Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Characterization and Performance Assessment of BeiDou-2 and BeiDou-3 Satellite Group Delays

Oliver Montenbruck, Peter Steigenberger, Ningbo Wang, and André Hauschild
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.526; DOI: https://doi.org/10.33012/navi.526
Oliver Montenbruck
1Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Operations Center (GSOC), 82234 Weßling, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Peter Steigenberger
1Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Operations Center (GSOC), 82234 Weßling, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ningbo Wang,
2Chinese Academy of Sciences (CAS), Aerospace Information Research Institute (AIR), No 9 Dengzhuang South Road, Beijing 100094, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
André Hauschild
1Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Operations Center (GSOC), 82234 Weßling, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Banville, S.
    (2021). Upcoming convention regarding PCO and biases (IGS Mail No. 8113). https://lists.igs.org/pipermail/igsmail/2021/008109.html
  2. ↵
    1. Beer, S.,
    2. Wanninger, L., &
    3. Heßelbarth, A.
    (2021). Estimation of absolute GNSS satellite antenna group delay variations based on those of absolute receiver antenna group delays. GPS Solutions, 25(3), 110. https://doi.org/10.1007/s10291-021-01137-8
  3. ↵
    1. Betz, J. W.
    (2016). Engineering satellite-based navigation and timing: Global navigation satellite systems, signals, and receivers. Wiley-IEEE Press.
  4. ↵
    1. Cai, H.,
    2. Chen, G.,
    3. Jiao, W.,
    4. Chen, K.,
    5. Xu, T., &
    6. Wang, H.
    (2016). An initial analysis and assessment on final products of iGMAS. In J. Sun, J. Liu, S. Fan, & F. Wang (Eds.) China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume III (pp. 515–527). https://doi.org/10.1007/978-981-10-0940-2_45
  5. ↵
    1. China Satellite Navigation Office (CSNO)
    . (2016). BeiDou navigation satellite system signal in space interface control document: Open service signal (Version 2.1). China Satellite Navigation Office. https://en.beidou.gov.cn/SYSTEMS/ICD/201806/P020180608523308843290.pdf
  6. ↵
    1. China Satellite Navigation Office (CSNO)
    . (2017a). BeiDou navigation satellite system signal in space interface control document: Open service signal B1C (Version 1.0). China Satellite Navigation Office. http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf
  7. ↵
    1. China Satellite Navigation Office (CSNO)
    . (2017b). BeiDou navigation satellite system signal in space interface control document: Open service signal B2a (Version 1.0). China Satellite Navigation Office. http://www.beidou.gov.cn/xt/gfxz/201712/P020171226742357364174.pdf
  8. ↵
    1. China Satellite Navigation Office (CSNO)
    . (2018). BeiDou navigation satellite system signal in space interface control document: Open service signal B3I (Version 1.0). China Satellite Navigation Office. http://www.beidou.gov.cn/xt/gfxz/201802/P020180209623601401189.pdf
  9. ↵
    1. China Satellite Navigation Office (CSNO)
    . (2019). BeiDou navigation satellite system signal in space interface control document: Open service signal B1I (Version 3.0). China Satellite Navigation Office. http://www.beidou.gov.cn/xt/gfxz/201902/P020190227593621142475.pdf
  10. ↵
    1. China Satellite Navigation Office (CSNO)
    . (2020). BeiDou navigation satellite system signal in space interface control document: Open service signal B2b (Version 1.0). China Satellite Navigation Office. http://en.beidou.gov.cn/SYSTEMS/ICD/202008/P020200803539206360377.pdf
  11. ↵
    1. China Satellite Navigation Office Test and Assessment Research Center (CSNO-TARC)
    . (2022). Satellite parameters. Test and Assessment Research Center of China Satellite Navigation Office. http://www.csno-tarc.cn/en/datacenter/satelliteparameters
  12. ↵
    1. Deng, Z.,
    2. Nischan, T., &
    3. Bradke, M.
    (2017). Multi-GNSS rapid orbit-, clock- & EOP-product series. GFZ Data Services. https://doi.org/10.5880/GFZ.1.1.2017.002
  13. ↵
    1. Esenbuga, Ö. G.,
    2. Hauschild, A., &
    3. Steigenberger, P.
    (2020). Impact of GPS flex power on differential code bias estimation for Block IIR-M and IIF satellites. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2922–2930. https://doi.org/10.33012/2020.17634
  14. ↵
    1. Gong, X.,
    2. Lou, Y.,
    3. Zheng, F.,
    4. Gu, S.,
    5. Shi, C.,
    6. Liu, J., &
    7. Jing, G.
    (2018). Evaluation and calibration of BeiDou receiver-related pseudorange biases. GPS Solutions, 22(4), 98. https://doi.org/10.1007/s10291-018-0765-3
  15. ↵
    1. Gu, S.,
    2. Wang, Y.,
    3. Zhao, Q.,
    4. Zheng, F., &
    5. Gong, X.
    (2020). BDS-3 differential code bias estimation with undifferenced uncombined model based on triple-frequency observation. Journal of Geodesy, 94(4), 45. https://doi.org/10.1007/s00190-020-01364-w
  16. ↵
    1. Guo, F.,
    2. Zhang, X., &
    3. Wang, J.
    (2015). Timing group delay and differential code bias corrections for BeiDou positioning. Journal of Geodesy, 89(5), 427–445. https://doi.org/10.1007/s00190-015-0788-2
  17. ↵
    1. Hauschild, A.
    (2017). Basic observation equations. In P. Teunissen & O. Montenbruck (Eds.) Springer handbook of global navigation satellite systems (pp. 561–582). Springer. https://doi.org/10.1007/978-3-319-42928-1_19
  18. ↵
    1. Hauschild, A., &
    2. Montenbruck, O.
    (2016). The effect of correlator and front-end design on GNSS pseudorange biases for geodetic receivers. NAVIGATION, 63(4), 443–453. https://doi.org/10.1002/navi.165
  19. ↵
    1. He, C.,
    2. Lu, X.,
    3. Guo, J.,
    4. Su, C.,
    5. Wang, W., &
    6. Wang, M.
    (2020). Initial analysis for characterizing and mitigating the pseudorange biases of BeiDou navigation satellite system. Satellite Navigation, 1(1), 3. https://doi.org/10.1186/s43020-019-0003-3
  20. ↵
    1. Hong, J.,
    2. Tu, R.,
    3. Zhang, R.,
    4. Fan, L.,
    5. Zhang, P.,
    6. Han, J., &
    7. Lu, X.
    (2020). Analyzing the satellite-induced code bias variation characteristics for the BDS-3 via a 40 m dish antenna. Sensors, 20(5). https://doi.org/10.3390/s20051339
  21. ↵
    1. Hwang, P. Y.,
    2. McGraw, G. A., &
    3. Bader, J. R.
    (1999). Enhanced differential GPS carrier-smoothed code processing using dual-frequency measurements. NAVIGATION, 46(2), 127–137. https://doi.org/10.1002/j.2161-4296.1999.tb02401.x
  22. ↵
    1. Johnston, G.,
    2. Riddell, A., &
    3. Hausler, G.
    (2017). The International GNSS Service. In P. G. Teunissen & O. Montenbruck (Eds.) Springer handbook of global navigation satellite systems (pp. 967–982). Springer. https://doi.org/10.1007/978-3-319-42928-1_33
  23. ↵
    1. Langley, R. B.,
    2. Teunissen, P. J. G., &
    3. Montenbruck, O.
    (2017). Introduction to GNSS. In P. Teunissen & O. Montenbruck (Eds.) Springer handbook of global navigation satellite systems (pp. 3–23). Springer. https://doi.org/10.1007/978-3-319-42928-1_1
  24. ↵
    1. Li, G.,
    2. Zhang, D.,
    3. Lin, Y., &
    4. Wang, J.
    (2021a). A closed-loop calibration method of the BeiDou time receiver. In C. Yang & J. Xie (Eds.) China satellite navigation conference (CSNC) 2021 proceedings: Volume III (pp. 74–85). https://doi.org/10.1007/978-981-16-3146-7_8
  25. ↵
    1. Li, M., &
    2. Yuan, Y.
    (2021). Estimation and analysis of BDS2 and BDS3 differential code biases and global ionospheric maps using BDS observations. Remote Sensing, 13(3), 370. https://doi.org/10.3390/rs13030370
  26. ↵
    1. Li, R.,
    2. Wang, N.,
    3. Li, Z.,
    4. Zhang, Y.,
    5. Wang, Z., &
    6. Ma, H.
    (2021b). Precise orbit determination of BDS-3 satellites using B1C and B2a dual-frequency measurements. GPS Solutions, 25(3), 95. https://doi.org/10.1007/s10291-021-01126-x
  27. ↵
    1. Li, X.,
    2. Li, X.,
    3. Liu, G.,
    4. Xie, W.,
    5. Guo, F.,
    6. Yuan, Y.,
    7. Zhang, K., &
    8. Feng, G.
    (2020). The phase and code biases of Galileo and BDS-3 BOC signals: Effect on ambiguity resolution and precise positioning. Journal of Geodesy, 94(1), 9. https://doi.org/10.1007/s00190-019-01336-9
  28. ↵
    1. Li, X.,
    2. Xie, W.,
    3. Huang, J.,
    4. Ma, T.,
    5. Zhang, X., &
    6. Yuan, Y.
    (2019). Estimation and analysis of differential code biases for BDS3/BDS2 using iGMAS and MGEX observations. Journal of Geodesy, 93(3), 419–435. https://doi.org/10.1007/s00190-018-1170-y
  29. ↵
    1. Lou, Y.,
    2. Gong, X.,
    3. Gu, S.,
    4. Zheng, F., &
    5. Feng, Y.
    (2017). Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines. GPS Solutions, 21(1), 177–186. https://doi.org/10.1007/s10291-016-0514-4
  30. ↵
    1. Lu, M.,
    2. Li, W.,
    3. Yao, Z., &
    4. Cui, X.
    (2019). Overview of BDS III new signals. NAVIGATION, 66(1), 19–35. https://doi.org/10.1002/navi.296
  31. ↵
    1. Lu, M., &
    2. Yao, Z.
    (2020). BeiDou navigation satellite system. In Y. T. J. Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. Gao (Eds.) Position, navigation, and timing technologies in the 21st century: Integrated satellite navigation, sensor systems, and civil applications (Vol. 1, pp. 143–170). Wiley. https://doi.org/10.1002/9781119458449.ch6
  32. ↵
    1. Montenbruck, O.,
    2. Hauschild, A., &
    3. Steigenberger, P.
    (2014). Differential code bias estimation using multi-GNSS observations and global ionosphere maps. NAVIGATION, 61(3), 191–201. https://doi.org/10.1002/navi.64
  33. ↵
    1. Montenbruck, O., &
    2. Steigenberger, P.
    (2022). BRD400DLR: DLR’s merged multi-GNSS broadcast ephemeris product in RINEX 4.00 format [Data set]. DLR/GSOC. https://doi.org/10.57677/BRD400DLR
  34. ↵
    1. Montenbruck, O.,
    2. Steigenberger, P., &
    3. Hauschild, A.
    (2018). Multi-GNSS signal-in-space range error assessment—methodology and results. Advances in Space Research, 61(12), 3020–3038. https://doi.org/10.1016/j.asr.2018.03.041
  35. ↵
    1. Montenbruck, O.,
    2. Steigenberger, P., &
    3. Hauschild, A.
    (2020). Comparing the ‘Big 4’—a user’s view on GNSS performance. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR. https://doi.org/10.1109/PLANS46316.2020.9110208
  36. ↵
    1. Montenbruck, O.,
    2. Steigenberger, P.,
    3. Prange, L.,
    4. Deng, Z.,
    5. Zhao, Q.,
    6. Perosanz, F.,
    7. Romero, I.,
    8. Noll, C.,
    9. Sturze, A.,
    10. Weber, G.,
    11. Schmid, R.,
    12. MacLeod, K., &
    13. Schaer, S.
    (2017). The multi-GNSS experiment (MGEX) of the International GNSS Service (IGS)—achievements, prospects and challenges. Advances in Space Research, 59(7), 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011
  37. ↵
    1. Rebischung, P., &
    2. Schmid, R.
    (2016). IGS14/igs14.atx: a new framework for the IGS products. AGU Fall Meeting, San Francisco, CA. https://www.researchgate.net/publication/311654495_IGS14igs14atx_a_new_framework_for_the_IGS_products
  38. ↵
    1. Romero, I.
    (2021). RINEX: The receiver independent exchange format (Version 4.0). IGS. https://files.igs.org/pub/data/format/rinex_4.00.pdf
  39. ↵
    1. Schaer, S.
    (2016). SINEX_BIAS—Solution (software/technique) independent exchange format for GNSS biases (Version 1.0). AIUB. https://files.igs.org/pub/data/format/sinex_bias_100.pdf
  40. ↵
    1. Sleewaegen, J.-M., &
    2. Clemente, F.
    (2018). Quantifying the pilot-data bias on all current GNSS signals and satellites. Proc. of the IGS Workshop 2018. https://s3-ap-southeast-2.amazonaws.com/igs-acc-web/igs-acc-website/workshop2018/presentations/IGSWS-2018-PY05-05.pdf
  41. ↵
    1. Wang, N.,
    2. Li, Z.,
    3. Montenbruck, O., &
    4. Tang, C.
    (2019). Quality assessment of GPS, Galileo and BeiDou-2/3 satellite broadcast group delays. Advances in Space Research, 64(9), 1764–1779. https://doi.org/10.1016/j.asr.2019.07.029
  42. ↵
    1. Wang, N.,
    2. Yuan, Y.,
    3. Li, Z.,
    4. Montenbruck, O., &
    5. Tan, B.
    (2016). Determination of differential code biases with multi-GNSS observations. Journal of Geodesy, 90(3), 209–228. https://doi.org/10.1007/s00190-015-0867-4
  43. ↵
    1. Wang, Q.,
    2. Jin, S.,
    3. Yuan, L.,
    4. Hu, Y.,
    5. Chen, J., &
    6. Guo, J.
    (2020). Estimation and analysis of BDS-3 differential code biases from MGEX observations. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010068
  44. ↵
    1. Wanninger, L., &
    2. Beer, S.
    (2015). BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solutions, 19(4), 639–648. https://doi.org/10.1007/s10291-014-0423-3
  45. ↵
    1. Wilson, B., &
    2. Mannucci, A.
    (1994). Extracting ionospheric measurements from GPS in the presence of anti-spoofing. Proc. of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1994), Salt Lake City, UT, 1599–1608. https://www.ion.org/publications/abstract.cfm?articleID=3982
  46. ↵
    1. Xing, N.
    (2011). Hardware delay solution of regional satellite navigation system. Geomatics and Information Science of Wuhan University, 36(10), 1218–1221. https://www.semanticscholar.org/paper/Hardware-Delay-Solution-of-Regional-Satellite-Nan/48c640afb9b8af760ad5230df441969489f531c8
  47. ↵
    1. Xue, B.,
    2. Wang, H., &
    3. Yuan, Y.
    (2021). Performance of BeiDou-3 signal-in-space ranging errors: Accuracy and distribution. GPS Solutions, 25(1). https://doi.org/10.1007/s10291-020-01057-z
  48. ↵
    1. Yang, Y.,
    2. Gao, W.,
    3. Guo, S.,
    4. Mao, Y., &
    5. Yang, Y.
    (2019). Introduction to BeiDou-3 navigation satellite system. NAVIGATION, 66(1), 7–18. https://doi.org/10.1002/navi.291
  49. ↵
    1. Yang, Y.,
    2. Yang, Y.,
    3. Hu, X.,
    4. Tang, C.,
    5. Guo, R.,
    6. Zhou, Z.,
    7. Xu, J.,
    8. Pan, J., &
    9. Su, M.
    (2021). BeiDou-3 broadcast clock estimation by integration of observations of regional tracking stations and inter-satellite links. GPS Solutions, 25(2), 57. https://doi.org/10.1007/s10291-020-01067-x
  50. ↵
    1. Yao, Z.,
    2. Guo, F.,
    3. Ma, J., &
    4. Lu, M.
    (2017). Orthogonality-based generalized multicarrier constant envelope multiplexing for DSSS signals. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1685–1698. https://doi.org/10.1109/TAES.2017.2671580
  51. ↵
    1. Yao, Z.,
    2. Zhang, J., &
    3. Lu, M.
    (2016). ACE-BOC: Dual-frequency constant envelope multiplexing for satellite navigation. IEEE Transactions on Aerospace and Electronic Systems, 52(1), 466–485. https://doi.org/10.1109/TAES.2015.140607
  52. ↵
    1. Yinger, C. H.,
    2. Feess, W. A.,
    3. Di Esposti, R.,
    4. Chasko, A.,
    5. Cosentino, B.,
    6. Wilson, B., &
    7. Wheaton, B.
    (1999). GPS satellite interfrequency biases. Proc. of the 55th Annual Meeting of the Institute of Navigation, Cambridge, MA, 347–354. https://www.ion.org/publications/abstract.cfm?articleID=1329
  53. ↵
    1. Zhang, Y.,
    2. Chen, J.,
    3. Gong, X., &
    4. Chen, Q.
    (2020a). The update of BDS-2 TGD and its impact on positioning. Advances in Space Research, 65(11), 2645–2661. https://doi.org/10.1016/j.asr.2020.03.011
  54. ↵
    1. Zhang, Y.,
    2. Kubo, N.,
    3. Chen, J.,
    4. Chu, F.-Y.,
    5. Wang, A., &
    6. Wang, J.
    (2020b). Apparent clock and TGD biases between BDS-2 and BDS-3. GPS Solutions, 24(1), 27. https://doi.org/10.1007/s10291-019-0933-0
  55. ↵
    1. Zhang, Y.,
    2. Wang, H.,
    3. Chen, J.,
    4. Wang, A.,
    5. Meng, L., &
    6. Wang, E.
    (2020c). Calibration and impact of BeiDou satellite-dependent timing group delay bias. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010192
  56. ↵
    1. Zhu, Y.,
    2. Tan, S.,
    3. Feng, L.,
    4. Cui, X.,
    5. Zhang, Q., &
    6. Jia, X.
    (2020). Estimation of the DCB for the BDS-3 new signals based on BDGIM constraints. Advances in Space Research, 66(6), 1405–1414. https://doi.org/10.1016/j.asr.2020.05.019
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characterization and Performance Assessment of BeiDou-2 and BeiDou-3 Satellite Group Delays
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Characterization and Performance Assessment of BeiDou-2 and BeiDou-3 Satellite Group Delays
Oliver Montenbruck, Peter Steigenberger, Ningbo Wang,, André Hauschild
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.526; DOI: 10.33012/navi.526

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Characterization and Performance Assessment of BeiDou-2 and BeiDou-3 Satellite Group Delays
Oliver Montenbruck, Peter Steigenberger, Ningbo Wang,, André Hauschild
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.526; DOI: 10.33012/navi.526
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 BEIDOU SIGNAL OVERVIEW
    • 3 PSEUDORANGE AND DCB OBSERVATION MODEL
    • 4 BEIDOU BROADCAST GROUP DELAYS
    • 5 IGS DCB PRODUCTS
    • 6 RECEIVER DEPENDENCY OF SATELLITE GROUP DELAYS
    • 7 POSITIONING AND TIMING
    • 8 SUMMARY AND CONCLUSIONS
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGEMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ambiguity-Fixing in Frequency-Varying Carrier Phase Measurements: Global Navigation Satellite System and Terrestrial Examples
  • PPP/PPP-RTK Message Authentication
  • Resilient Smartphone Positioning Using Native Sensors and PPP Augmentation
Show more Original Article

Similar Articles

Keywords

  • BeiDou
  • DCB
  • group delays
  • ISC
  • SISRE
  • TGD

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire