Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Precise Onboard Time Synchronization for LEO Satellites

Florian Kunzi and Oliver Montenbruck
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.531; DOI: https://doi.org/10.33012/navi.531
Florian Kunzi
Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Operations Center (GSOC), 82234 Weßling, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Oliver Montenbruck
Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Operations Center (GSOC), 82234 Weßling, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allan, D. W.
    (1966). Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2), 221–230. http://doi.org/10.1109/PROC.1966.4634
    CrossRef
  2. ↵
    1. Auriol, A., &
    2. Tourain, C.
    (2010). DORIS system: The new age. Advances in Space Research, 46(12), 1484–1496. https://doi.org/10.1016/j.asr.2010.05.015
  3. ↵
    1. Bar-Sever, Y.
    (2020). Orbit determination with GNSS. In Y. T. J. Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. Gao (eds.). Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications (Vol. 2, pp. 1893–1919). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119458555.ch62
  4. ↵
    1. Colombo, O. L.
    (1989). The dynamics of Global Positioning System orbits and the determination of precise ephemerides. Journal of Geophysical Research: Solid Earth, 94(B7), 9167–9182. https://doi.org/10.1029/JB094iB07p09167
  5. ↵
    1. Dach, R.,
    2. Lutz, S.,
    3. Walser, P., &
    4. Fridez, P.
    (2015). Bernese GNSS software version 5.2. Bern Open Publishing. https://doi.org/10.7892/boris.72297
  6. ↵
    1. Dach, R.,
    2. Schaer, S.,
    3. Arnold, D.,
    4. Kalarus, M.,
    5. Sebastian, M.,
    6. Prange, L.,
    7. Stebler, P.,
    8. Villiger, A., &
    9. Jaggi, A.
    (2020). CODE rapid product series for the IGS. University of Bern. https://doi.org/10.7892/boris.75854.4
  7. ↵
    1. Defraigne, P.,
    2. Pinat, E., &
    3. Bertrand, B.
    (2021). Impact of Galileo-to-GPS-Time-Offset accuracy on multi-GNSS positioning and timing. GPS Solutions, 25(2), 45. https://doi.org/10.1007/s10291-021-01090-6
  8. ↵
    1. Donlon, C. J.,
    2. Cullen, R.,
    3. Giulicchi, L.,
    4. Vuilleumier, P.,
    5. Francis, C. R.,
    6. Kuschnerus, M.,
    7. Simpson, W.,
    8. Bouridah, A.,
    9. Caleno, M.,
    10. Bertoni, R.,
    11. Rancano, J.,
    12. Pourier, E.,
    13. Hyslop, A.,
    14. Mulcahy, J.,
    15. Knockaert, R.,
    16. Hunter, C.,
    17. Webb, A.,
    18. Fornari, M.,
    19. Vaze, P.,
    20. Brown, …
    21. Tavernier, G.
    (2021). The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sensing of Environment, 258, 112395. https://doi.org/10.1016/j.rse.2021.112395
  9. ↵
    1. Fiandrini, E.,
    2. Esposito, G.,
    3. Bertucci, B.,
    4. Alpat, B.,
    5. Ambrosi, G.,
    6. Battiston, R.,
    7. Burger, W. J.,
    8. Caraffini, D.,
    9. Di Masso, L.,
    10. Dinu, N.,
    11. Ionica, M.,
    12. Ionica, R.,
    13. Pauluzzi, M.,
    14. Menichelli, M., &
    15. Zuccon, P.
    (2004). Protons with kinetic energy E > 70 MeV trapped in the Earth’s radiation belts. Journal of Geophysical Research: Space Physics, 109(A10). https://doi.org/10.1029/2004JA010394
  10. ↵
    1. Galileo ICD
    . (2021). European GNSS (Galileo) Open Service Signal-in-Space Interface Control Document, Issue 2.0. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_OS_SIS_ICD_v2.0.pdf
  11. ↵
    1. GPS ICD
    . (2020). IS-GPS-200L. https://www.gps.gov/technical/icwg/IS-GPS-200L.pdf
  12. ↵
    1. GSA
    . (2021). Galileo Quarterly Performance Report Q1. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-Quarterly-Performance_Report-Q1-2021_0.pdf
    1. Harris, I., &
    2. Priester, W.
    (1962). Time-dependent structure of the upper atmosphere. Journal of the Atmostpheric Sciences, 19(4), 286–301. https://doi.org/10.1175/1520-0469(1962)019<0286:TDSOTU>2.0.CO;2
  13. ↵
    1. Hauschild, A.
    (2017). Basic observation equations. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 561–582). Springer. https://doi.org/10.1007/978-3-319-42928-1_19
  14. ↵
    1. Hauschild, A., &
    2. Montenbruck, O.
    (2021). Precise real-time navigation of LEO satellites using GNSS broadcast ephemerides. NAVIGATION, 68(2), 419–432. https://doi.org/10.1002/navi.416
  15. ↵
    1. Jalabert, E., &
    2. Mercier, F.
    (2018). Analysis of South Atlantic Anomaly perturbations on Sentinel-3A ultra stable oscillator. Impact on DORIS phase measurement and DORIS station positioning. Advances in Space Research, 62(1), 174–190. https://doi.org/10.1016/j.asr.2018.04.005
  16. ↵
    1. Johnston, G.,
    2. Riddell, A., &
    3. Hausler, G.
    (2017). The International GNSS Service. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 967–982). Springer. https://doi.org/10.1007/978-3-319-42928-1_33
  17. ↵
    1. Lemoine, J. -M., &
    2. Capdeville, H.
    (2006). A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. Journal of Geodesy, 80(8–11), 507–523. https://doi.org/10.1007/s00190-006-0068-2
  18. ↵
    1. Levine, J.
    (2020). Distributing time and frequency information. In Y. T. J. Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. Gao (Eds.), Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications (Vol. 1, pp. 821–848). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119458449.ch29
    1. Malys, S.,
    2. Wong, R., &
    3. True, S. A.
    (2016). The WGS 84 terrestrial reference frame in 2016. Proc. of the 11th Meeting of the International Committee on GNSS (ICG-11), Sochi, Russia, 6–11. https://www.unoosa.org/pdf/icg/2016/icg11/wgd/02wgd.pdf
  19. ↵
    1. Mercier, F.,
    2. Cerri, L., &
    3. Berthias, J. -P.
    (2010). Jason-2 DORIS phase measurement processing. Advances in Space Research, 45(12), 1441–1454. https://doi.org/10.1016/j.asr.2009.12.002
    1. Montenbruck, O., &
    2. Gill, E.
    (2000). Satellite Orbits: Models, Methods, and Applications. Springer. https://doi.org/10.1007/978-3-642-58351-3
  20. ↵
    1. Montenbruck, O.,
    2. Hackel, S.,
    3. Wermuth, M., &
    4. Zangerl, F.
    (2021). Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver. Journal of Geodesy, 95(9), 109. https://doi.org/10.1007/s00190-021-01563-z
  21. ↵
    1. Montenbruck, O., &
    2. Ramos-Bosch, P.
    (2008). Precision real-time navigation of LEO satellites using global positioning system measurements. GPS Solutions, 12(3), 187–198. https://doi.org/10.1007/s10291-007-0080-x
  22. ↵
    1. Petovello, M., &
    2. O’Driscoll, C.
    (2010). Carrier phase and its measurement for GNSS. InsideGNSS, 5(4), 18–22. https://www.insidegnss.com/auto/julaug10-solutions.pdf
  23. ↵
    1. Reid, T. G. R.,
    2. Neish, A. M.,
    3. Walter, T., &
    4. Enge, P. K.
    (2018). Broadband LEO constellations for navigation. NAVIGATION, 65(2), 205–220. https://doi.org/10.1002/navi.234
    1. Rizos, C., &
    2. Stolz, A.
    (1985). Force modelling for GPS satellite orbits. In Proc. of the 1st International Symposium on Precise Positioning with GPS, Rockville, MD, 87–98.
  24. ↵
    1. Romero, I.
    (2020). RINEX - The Receiver Independent Exchange Format, Version 3.05.
  25. ↵
    1. Schaer, S.,
    2. Villiger, A.,
    3. Arnold, D.,
    4. Dach, R.,
    5. Prange, L., &
    6. Jäggi, A.
    (2021). The CODE ambiguity-fixed clock and phase bias analysis products: Generation, properties, and performance. Journal of Geodesy, 95(7), 81. https://doi.org/10.1007/s00190-021-01521-9
  26. ↵
    1. Sesia, I.,
    2. Signorile, G.,
    3. Thai, T. T.,
    4. Defraigne, P., &
    5. Tavella, P.
    (2021). GNSS-to-GNSS time offsets: Study on the broadcast of a common reference time. GPS Solutions, 25(2), 61. https://doi.org/10.1007/s10291-020-01082-y
  27. ↵
    1. Štěpánek, P.,
    2. Duan, B.,
    3. Filler, V., &
    4. Hugentobler, U.
    (2020). Inclusion of GPS clock estimates for satellites Sentinel-3A/3B in DORIS geodetic solutions. Journal of Geodesy, 94(12), 116. https://doi.org/10.1007/s00190-020-01428-x
    1. Tapley, B. D.,
    2. Bettadpur, S.,
    3. Watkins, M., &
    4. Reigber, C.
    (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004GL019920
  28. ↵
    1. Tetewsky, A.,
    2. Ross, J.,
    3. Soltz, A.,
    4. Vaughn, N.,
    5. Anszperger, J.,
    6. O’Brien, C.,
    7. Graham, D.,
    8. Craig, D., &
    9. Lozow, J.
    (2009). Making sense of inter-signal corrections—Accounting for GPS satellite calibration parameters in legacy and modernized ionosphere correction algorithms. InsideGNSS. https://insidegnss.com/wp-content/uploads/2018/01/julyaug09-tetewsky-final.pdf
  29. ↵
    1. Wang, K., &
    2. Rothacher, M.
    (2013). Stochastic modeling of high-stability ground clocks in GPS analysis. Journal of Geodesy, 87(5), 427–437. https://doi.org/10.1007/s00190-013-0616-5
  30. ↵
    1. Weinbach, U., &
    2. Schön, S.
    (2011). GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP. Advances in Space Research, 47(2), 229–238. https://doi.org/10.1016/j.asr.2010.06.031
  31. ↵
    1. Willis, P.,
    2. Fagard, H.,
    3. Ferrage, P.,
    4. Lemoine, F. G.,
    5. Noll, C. E.,
    6. Noomen, R.,
    7. Otten, M.,
    8. Ries, J. C.,
    9. Rothacher, M.,
    10. Soudarin, L.,
    11. Tavernier, G., &
    12. Valette, J. -J.
    (2010). The International DORIS Service (IDS): Toward maturity. Advances in Space Research, 45(12), 1408–1420. https://doi.org/10.1016/j.asr.2009.11.018
    CrossRefWeb of Science
  32. ↵
    1. Willis, P.,
    2. Haines, B.,
    3. Bar-Sever, Y.,
    4. Bertiger, W.,
    5. Muellerschoen, R.,
    6. Kuang, D., &
    7. Desai, S.
    (2003). Topex/Jason combined GPS/DORIS orbit determination in the tandem phase. Advances in Space Research, 31(8), 1941–1946. https://doi.org/10.1016/S0273-1177(03)00156-X
  33. ↵
    1. Won, J.-H., &
    2. Pany, T.
    (2017). Signal processing. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems (pp. 401–442). Springer. https://doi.org/10.1007/978-3-319-42928-1_14
  34. ↵
    1. Wu, S. C.,
    2. Yunck, T. P., &
    3. Thornton, C. L.
    (1991). Reduced-dynamic technique for precise orbit determination of low Earth satellites. Journal of Guidance, Control, and Dynamics, 14(1), 24–30. https://doi.org/10.2514/3.20600
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Precise Onboard Time Synchronization for LEO Satellites
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Precise Onboard Time Synchronization for LEO Satellites
Florian Kunzi, Oliver Montenbruck
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.531; DOI: 10.33012/navi.531

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Precise Onboard Time Synchronization for LEO Satellites
Florian Kunzi, Oliver Montenbruck
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.531; DOI: 10.33012/navi.531
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 SENTINEL-6A
    • 3 METHODOLOGY
    • 4 RESULTS AND DISCUSSION
    • 5 SUMMARY AND CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GPS Spoofing Mitigation and Timing Risk Analysis in Networked Phasor Measurement Units via Stochastic Reachability
  • A Consistent Regional Vertical Ionospheric Model and Application in PPP-RTK Under Sparse Networks
  • Real-Time Ionosphere Prediction Based on IGS Rapid Products Using Long Short-Term Memory Deep Learning
Show more Original Article

Similar Articles

Keywords

  • clock model
  • inter-system bias
  • time synchronization
  • ultra-stable oscillator

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire