Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Time Transfer From GPS for Designing a SmallSat-Based Lunar Navigation Satellite System

Sriramya Bhamidipati, Tara Mina, and Grace Gao
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.535; DOI: https://doi.org/10.33012/navi.535
Sriramya Bhamidipati
Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tara Mina,
Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Gao
Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. AGI
    . (2021). Systems Tool Kit (STK). AGI. https://www.agi.com/products/stk
  2. ↵
    1. Batista, A.,
    2. Gomez, E.,
    3. Qiao, H., &
    4. Schubert, K. E.
    (2012). Constellation design of a lunar global positioning system using CubeSats and chip-scale atomic clocks. WorldComp. https://www.r2labs.org/pubs/armani_batista__lunar_gps_worldcomp_2012_Final.pdf
  3. ↵
    1. Bhamidipati, S., &
    2. Gao, G. X.
    (2019). GPS multireceiver joint direct time estimation and spoofer localization. IEEE Transactions on Aerospace and Electronic Systems, 55(4), 1907–1919. https://doi.org/10.1109/taes.2018.2879532
  4. ↵
    1. Bhamidipati, S.,
    2. Mina, T., &
    3. Gao, G.
    (2021). Design considerations of a lunar navigation satellite system with time-transfer from Earth-GPS. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 950–965. https://doi.org/10.33012/2021.18021
  5. ↵
    1. Bolles, D.
    (2020). Terrain relative navigation: Landing between the hazards. NASA. https://science.nasa.gov/technology/technology-highlights/terrain-relative-navigation-landing-between-the-hazards
  6. ↵
    1. Borio, D.,
    2. Sokolova, N., &
    3. Lachapelle, G.
    (2011). Doppler measurement accuracy in standard and high-sensitivity global navigation satellite system receivers. IET Radar, Sonar & Navigation, 5(6), 657–665. https://doi.org/10.1049/iet-rsn.2010.0249
  7. ↵
    1. Calero, D., &
    2. Fernandez, E.
    (2015). Characterization of chip-scale atomic clock for GNSS navigation solutions. 2015 International Association of Institutes of Navigation World Congress (IAIN), Prague, Czech Republic. https://doi.org/10.1109/iain.2015.7352264
  8. ↵
    1. Capuano, V.,
    2. Basile, F.,
    3. Botteron, C., &
    4. Farine, P. -A.
    (2015a). GNSS-based orbital filter for Earth Moon transfer orbits. Journal of Navigation, 69(4), 745–764. https://doi.org/10.1017/s0373463315000843
  9. ↵
    1. Capuano, V.,
    2. Blunt, P.,
    3. Botteron, C.,
    4. Tian, J.,
    5. Leclère, J.,
    6. Wang, Y.,
    7. Basile, F., &
    8. Farine, P. -A.
    (2016). Standalone GPS L1 C/A receiver for lunar missions. Sensors, 16(3), 347–368. https://doi.org/10.3390/s16030347
  10. ↵
    1. Capuano, V.,
    2. Botteron, C.,
    3. Leclère, J.,
    4. Tian, J.,
    5. Wang, Y., &
    6. Farine, P. A.
    (2015b). Feasibility study of GNSS as navigation system to reach the Moon. Acta Astronautica, 116, 186–201. https://doi.org/10.1016/j.actaastro.2015.06.007
  11. ↵
    1. Chen, P.,
    2. Zhang, J., &
    3. Sun, X.
    (2016). Real-time kinematic positioning of LEO satellites using a single-frequency GPS receiver. GPS Solutions, 21(3), 973–984. https://doi.org/10.1007/s10291-016-0586-1
  12. ↵
    1. Cheung, K. -M.,
    2. Lee, C., &
    3. Heckman, D.
    (2020). Feasibility of “weak GPS” real-time positioning and timing at lunar distance. 2020 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/aero47225.2020.9172327
  13. ↵
    1. Christensen, D., &
    2. Geller, D.
    (2011). Terrain-relative and beacon-relative navigation for lunar powered descent and landing. The Journal of the Astronautical Sciences, 58(1), 121–151. https://doi.org/10.1007/bf03321162
  14. ↵
    1. Christian, J. A., &
    2. Lightsey, E. G.
    (2009). Review of options for autonomous cislunar navigation. Journal of Spacecraft and Rockets, 46(5), 1023–1036. https://doi.org/10.2514/1.42819
  15. ↵
    1. Clerc, S.,
    2. Spigai, M., &
    3. Simard-Bilodeau, V.
    (2010). A crater detection and identification algorithm for autonomous lunar landing. IFAC Proceedings Volumes, 43(16), 527–532. https://doi.org/10.3182/20100906-3-it-2019.00091
  16. ↵
    1. Coleman, M. J., &
    2. Beard, R. L.
    (2020). Autonomous clock ensemble algorithm for GNSS applications. NAVIGATION, 67(2), 333–346. https://doi.org/10.1002/navi.366
  17. ↵
    1. Cozzens, T.
    (2021). Galileo will help Lunar Pathfinder navigate around Moon. GPS World. https://www.gpsworld.com/galileo-will-help-lunar-pathfinder-navigate-around-moon
  18. ↵
    1. DeLange, J.,
    2. Frick, S.,
    3. Runnels, J.,
    4. Gebre-Egziabher, D., &
    5. Hedstrom, K.
    (2016). Sensor for small satellite relative PNT in deep-space. 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA. https://doi.org/10.1109/plans.2016.7479794
  19. ↵
    1. Delépaut, A.,
    2. Giordano, P.,
    3. Ventura-Traveset, J.,
    4. Blonski, D.,
    5. Schönfeldt, M.,
    6. Schoonejans, P.,
    7. Aziz, S., &
    8. Walker, R.
    (2020). Use of GNSS for lunar missions and plans for lunar in-orbit development. Advances in Space Research, 66(12), 2739–2756. https://doi.org/10.1016/j.asr.2020.05.018
  20. ↵
    1. Donaldson, J. E.,
    2. Parker, J. J. K.,
    3. Moreau, M. C.,
    4. Highsmith, D. E., &
    5. Martzen, P. D.
    (2020). Characterization of on-orbit GPS transmit antenna patterns for space users. NAVIGATION, 67(2), 411–438. https://doi.org/10.1002/navi.361
  21. ↵
    1. Downes, L.,
    2. Steiner, T. J., &
    3. How, J. P.
    (2020). Deep learning crater detection for lunar terrain relative navigation. AIAA Scitech 2020 Forum, Orlando, FL. https://doi.org/10.2514/6.2020-1838
  22. ↵
    1. Ely, T. A., &
    2. Lieb, E.
    (2006). Constellations of elliptical inclined lunar orbits providing polar and global coverage. The Journal of the Astronautical Sciences, 54(1), 53–67. https://doi.org/10.1007/bf03256476
  23. ↵
    1. Erdogan, E., &
    2. Karslioglu, M. O.
    (2009). Near real time orbit determination of BILSAT-1. 2009 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey. https://doi.org/10.1109/rast.2009.5158271
  24. ↵
    1. Fragner, H.,
    2. Dielacher, A.,
    3. Moritsch, M.,
    4. Wickert, J.,
    5. Koudelka, O.,
    6. Høeg, P.,
    7. Cardellach, E.,
    8. Martin-Neira, M.,
    9. Semmling, M.,
    10. Walker, R., &
    11. Lissi, F. P.
    (2020). Status of the ESA Pretty mission. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI. https://doi.org/10.1109/igarss39084.2020.9323454
  25. ↵
    1. Hsu, W. -H., &
    2. Jan, S. -S.
    (2014). Assessment of using Doppler shift of LEO satellites to aid GPS positioning. 2014 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA. https://doi.org/10.1109/plans.2014.6851486
  26. ↵
    1. InsideGNSS
    . (2021). ESA, NASA race to the Moon for first lunar GNSS fix. Inside GNSS. https://insidegnss.com/esa-nasa-race-to-the-moon-for-first-lunar-gnss-fix
  27. ↵
    1. Israel, D. J.,
    2. Mauldin, K. D.,
    3. Roberts, C. J.,
    4. Mitchell, J. W.,
    5. Pulkkinen, A. A.,
    6. Cooper, L. V. D.,
    7. Johnson, M. A.,
    8. Christe, S. D., &
    9. Gramling, C. J.
    (2020). LunaNet: A flexible and extensible lunar exploration communications and navigation infrastructure. 2020 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/aero47225.2020.9172509
  28. ↵
    1. Johnson, A. E., &
    2. Montgomery, J. F.
    (2008). Overview of terrain relative navigation approaches for precise lunar landing. 2008 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/aero.2008.4526302
  29. ↵
    1. Jun, W.,
    2. Cheung, K. -M.,
    3. Milton, J.,
    4. Lee, C., &
    5. Lightsey, G.
    (2020). Autonomous navigation for crewed lunar missions with DBAN. 2020 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/aero47225.2020.9172522
  30. ↵
    1. Kaplan, E. D., &
    2. Hegarty, C. J.
    (2017). Understanding GPS/GNSS: Principles and applications (3rd Ed.). Artech House. https://dl.acm.org/doi/10.5555/3158927
  31. ↵
    1. Krawinkel, T., &
    2. Schön, S.
    (2015). Benefits of receiver clock modeling in code-based GNSS navigation. GPS Solutions, 20(4), 687–701. https://doi.org/10.1007/s10291-015-0480-2
  32. ↵
    1. Laurini, K. C., &
    2. Gerstenmaier, W. H.
    (2014). The Global Exploration Roadmap and its significance for NASA. Space Policy, 30(3), 149–155. https://doi.org/10.1016/j.spacepol.2014.08.004
  33. ↵
    1. Li, S.,
    2. Lucey, P. G.,
    3. Milliken, R. E.,
    4. Hayne, P. O.,
    5. Fisher, E.,
    6. Williams, J. -P.,
    7. Hurley, D. M., &
    8. Elphic, R. C.
    (2018). Direct evidence of surface exposed water ice in the lunar polar regions. Proc. of the National Academy of Sciences, 115(36), 8907–8912. https://doi.org/10.1073/pnas.1802345115
  34. ↵
    1. Liu, S.,
    2. Yan, J.,
    3. Cao, J.,
    4. Ye, M.,
    5. Li, X.,
    6. Li, F., &
    7. Barriot, J. -P.
    (2020). Review of the precise orbit determination for Chinese lunar exploration projects, Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10503805.1
  35. ↵
    1. Mazarico, E.,
    2. Neumann, G. A.,
    3. Barker, M. K.,
    4. Goossens, S.,
    5. Smith, D. E., &
    6. Zuber, M. T.
    (2018). Orbit determination of the Lunar Reconnaissance Orbiter: Status after seven years. Planetary and Space Science, 162, 2–19. https://doi.org/10.1016/j.pss.2017.10.004
  36. ↵
    1. Montenbruck, O., &
    2. Ramos-Bosch, P.
    (2007). Precision real-time navigation of LEO satellites using Global Positioning System measurements. GPS Solutions, 12(3), 187–198. https://doi.org/10.1007/s10291-007-0080-x
  37. ↵
    1. Murata, M.,
    2. Kawano, I., &
    3. Kogure, S.
    (2022). Lunar navigation satellite system and positioning accuracy evaluation. Proc. of the 2022 International Technical Meeting of the Institute of Navigation, Long Beach, CA, 582–586. https://doi.org/10.33012/2022.18220
  38. ↵
    1. Musumeci, L.,
    2. Dovis, F.,
    3. Silva, J. S.,
    4. da Silva, P. F., &
    5. Lopes, H. D.
    (2016). Design of a high sensitivity GNSS receiver for lunar missions. Advances in Space Research, 57(11), 2285–2313. https://doi.org/10.1016/j.asr.2016.03.020
  39. ↵
    1. Nie, G.,
    2. Wu, F.,
    3. Zhang, K., &
    4. Zhu, B.
    (2007). Research on LEO satellites time synchronization with GPS receivers onboard. 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 896–900. https://doi.org/10.1109/freq.2007.4319208
  40. ↵
    1. Parker, J. J. K.,
    2. Dovis, F.,
    3. Anderson, B.,
    4. Ansalone, L.,
    5. Ashman, B.,
    6. Bauer, F. H.,
    7. D’Amore, G.,
    8. Facchinetti, C.,
    9. Fantinato, S.,
    10. Impresario, G.,
    11. McKim, S. A.,
    12. Miotti, E.,
    13. Miller, J. J.,
    14. Musmeci, M.,
    15. Pozzobon, O.,
    16. Schlenker, L.,
    17. Tuozzi, A., &
    18. Valencia, L.
    (2022). The Lunar GNSS Receiver Experiment (LuGRE). Proc. of the 2022 International Technical Meeting of the Institute of Navigation, Long Beach, CA, 420–437. https://doi.org/10.33012/2022.18199
  41. ↵
    1. Pereira, F., &
    2. Selva, D.
    (2020). Exploring the design space of lunar GNSS in frozen orbit conditions. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, 444–451. https://doi.org/10.1109/plans46316.2020.9110202
  42. ↵
    1. Pereira, F., &
    2. Selva, D.
    (2022). Analysis of navigation performance with lunar GNSS evolution. Proc. of the 2022 International Technical Meeting of the Institute of Navigation, Long Beach, CA, 514–529. https://doi.org/10.33012/2022.18210
  43. ↵
    1. Schmittberger, B. L., &
    2. Scherer, D. R.
    (2020). A review of contemporary atomic frequency standards. arXiv. https://arxiv.org/pdf/2004.09987.pdf
  44. ↵
    1. Schönfeldt, M.,
    2. Grenier, A.,
    3. Delépaut, A.,
    4. Giordano, P.,
    5. Swinden, R.,
    6. Ventura-Traveset, J.,
    7. Blonski, D., &
    8. Hahn, J.
    (2020a). A system study about a lunar navigation satellite transmitter system. 2020 European Navigation Conference (ENC), Dresden, Germany. https://doi.org/10.23919/enc48637.2020.9317521
  45. ↵
    1. Schönfeldt, M.,
    2. Grenier, A.,
    3. Delépaut, A.,
    4. Swinden, R.,
    5. Giordano, P., &
    6. Ventura-Traveset, J.
    (2020b). Across the lunar landscape: Towards a dedicated lunar PNT system. Inside GNSS. https://insidegnss.com/across-the-lunar-landscape-towards-a-dedicated-lunar-pnt-system
  46. ↵
    1. Shin, M. Y.,
    2. Park, C., &
    3. Lee, S. J.
    (2008). Atomic clock error modeling for GNSS software platform. 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA. https://doi.org/10.1109/plans.2008.4570008
  47. ↵
    1. Sivrikaya, F., &
    2. Yener, B.
    (2004). Time synchronization in sensor networks: A survey. IEEE Network, 18(4), 45–50. https://doi.org/10.1109/MNET.2004.1316761
    CrossRef
  48. ↵
    1. Smith, M.,
    2. Craig, D.,
    3. Herrmann, N.,
    4. Mahoney, E.,
    5. Krezel, J.,
    6. McIntyre, N., &
    7. Goodliff, K.
    (2020). The Artemis program: An overview of NASA’s activities to return humans to the Moon. 2020 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/aero47225.2020.9172323
  49. ↵
    1. Steffes, S. R.,
    2. Monterroza, F.,
    3. Benhacine, L., &
    4. Mario, C.
    (2019). Optical terrain relative navigation approaches to lunar orbit, descent and landing. AIAA Scitech 2019 Forum, San Diego, CA. https://doi.org/10.2514/6.2019-1178
  50. ↵
    1. Sun, X.,
    2. Han, C., &
    3. Chen, P.
    (2017). Precise real-time navigation of LEO satellites using a single-frequency GPS receiver and ultra-rapid ephemerides. Aerospace Science and Technology, 67, 228–236. https://doi.org/10.1016/j.ast.2017.04.006
  51. ↵
    1. Tai, W.,
    2. Cosby, M., &
    3. Lanucara, M.
    (2020). Lunar communications architecture study report (v1.2). Interagency Operations Advisory Group, Lunar Communications Architecture Working Group. https://www.ioag.org/Public%20Documents/Forms/DispForm.aspx?ID=153
  52. ↵
    1. Van Buren, D.,
    2. Palo, S., &
    3. Axelrad, P.
    (2019). Simulation of a high stability reference clock for small satellites with modeled gps timing errors. Proc. of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4458&context=smallsat
  53. ↵
    1. Winternitz, L. M. B.,
    2. Bamford, W. A., &
    3. Heckler, G. W.
    (2009). A GPS receiver for high-altitude satellite navigation. IEEE Journal of Selected Topics in Signal Processing, 3(4), 541–556. https://doi.org/10.1109/jstsp.2009.2023352
  54. ↵
    1. Winternitz, L. B.,
    2. Bamford, W. A.,
    3. Long, A. C., &
    4. Hassouneh, M.
    (2019). Gps based autonomous navigation study for the lunar gateway. Annual American Astronautical Society (AAS) Guidance, Navigation, and Control Conference (AAS 19-096). https://ntrs.nasa.gov/citations/20190002311
  55. ↵
    1. Winternitz, L. B.,
    2. Bamford, W. A.,
    3. Price, S. R.,
    4. Carpenter, J. R.,
    5. Long, A. C., &
    6. Farahmand, M.
    (2017). Global Positioning System navigation above 76,000 km for NASA’s Magnetospheric Multiscale Mission. NAVIGATION, 64(2), 289–300. https://doi.org/10.1002/navi.198
  56. ↵
    1. Wouters, M. J., &
    2. Marais, E. L.
    (2019). GPS-based time transfer using low-cost receivers. MAPAN, 34(4), 521–528. https://doi.org/10.1007/s12647-019-00322-y
  57. ↵
    1. Liu, Y.,
    2. Qian, Y., &
    3. Jing, W.
    (2019). Orbit keeping control strategy design for the quasi-period orbit with STK/astrogator. 2019 Chinese Control Conference (CCC), Guangzhou, China. https://doi.org/10.23919/chicc.2019.8866502
  58. ↵
    1. Zucca, C., &
    2. Tavella, P.
    (2005). The clock model and its relationship with the Allan and related variances. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2), 289–296. https://doi.org/10.1109/tuffc.2005.1406554
    PubMed
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Time Transfer From GPS for Designing a SmallSat-Based Lunar Navigation Satellite System
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Time Transfer From GPS for Designing a SmallSat-Based Lunar Navigation Satellite System
Sriramya Bhamidipati, Tara Mina,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.535; DOI: 10.33012/navi.535

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Time Transfer From GPS for Designing a SmallSat-Based Lunar Navigation Satellite System
Sriramya Bhamidipati, Tara Mina,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.535; DOI: 10.33012/navi.535
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PROPOSED TIME TRANSFER FROM GPS TO LNSS
    • 3 MODELING THE LUNAR SIMULATION SETUP
    • 4 EXPERIMENTAL RESULTS AND ANALYSIS
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Commercial GNSS Radio Occultation on Aerial Platforms With Off-The-Shelf Receivers
  • Improving GNSS Positioning Using Neural-Network-Based Corrections
  • Resilience Monitoring for Multi-Filter All-Source Navigation Framework With Assurance
Show more Original Article

Similar Articles

Keywords

  • GPS
  • lunar navigation satellite system
  • time transfer

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire