xu, B., &
    4. Hsu, L. -T.
    (2020). Extending shadow matching to tightly-coupled GNSS/INS integration system. IEEE Transactions on Vehicular Technology, 69(5), 4979–4991. https://doi.org/10.1109/TVT.2020.2981093
  34. ↵
    1. Ziedan, N. I.
    (2017). Urban positioning accuracy enhancement utilizing 3D buildings model and accelerated ray tracing algorithm. Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 3253–3268. https://doi.org/10.33012/2017.15366
  35. ↵
    1. Ziedan, N. I.
    (2019). Enhancing GNSS mobile positioning in urban environments through utilization of multipath prediction and consistency analysis. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3469–3483. https://doi.org/10.33012/2019.16929
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 2
Summer 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Multi-Epoch 3D-Mapping-Aided Positioning using Bayesian Filtering Techniques
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Multi-Epoch 3D-Mapping-Aided Positioning using Bayesian Filtering Techniques
Qiming Zhong, Paul D. Groves
NAVIGATION: Journal of the Institute of Navigation Jun 2022, 69 (2) navi.515; DOI: 10.33012/navi.515

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Multi-Epoch 3D-Mapping-Aided Positioning using Bayesian Filtering Techniques
Qiming Zhong, Paul D. Groves
NAVIGATION: Journal of the Institute of Navigation Jun 2022, 69 (2) navi.515; DOI: 10.33012/navi.515
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Summary
    • 1 INTRODUCTION
    • 2 BACKGROUND
    • 3 3D-MAPPING-AIDED MULTI-EPOCH GNSS
    • 4 EXPERIMENTAL TESTS
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • APPENDIX A: A DETAILED DESCRIPTION OF ALGORITHMS
    • APPENDIX B: DETAILED EXPERIMENTAL RESULTS
    • Abbreviations
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Decentralized Connectivity Maintenance for Multi-Robot Systems Under Motion and Sensing Uncertainties
  • Set-Valued Shadow Matching Using Zonotopes for 3D-Map-Aided GNSS Localization
  • Commercial GNSS Radio Occultation on Aerial Platforms With Off-The-Shelf Receivers
Show more Original Article

Similar Articles

Keywords

  • 3D-mapping-aided GNSS
  • grid filter
  • Kalman filter
  • multi-epoch GNSS
  • particle filter

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire