Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

GPS-Denied Navigation Aided by Synthetic Aperture Radar Using the Range-Doppler Algorithm

Colton Lindstrom, Randall Christensen, Jacob Gunther, and Scott Jenkins
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.533; DOI: https://doi.org/10.33012/navi.533
Colton Lindstrom
1Department of Electrical and Computer Engineering, Utah State University, Utah, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randall Christensen
1Department of Electrical and Computer Engineering, Utah State University, Utah, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Jacob Gunther,
1Department of Electrical and Computer Engineering, Utah State University, Utah, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott Jenkins
2NPC and Systems Integration, Sandia National Laboratories, New Mexico, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Balamurugan, G.,
    2. Valarmathi, J., &
    3. Naidu, V. P. S.
    (2016). Survey on UAV navigation in GPS denied environments. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 198–204. https://doi.org/10.1109/SCOPES.2016.7955787
  2. ↵
    1. Bergman, N.,
    2. Ljung, L., &
    3. Gustafsson, F.
    (1999. Terrain navigation using Bayesian statistics. IEEE Control Systems Magazine, 19(3), 33–40. https://doi.org/10.1109/37.768538
  3. ↵
    1. Bhanu, B., &
    2. Lin, Y.
    (2003). Genetic algorithm based feature selection for target detection in SAR images. Image and Vision Computing, 21(7), 591–608. https://doi.org/10.1016/S0262-8856(03)00057-X
  4. ↵
    1. Blacknell, D.,
    2. Blake, A. P.,
    3. Oliver, C. J., &
    4. White, R. G.
    (1992). A comparison of SAR multilook registration and contrast optimisation autofocus algorithms applied to real SAR data. 92 International Conference on Radar, Brighton, UK, 363–366. https://ieeexplore.ieee.org/document/187118
  5. ↵
    1. Bourke, P.
    (1996). Cross correlation: AutoCorrelation—2D Pattern Identification. http://paulbourke.net/miscellaneous/correlate
  6. ↵
    1. Brown, R. G., &
    2. Hwang, P. Y. C.
    (2012). Introduction to random signals and applied Kalman filtering: With MATLAB exercises (4th ed.). John Wiley.
  7. ↵
    1. Carpenter, J. R., &
    2. D’Souza, C. N.
    (2018). Navigation Filter Best Practices (Technical Report No. 2018-219822). NASA. https://ntrs.nasa.gov/api/citations/20180003657/downloads/20180003657.pdf
  8. ↵
    1. Christensen, R. S.,
    2. Gunther, J., &
    3. Long, D.
    (2019). Toward GPS-denied navigation utilizing back projection-based synthetic aperture radar imagery. Proc. of the ION 2019 Pacific PNT Meeting, Honolulu, HI, 108–119. https://doi.org/10.33012/2019.16797
  9. ↵
    1. Cumming, I. G., &
    2. Wong, F. H.
    (2005). Digital processing of synthetic aperture radar data: Algorithms and Implementation. Artech house. https://pdfs.semanticscholar.org/23eb/33af4f0495edff01402ec8eb019e80717897.pdf
  10. ↵
    1. Duersch, M. I., &
    2. Long, D. G.
    (2015). Analysis of time-domain back-projection for stripmap SAR. International Journal of Remote Sensing, 36(8), 2010–2036. https://doi.org/10.1080/01431161.2015.1030044
  11. ↵
    1. Evers, A.
    (2019). A generalized phase gradient autofocus algorithm. Theses and Dissertations, 2240. Air Force Institute of Technology. https://scholar.afit.edu/etd/2240/
  12. ↵
    1. Fabbrini, L.,
    2. Messina, M.,
    3. Greco, M., &
    4. Pinelli, G.
    (2011). Linear landmark extraction in SAR images with application to augmented integrity aero-navigation: An overview to a novel processing chain. Proceedings Volume 8008: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2011, Wilga, Poland. https://doi.org/10.1117/12.905022
  13. ↵
    1. Farrell, J.
    (2008). Aided navigation: GPS with high rate sensors. McGraw-Hill.
  14. ↵
    1. Gao, G.,
    2. Liu, L.,
    3. Zhao, L.,
    4. Shi, G., &
    5. Kuang, G.
    (2009). An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1685–1697. https://doi.org/10.1109/TGRS.2008.2006504
  15. ↵
    1. Greco, M.,
    2. Pinelli, G.,
    3. Kulpa, K.,
    4. Samczynski, P.,
    5. Querry, B., &
    6. Querry, S.
    (2011a). The study on SAR images exploitation for air platform navigation purposes. 12th International Radar Symposium (IRS), Leipzig, Germany. https://ieeexplore.ieee.org/document/6042158
  16. ↵
    1. Greco, M.,
    2. Kulpa, K.,
    3. Pinelli, G., &
    4. Samczynski, P.
    (2011b). SAR and InSAR georeferencing algorithms for inertial navigation systems. Proceedings: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2011 (Vol. 8008), Wilga, Poland. https://doi.org/10.1117/12.904971
  17. ↵
    1. Greco, M.,
    2. Querry, S.,
    3. Pinelli, G.,
    4. Kulpa, K.,
    5. Samczynski, P.,
    6. Gromek, D.,
    7. Gromek, A.,
    8. Malanowski, M.,
    9. Querry, B., &
    10. Bonsignore, A.
    (2012). SAR-based augmented integrity navigation architecture. 2012 13th International Radar Symposium, Warsaw, Poland. https://doi.org/10.1109/IRS.2012.6233320
  18. ↵
    1. Grewal, M. S.,
    2. Andrews, A. P., &
    3. Bartone, C. G.
    (2020). Global navigation satellite systems, inertial navigation, and integration. John Wiley & Sons.
  19. ↵
    1. Hollowell, J.
    (1990). Heli/SITAN: A terrain referenced navigation algorithm for helicopters. IEEE Symposium on Position, Location, and Navigation: A Decade of Excellence in the Navigation Sciences, Las Vegas, NV. https://doi.org/10.1109/PLANS.1990.66236
  20. ↵
    1. Honeywell
    . (2007, November). Honeywell Precision Barometer and Altimeter (HPB/HPA). [Online]. http://www.aerospace.honeywell.com/en/learn/products/sensors/honeywell-precision-barometer-and-altimeter
  21. ↵
    1. Hounam, D., &
    2. Wagel, K. -H.
    (2001). A technique for the identification and localization of SAR targets using encoding transponders. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 3–7. https://doi.org/10.1109/36.898660
  22. ↵
    1. Jensen, M.,
    2. Knight, C., &
    3. Haslem, B.
    (2016). FlexSAR, a high quality, flexible, cost effective, prototype SAR system. Proceedings: Radar Sensor Technology XX (Vol. 9829). International Society for Optics and Photonics. https://doi.org/10.1117/12.2224951
  23. ↵
    1. Jiang, S.,
    2. Xiang, M.,
    3. Xikai, F.,
    4. Sun, X.,
    5. Hu, X.,
    6. Qian, Q.,
    7. &Wang, B.
    (2018). The InSAR/INS integrated navigation based on interferograms matching. EUSAR 2018––12th European Conference on Synthetic Aperture Radar, Aachen, Germany. https://www.vde-verlag.de/proceedings-en/454636222.html
  24. ↵
    1. Kauffman, K.
    (2009). Fast target tracking technique for synthetic aperture radars [Unpublished doctoral dissertation]. Miami University.
  25. ↵
    1. Kauffman, K.,
    2. Morton, Y.,
    3. Raquet, J., &
    4. Garmatyuk, D.
    (2010a). Simulation study of UWB-OFDM SAR for dead-reckoning navigation. Proc. of the 2010 International Technical Meeting of the Institute of Navigation, San Diego, CA, 153–160. https://www.ion.org/publications/abstract.cfm?articleID=8792
  26. ↵
    1. Kauffman, K.,
    2. Raquet, J.,
    3. Morton, Y., &
    4. Garmatyuk, D.
    (2010b). Simulation study of UWB-OFDM SAR for navigation using an extended Kalman filter. Proc. of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, 2443–2451. https://www.ion.org/publications/abstract.cfm?articleID=9350
  27. ↵
    1. Kauffman, K.,
    2. Raquet, J.,
    3. Morton, Y., &
    4. Garmatyuk, D.
    (2011a). Enhanced feature detection and tracking algorithm for UWB-OFDM SAR navigation. Proc. of the 2011 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, 261–269. https://doi.org/10.1109/NAECON.2011.6183112
  28. ↵
    1. Kauffman, K.,
    2. Raquet, J.,
    3. Morton, Y., &
    4. Garmatyuk, D.
    (2011b). Simulation study of UWB-OFDM SAR for navigation with INS integration. Proc. of the 2011 International Technical Meeting of the Institute of Navigation, San Diego, CA, 184–191. https://www.ion.org/publications/abstract.cfm?articleID=9459
    1. Kauffman, K.,
    2. Raquet, J.,
    3. Morton, Y., &
    4. Garmatyuk, D.
    (2012). Experimental study of UWB-OFDM SAR for indoor navigation with INS integration. Proc. of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, 3847–3852. https://www.ion.org/publications/abstract.cfm?articleID=10560
  29. ↵
    1. Kauffman, K.,
    2. Raquet, J.,
    3. Morton, Y., &
    4. Garmatyuk, D.
    (2013a). Experimental study of two-channel UWB-OFDM radar for indoor navigation with INS integration. Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 756–761. https://www.ion.org/publications/abstract.cfm?articleID=11183
  30. ↵
    1. Kauffman, K.,
    2. Raquet, J.,
    3. Morton, Y., &
    4. Garmatyuk, D.
    (2013b). Real-time UWB-OFDM radar-based navigation in unknown terrain. IEEE Transactions on Aerospace and Electronic Systems, 49(3), 1453–1466. https://doi.org/10.1109/TAES.2013.6557998
  31. ↵
    1. Kim, Y.,
    2. Park, J., &
    3. Bang, H.
    (2018). Terrain-referenced navigation using an interferometric radar altimeter. NAVIGATION, 65(2), 157–167. https://doi.org/10.1002/navi.233
  32. ↵
    1. Lindstrom, C.,
    2. Christensen, R.,
    3. Gunther, J., &
    4. Jenkins, S.
    (2022). Sensitivity of back-projection algorithm (BPA) synthetic aperture radar (SAR) image formation to initial position, velocity, and attitude navigation errors. IET Radar, Sonar & Navigation, 16(2), 364–378. https://doi.org/10.1049/rsn2.12189
  33. ↵
    1. Zhao, L.,
    2. Gao, N.,
    3. Huang, B.,
    4. Wang, Q., &
    5. Zhou, J.
    (2015). A novel terrain-aided navigation algorithm combined With the TERCOM Algorithm and particle filter. IEEE Sensors Journal, 15(2), 1124–1131. https://doi.org/10.1109/JSEN.2014.2360916
  34. ↵
    1. Mostafa, M.,
    2. Zahran, S.,
    3. Moussa, A.,
    4. El-Sheimy, N., &
    5. Sesay, A.
    (2018). Radar and visual odometry integrated system aided navigation for UAVS in GNSS denied environment. Sensors, 18(9), 2776. https://doi.org/10.3390/s18092776
  35. ↵
    1. Niedfeldt, P. C.,
    2. Quist, E. B., &
    3. Beard, R. W.
    (2014). Characterizing range progression of SAR point scatterers with recursive RANSAC. 2014 IEEE Radar Conference, Cincinnati, OH, 712–0717. https://doi.org/10.1109/RADAR.2014.6875683
  36. ↵
    1. Nitti, D. O.,
    2. Bovenga, F.,
    3. Chiaradia, M. T.,
    4. Greco, M., &
    5. Pinelli, G.
    (2015). Feasibility of using synthetic aperture radar to aid UAV navigation. Sensors, 15(8), 18334–18359. https://doi.org/10.3390/s150818334
  37. ↵
    1. Nordlund, P. -J., &
    2. Gustafsson, F.
    (2009). Marginalized particle filter for accurate and reliable terrain-aided navigation. IEEE Transactions on Aerospace and Electronic Systems, 45(4), 1385–1399. https://doi.org/10.1109/TAES.2009.5310306
  38. ↵
    1. Novatel
    . (2020). Novatel GNSS/INS Module: SPAN-CPT Single Enclosure GNSS/INS Receiver. [Online]. http://www.novatel.com/products/span-gnss-inertial-navigation-systems
  39. ↵
    1. Quist, E. B., &
    2. Beard, R. W.
    (2016). Radar odometry on fixed-wing small unmanned aircraft. IEEE Transactions on Aerospace and Electronic Systems, 52(1), 396–410. https://doi.org/10.1109/TAES.2015.140186
    1. Quist, E. B.,
    2. Niedfeldt, P. C., &
    3. Beard, R. W.
    (2016). Radar odometry with recursive-RANSAC. IEEE Transactions on Aerospace and Electronic Systems, 52(4), 1618–1630. https://doi.org/10.1109/TAES.2016.140829
  40. ↵
    1. Samczynski, P.
    (2012). Superconvergent velocity estimator for an autofocus coherent MapDrift technique. IEEE Geoscience and Remote Sensing Letters, 9(2), 204–208. https://doi.org/10.1109/LGRS.2011.2163700
  41. ↵
    1. Samczynski, P., &
    2. Kulpa, K. S.
    (2010). Coherent MapDrift technique. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1505–1517. https://doi.org/10.1109/TGRS.2009.2032241
  42. ↵
    1. Savage, P. G., et al.
    (2000). Strapdown analytics (Vol. 2). Strapdown Associates Maple Plain, MN.
  43. ↵
    1. Scannapieco, A. F.
    (2019). A novel outlier removal method for two-dimensional radar odometry. IET Radar, Sonar & Navigation, 13(10), 1705–1712. https://doi.org/10.1049/iet-rsn.2018.5661
  44. ↵
    1. Scannapieco, A. F.,
    2. Renga, A.,
    3. Fasano, G., &
    4. Moccia, A.
    (2018). Experimental analysis of radar odometry by commercial ultralight radar sensor for miniaturized UAS. Journal of Intelligent & Robotic Systems, 90(3), 485–503. https://doi.org/10.1007/s10846-017-0688-1
  45. ↵
    1. Sjanic, Z., &
    2. Gustafsson, F.
    (2010). Simultaneous navigation and SAR auto-focusing. 2010 13th International Conference on Information Fusion, Edinburgh, UK. https://doi.org/10.1109/ICIF.2010.5711931
  46. ↵
    1. Srinivas, U.,
    2. Monga, V., &
    3. Raj, R. G.
    (2014). SAR automatic target recognition using discriminative graphical models. IEEE Transactions on Aerospace and Electronic Systems, 50(1), 591–606. https://doi.org/10.1109/TAES.2013.120340
  47. ↵
    1. Sun, Y.,
    2. Liu, Z.,
    3. Todorovic, S., &
    4. Li, J.
    (2007). Adaptive boosting for SAR automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems, 43(1), 112–125. https://doi.org/10.1109/TAES.2007.357120
  48. ↵
    1. Zanetti, R.
    (2019). Rotations, transformations, left quaternions, right quaternions? The Journal of the Astronautical Sciences, 66(3), 361–381. https://doi.org/10.1007/s40295-018-00151-2
  49. ↵
    1. Zhao, Q., &
    2. Principe, J. C.
    (2001). Support vector machines for SAR automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems, 37(2), 643–654. https://doi.org/10.1109/7.937475
    CrossRef
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
GPS-Denied Navigation Aided by Synthetic Aperture Radar Using the Range-Doppler Algorithm
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
GPS-Denied Navigation Aided by Synthetic Aperture Radar Using the Range-Doppler Algorithm
Colton Lindstrom, Randall Christensen, Jacob Gunther,, Scott Jenkins
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.533; DOI: 10.33012/navi.533

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
GPS-Denied Navigation Aided by Synthetic Aperture Radar Using the Range-Doppler Algorithm
Colton Lindstrom, Randall Christensen, Jacob Gunther,, Scott Jenkins
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.533; DOI: 10.33012/navi.533
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 SYNTHETIC APERTURE RADAR IMAGING
    • 3 NAVIGATION SYSTEM AND MONTE CARLO FRAMEWORK DEVELOPMENT
    • 4 RESULTS
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • AUTHOR CONTRIBUTIONS
    • PRODUCT ENDORSEMENT DISCLAIMER
    • CONFLICT OF INTEREST
    • ACKNOWLEDGEMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Multi-layered Multi-Constellation Global Navigation Satellite System Interference Mitigation
  • Instantaneous Sub-meter Level Precise Point Positioning of Low-Cost Smartphones
  • SBAS Protection Levels with Gauss-Markov K-Factors for Any Integrity Target
Show more Original Article

Similar Articles

Keywords

  • GPS-denied
  • inertial navigation
  • Range-Doppler Algorithm
  • synthetic aperture radar
  • UAV

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire