Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Gain Pattern Reconstruction of GPS Satellite Antennas Using a Global Receiver Network

Gerardo Allende-Alba, Steffen Thoelert, and Stefano Caizzone
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.530; DOI: https://doi.org/10.33012/navi.530
Gerardo Allende-Alba
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Communications and Navigation, 82234 Weßling, Germany RWTH Aachen University, 52062 Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Steffen Thoelert,
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Communications and Navigation, 82234 Weßling, Germany RWTH Aachen University, 52062 Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefano Caizzone
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Communications and Navigation, 82234 Weßling, Germany RWTH Aachen University, 52062 Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Agnew, D. C., &
    2. Larson, K. M.
    , (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11, 71–76. https://doi.org/10.1007/s10291-006-0038-4
  2. ↵
    1. Allende-Alba, G.,
    2. Thoelert, S.
    (2020a). Reconstructing antenna gain patterns of Galileo satellites for signal power monitoring. GPS Solutions, 24, 22. https://doi.org/10.1007/s10291-019-0937-9
  3. ↵
    1. Allende-Alba, G., &
    2. Thoelert S.
    (2020b). An analysis of the on-orbit performance of Galileo satellite antennas using reconstructed gain patterns. GPS Solutions, 24, 79. https://doi.org/10.1007/s10291-020-00991-2
  4. ↵
    1. Bar-Sever, Y. E.
    (1996). A new model for GPS yaw attitude. Journal of Geodesy, 70(11), 714–723. https://doi.org/10.1007/BF00867149
    1. Bedford, L.,
    2. Brown, N., &
    3. Walford, J.
    (2009). New 3D four constellation high performance wideband choke ring antenna. Proc. of the 2009 International Technical Meeting of the Institute of Navigation, Anaheim, CA, 829–835. https://www.ion.org/publications/abstract.cfm?articleID=8365
  5. ↵
    1. Caizzone, S.,
    2. Schöenfeldt, M.,
    3. Elmarissi, W., &
    4. Circiu, M. -S.
    (2021). Antennas as precise sensors for GNSS reference stations and high-performances PNT applications on Earth and in space. Sensors, 21(12), 4192. https://doi.org/10.3390/s21124192
  6. ↵
    1. Cozzens, T.
    (2020). GPS IIR/IIR-M satellite antenna patterns released for worldwide use. GPS World. https://www.gpsworld.com/gps-iir-iir-m-satellite-antenna-patterns-released-for-worldwide
  7. ↵
    1. Donaldson, J. E.,
    2. Parker, J. J. K.,
    3. Moreau, M. C.,
    4. Highsmith, D. E., &
    5. Martzen, P.D.
    (2020). Characterization of on-orbit GPS transmit antenna patterns for space users. NAVIGATION, 67(2), 411–438. https://doi.org/10.1002/navi.361
  8. ↵
    1. Federal Aviation Administration (FAA)
    . (2005). Category I: Local area augmentation system ground facility (NON-FED Specification FAA-E-AJW44-2937A). Department of Transportation. https://documents.pub/document/united-states-department-of-transportation-federal-faa-e-ajw44-2937a-october-21.html?page=1
  9. ↵
    1. Falcone, M.,
    2. Hahn, J., &
    3. Burger, T.
    (2017). Galileo. In P. J. G. Teunissen & O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (pp. 247–272). Springer. https://doi.org/10.1007/978-3-319-42928-1_9
  10. ↵
    1. Fisher, S. C., &
    2. Ghassemi, K.
    (1999). GPS IIF – the next generation. Proc. of the IEEE, 87(1), 24–47. https://doi.org/10.1109/5.736340
  11. ↵
    1. Gatti, G.,
    2. Falcone, M.,
    3. Alpe, V.,
    4. Malik, M.,
    5. Burger, T.,
    6. Rapisarda, M., &
    7. Rooney, E.
    (2008). GIOVE-B Chibolton in-orbit test: Initial results from the second Galileo satellite. Inside GNSS, 30–35. https://www.insidegnss.com/auto/sepoct08-malik.pdf
  12. ↵
    1. IS-GPS-200M
    (2021). NAVSTAR GPS space segment/navigation user interfaces (Revision M.). Global Positioning Systems Directorate Systems Engineering & Integration. https://www.gps.gov/technical/icwg/IS-GPS-200M.pdf
  13. ↵
    1. Hegarty, C. J.
    (2017). The global positioning system (GPS). In P. J. G. Teunissen & O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (pp. 197–218). Springer. https://doi.org/10.1007/978-3-319-42928-1_7
  14. ↵
    1. Johnston, G.,
    2. Riddell, A., &
    3. Hausler, G.
    (2017). The international GNSS service. In P. J. G. Teunissen & O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (pp. 967–982). Springer. https://doi.org/10.1007/978-3-319-42928-1_33
  15. ↵
    1. Langley, R. B.,
    2. Teunissen, P. J. G., &
    3. Montenbruck, O.
    (2017). Introduction to GNSS. In P. J. G. Teunissen & O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (pp. 3–23). Springer. https://doi.org/10.1007/978-3-319-42928-1_1
  16. ↵
    1. Lee, J.,
    2. Morton, Y. T. J.,
    3. Lee, J.,
    4. Moon, H. -S., &
    5. Seo, J.
    (2017). Monitoring and mitigation of ionospheric anomalies for GNSS-based safety critical systems: A review of up-to-date signal processing techniques. IEEE Signal Processing Magazine, 34(5), 96–110. https://doi.org/10.1109/MSP.2017.2716406
    CrossRef
  17. ↵
    1. Maqsood, M.,
    2. Gao, S., &
    3. Montenbruck, O.
    (2017). Antennas. In P. J. G. Teunissen & O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (pp. 505–534). Springer. https://doi.org/10.1007/978-3-319-42928-1_17
  18. ↵
    1. Marquis, W., &
    2. Shaw, M.
    (2011). Design of the GPS III space vehicle. Proc. of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, 3067–3075. https://www.ion.org/publications/abstract.cfm?articleID=9863
  19. ↵
    1. Marquis, W. A., &
    2. Reigh, D. L.
    (2015). The GPS Block IIR and IIR-M broadcast L-band antenna panel: Its pattern and performance. NAVIGATION, 62(4), 329–347. https://doi.org/10.1002/navi.123
  20. ↵
    1. Marquis, W. A.
    (2016). The GPS IIR antenna panel pattern and its use on-orbit. Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, 2896–2909. https://doi.org/10.33012/2016.14596
  21. ↵
    1. Montenbruck, O.,
    2. Schmid, R.,
    3. Mercier, F.,
    4. Steigenberger, P.,
    5. Noll, C. Fatkulin, R.,
    6. Kogure, S., &
    7. Ganeshan, A. S.
    (2015). GNSS satellite geometry and attitude models. Advances in Space Research, 56(6), 1015–1029. https://doi.org/10.1016/j.asr.2015.06.019
  22. ↵
    1. Montenbruck, O.,
    2. Steigenberger, P.,
    3. Prange, L.,
    4. Deng, Z.,
    5. Zhao, Q.,
    6. Perosanz, F.,
    7. Romero, I.,
    8. Noll, C.,
    9. Sturze, A.,
    10. Weber, G.,
    11. Schmid, R.,
    12. MacLeod, K., &
    13. Schaer, S.
    (2017). The Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS) – achievements, prospects, and challenges. Advances in Space Research, 59(7), 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011
  23. ↵
    1. Pagot, J. -B.,
    2. Julien, O.,
    3. Thevenon, P.,
    4. Fernandez, F. A., &
    5. Cabantous, M.
    (2016). Signal quality monitoring for new GNSS signals. NAVIGATION, 65(1), 83–97. https://doi.org/10.1002/navi.218
  24. ↵
    1. Pullen, S.,
    2. Joerger, M.
    (2021). GNSS integrity and Receiver Autonomous Integrity Monitoring (RAIM). In Y. T. J. Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. Gao (eds.), Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications (Vol. 1, pp. 591–617). Wiley.
  25. ↵
    1. Ruf, C.,
    2. Unwin, M.,
    3. Dickinson, J.,
    4. Rose, R.,
    5. Rose, D.,
    6. Vincent, M., &
    7. Lyons, A.
    (2013). CYGNSS: Enabling the future of hurricane prediction [remote sensing satellites]. IEEE Geoscience and Remote Sensing Magazine, 1(2), 52–67. https://doi.org/10.1109/MGRS.2013.2260911
  26. ↵
    1. Spacek, J., &
    2. Kovar, P.
    (2007). GNSS signal monitoring station. 2007 International Conference Radioelektronika, Brno, Czech Republic. https://doi.org/10.1109/RADIOELEK.2007.371650
  27. ↵
    1. Steigenberger, P.,
    2. Thoelert, S., &
    3. Montenbruck, O.
    (2018). GNSS satellite transmit power and its impact on orbit determination. Journal of Geodesy, 92, 609–624. https://doi.org/10.1007/s00190-017-1082-2
    1. Steigenberger, P.,
    2. Thoelert, S., &
    3. Montenbruck, O.
    (2019). Flex power on GPS Block IIR-M and IIF. GPS Solutions, 23. https://doi.org/10.1007/s10291-018-0797-8
  28. ↵
    1. Steigenberger, P.,
    2. Thoelert, S.,
    3. Esenbuga, O.,
    4. Hauschild, A.,
    5. Montenbruck O.
    (2020). The new flex power mode: From GPS IIR-M and IIF satellites with extended coverage area. Inside GNSS, 15(3), 52–56. https://insidegnss.com/the-new-flex-power-mode-from-gps-iir-m-and-iif-satellites-with-extended-coverage-area
  29. ↵
    1. Thoelert, S.,
    2. Erker, S., &
    3. Meurer, M.
    (2009). GNSS signal verification with a high gain antenna – Calibration strategies and high quality signal assessment. Proc. of the 2009 International Technical Meeting of the Institute of Navigation, Anaheim, CA, 289–300. https://www.ion.org/publications/abstract.cfm?articleID=8312
  30. ↵
    1. Thoelert, S.,
    2. Meurer, M.,
    3. Erker, S.
    (2012). In-orbit analysis of antenna pattern anomalies of GNSS satellites. NAVIGATION, 59(2), 135–144. https://www.ion.org/publications/abstract.cfm?articleID=102573
    1. Thoelert, S.,
    2. Steigenberger, P.,
    3. Montenbruck, O., &
    4. Meurer, M.
    (2019). Signal analysis of the first GPS III satellite. GPS Solutions, 23. https://doi.org/10.1007/s10291-019-0882-7
  31. ↵
    1. Thoelert, S.,
    2. Circiu, M. -S., &
    3. Meurer, M.
    (2020). Impact of satellite biases on the position in differential MFMC applications. Proc. of the 2020 International Technical Meeting of the Institute of Navigation, San Diego, CA, 222–235. https://doi.org/10.33012/2020.17138
  32. ↵
    1. Thombre, S.,
    2. Zahidul, M.,
    3. Bhuiyan, H.,
    4. Eliardsson, P.,
    5. Grabrielsson, B.,
    6. Pattinson, M.,
    7. Dumville, M.,
    8. Fryganiotis, D.,
    9. Hill, S.,
    10. Manikundalam, V.,
    11. Poloskey, M.,
    12. Lee, S.,
    13. Ruotsalainen, L.,
    14. Soderholm, S., &
    15. Kuusniemi, H.
    (2018). GNSS threat monitoring and reporting: Past, present, and a proposed future. The Journal of Navigation, 71(3), 513–529. https://doi.org/10.1017/S0373463317000911
  33. ↵
    1. van Graas, F., &
    2. Ugazio, S.
    (2021). GNSS signal quality monitoring. In Y. T. J. Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. Gao (eds.), Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications (Vol. 1, pp. 591–617). Wiley.
  34. ↵
    1. Walter, T.
    (2017). Satellite based augmentation systems. In P. J. G. Teunissen & O. Montenbruck (eds.), Handbook of Global Navigation Satellite Systems (pp. 339–360). Springer. https://doi.org/10.1007/978-3-319-42928-1_12
  35. ↵
    1. Wang, T.,
    2. Ruf C. S.,
    3. Block, B.,
    4. McKague, D. S., &
    5. Gleason, S.
    (2019a). Design and performance of a GPS constellation power monitor system for improved CYGNSS L1B calibration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1), 26–36. https://doi.org/10.1109/JSTARS.2018.2867773
  36. ↵
    1. Wang, T.,
    2. Ruf, C. S.,
    3. Gleason, S.,
    4. Block, B.,
    5. McKague, D., &
    6. O’Brien, A.
    (2019b). A real-time EIRP Level 1 calibration algorithm for the CYGNSS mission using zenith measurements. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 8725–8728. https://doi.org/10.1109/IGARSS.2019.8900456
  37. ↵
    1. Wang, Y., &
    2. Shen, J.
    (2020). Real-time integrity monitoring for a wide area precise positioning system. Satellite Navigation, 1. https://doi.org/10.1186/s43020-020-00018-8
  38. ↵
    1. Yang, X.,
    2. Wang, Q., &
    3. Xue, S.
    (2019). Random optimization algorithm on GNSS monitoring stations selection for ultra-rapid orbit determination and real-time satellite clock offset estimation. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/7579185
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gain Pattern Reconstruction of GPS Satellite Antennas Using a Global Receiver Network
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Gain Pattern Reconstruction of GPS Satellite Antennas Using a Global Receiver Network
Gerardo Allende-Alba, Steffen Thoelert,, Stefano Caizzone
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.530; DOI: 10.33012/navi.530

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Gain Pattern Reconstruction of GPS Satellite Antennas Using a Global Receiver Network
Gerardo Allende-Alba, Steffen Thoelert,, Stefano Caizzone
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.530; DOI: 10.33012/navi.530
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 GPS SATELLITE ANTENNAS
    • 3 OBSERVATIONAL GEOMETRY AND PATTERN SAMPLING
    • 4 GNSS RECEIVER NETWORK AND SIGNAL POWER OBSERVATIONS
    • 5 RECONSTRUCTION OF RECEIVER ANTENNA GAIN PATTERNS
    • 6 RECONSTRUCTION OF SATELLITE ANTENNA GAIN PATTERNS
    • 7 RESULTS AND DISCUSSION
    • 8 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Stochastic Reachability-Based GPS Spoofing Detection with Chimera Signal Enhancement
  • Navigation Safety Assurance of a KF-Based GNSS/IMU System: Protection Levels Against IMU Failure
  • Spatiotemporal Deep Learning Network for High-Latitude Ionospheric Phase Scintillation Forecasting
Show more Original Article

Similar Articles

Keywords

  • gain pattern estimation
  • GNSS satellite antenna
  • GNSS signal power monitoring
  • GPS
  • IGS network

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire