Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Set-Valued Shadow Matching Using Zonotopes for 3D-Map-Aided GNSS Localization

Sriramya Bhamidipati, Shreyas Kousik, and Grace Gao
NAVIGATION: Journal of the Institute of Navigation December 2022, 69 (4) navi.547; DOI: https://doi.org/10.33012/navi.547
Sriramya Bhamidipati
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shreyas Kousik,
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Gao
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Adjrad, M., &
    2. Groves, P. D.
    (2017). Intelligent urban positioning: Integration of shadow matching with 3D-mapping-aided GNSS ranging. Journal of Navigation, 71(1). https://doi.org/10.1017/s0373463317000509
  2. ↵
    1. Althoff, M.
    (2015). An introduction to CORA 2015. In G. Frehse & M. Althoff (Eds.), ARCH14-15: 1st and 2nd International Workshop on Applied verification for continuous and hybrid systems (Vol. 34, pp. 120–151). https://doi.org/10.29007/zbkv
  3. ↵
    1. Althoff, M., &
    2. Dolan, J. M.
    (2014). Online verification of automated road vehicles using reachability analysis. IEEE Transactions on Robotics, 30(4), 903–918. https://doi.org/10.1109/tro.2014.2312453
  4. ↵
    1. Bhamidipati, S., &
    2. Gao, G. X.
    (2020). Integrity-driven landmark attention for GPS-vision navigation via stochastic reachability. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2311–2326. https://doi.org/10.33012/2020.17546
  5. ↵
    1. Bhamidipati, S.,
    2. Kim, K. J.,
    3. Sun, H., &
    4. Orlik, P. V.
    (2019). GPS spoofing detection and mitigation in PMUs using distributed multiple directional antennas. 2019 IEEE International Conference on Communications (ICC), Shanghai. https://doi.org/10.1109/icc.2019.8761208
  6. ↵
    1. Bhamidipati, S.,
    2. Kousik, S., &
    3. Gao, G.
    (2021). Set-valued shadow matching using zonotopes. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 2373–2390. https://doi.org/10.33012/2021.17933
  7. ↵
    1. Chen, Z.,
    2. Gao, B., &
    3. Devereux, B.
    (2017). State-of-the-art: DTM generation using airborne lidar data. Sensors, 17(12), 150. https://doi.org/10.3390/s17010150
  8. ↵
    1. Combettes, P. L., &
    2. Civanlar, M. R.
    (1991). The foundations of set theoretic estimation. Proc. of the 1991 International Conference on Acoustics, Speech, and Signal Processing, Toronto. https://doi.org/10.1109/icassp.1991.151014
  9. ↵
    1. Ebinuma, T.
    (2018). GPS-SDR-SIM [Source code]. https://github.com/osqzss/gps-sdr-sim
  10. ↵
    1. Fu, G. M.,
    2. Khider, M., &
    3. van Diggelen, F.
    (2020). Android raw GNSS measurement datasets for precise positioning. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 1925–1937. https://doi.org/10.33012/2020.17628
  11. ↵
    1. Groves, P. D.
    (2011). Shadow matching: A new GNSS positioning technique for urban canyons. Journal of Navigation, 64(3), 417–430. https://doi.org/10.1017/s0373463311000087
  12. ↵
    1. Groves, P. D.,
    2. Wang, L.,
    3. Adjrad, M., &
    4. Ellul, C.
    (2015). GNSS shadow matching: The challenges ahead. Proc. of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, 2421–2443. https://www.ion.org/publications/abstract.cfm?articleID=12866
  13. ↵
    1. György, R.
    (2018). 3DWarehouse San Francisco. https://3dwarehouse.sketchup.com/model/4ad4796d-8102-4bdd-9bfc-5442dee9facf/San-Francisco
    1. Xu, H.,
    2. Angrisano, A.,
    3. Gaglione, S., &
    4. Hsu, L. -T.
    (2020). Machine learning based LOS/NLOS classifier and robust estimator for GNSS shadow matching. Satellite Navigation, 1. https://doi.org/10.1186/s43020-020-00016-w
    1. Xu, H.,
    2. Zhang, G.,
    3. Xu, B., &
    4. Hsu, L. -T.
    (2018). GNSS shadow matching based on intelligent LOS/NLOS classifier. The 16th World Congress of the International Association of Institutes of Navigation (IAIN), Chiba, Japan. https://www.researchgate.net/publication/337825336_GNSS_Shadow_Matching_based_on_Intelligent_LOSNLOS_Classifier
  14. ↵
    1. Herceg, M.,
    2. Kvasnica, M.,
    3. Jones, C. N., &
    4. Morari, M.
    (2013). Multi-parametric toolbox 3.0. 2013 European Control Conference (ECC), Zurich, Switzerland. https://doi.org/10.23919/ecc.2013.6669862
  15. ↵
    1. Hetet, S.
    (2000). Signal-to-noise ratio effects on the quality of GPS observations. University of New Brunswick. http://gauss.gge.unb.ca/papers.pdf/hetet.report.pdf
  16. ↵
    1. Hofmann-Wellenhof, B.,
    2. Lichtenegger, H., &
    3. Collins, J.
    (1992). Global positioning system. Springer. https://doi.org/10.1007/978-3-7091-5126-6
  17. ↵
    1. Iland, D.,
    2. Irish, A.,
    3. Madhow, U., &
    4. Sandler, B.
    (2018). Rethinking GPS: Engineering next-gen location at Uber. Uber Blog. https://eng.uber.com/rethinking-gps
  18. ↵
    1. König, D.
    (1990). Theory of finite and infinite graphs. In D. König (Aut.), Theory of finite and infinite graphs (pp. 45–421). Birkhäuser. https://doi.org/10.1007/978-1-4684-8971-2_2
  19. ↵
    1. Kousik, S.,
    2. Holmes, P., &
    3. Vasudevan, R.
    (2019). Safe, aggressive quadrotor flight via reachability-based trajectory design. ASME 2019 Dynamic Systems and Control Conference, Park City, UT. https://doi.org/10.1115/dscc2019-9214
  20. ↵
    1. Kuusniemi, H.,
    2. Lachapelle, G., &
    3. Takala, J. H.
    (2004). Position and velocity reliability testing in degraded GPS signal environments. GPS Solutions, 8(4), 226–237. https://doi.org/10.1007/s10291-004-0113-7
  21. ↵
    1. Martens, H.,
    2. Høy, M.,
    3. Wise, B. M.,
    4. Bro, R., &
    5. Brockhoff, P. B.
    (2003). Pre-whitening of data by covariance-weighted pre-processing. Journal of Chemometrics, 17(3), 153–165. https://doi.org/10.1002/cem.780
  22. ↵
    1. Matt, J.
    (2021). Analyze N-dimensional convex polyhedra. MathWorks (MATLAB). https://www.mathworks.com/matlabcentral/fileexchange/30892-analyze-n-dimensional-convex-polyhedra?s_tid=srchtitle
  23. ↵
    1. Miura, S.,
    2. Hisaka, S., &
    3. Kamijo, S.
    (2013). GPS multipath detection and rectification using 3D maps. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, Netherlands. https://doi.org/10.1109/itsc.2013.6728447
  24. ↵
    1. Miura, S.,
    2. Hsu, L.-T.,
    3. Chen, F., &
    4. Kamijo, S.
    (2015). GPS error correction with pseudorange evaluation using three-dimensional maps. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3104–3115. https://doi.org/10.1109/tits.2015.2432122
  25. ↵
    1. Neamati, D.,
    2. Bhamidipati, S., &
    3. Gao, G.
    (2022a). Mosaic zonotope shadow matching for risk-aware autonomous localization in harsh urban environments [Manuscript submitted for publication]. Stanford University. https://stanford.box.com/shared/static/r0abx08okk5do2gbuhclhr1fuc4ayvij.pdf
  26. ↵
    1. Neamati, D.,
    2. Bhamidipati, S., &
    3. Gao, G.
    (2022b). Set-based ambiguity reduction in shadow matching with iterative GNSS pseudoranges. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO. https://www.ion.org/gnss/abstracts.cfm?paperID=11326
  27. ↵
    1. Raghuraman, V., &
    2. Koeln, J. P.
    (2022). Set operations and order reductions for constrained zonotopes. Automatica, 139. https://www.sciencedirect.com/science/article/abs/pii/S0005109822000498
  28. ↵
    1. Rojas, C. P. P.
    (2011). Soft GNSS [Source code]. Github. https://github.com/kristianpaul/SoftGNSS
  29. ↵
    1. Scott, J. K.,
    2. Raimondo, D. M.,
    3. Marseglia, G. R., &
    4. Braatz, R. D.
    (2016). Constrained zonotopes: A new tool for set-based estimation and fault detection. Automatica, 69, 126–136. https://doi.org/10.1016/j.automatica.2016.02.036
  30. ↵
    1. Shetty, A., &
    2. Gao, G. X.
    (2020). Trajectory planning under stochastic and bounded sensing uncertainties using reachability analysis. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 1637–1648. https://doi.org/10.33012/2020.17518
  31. ↵
    1. Shi, D.,
    2. Chen, T., &
    3. Shi, L.
    (2015). On set-valued Kalman filtering and its application to event-based state estimation. IEEE Transactions on Automatic Control, 60(5), 1275–1290. https://doi.org/10.1109/tac.2014.2370472
  32. ↵
    1. Shiryaev, V. I., &
    2. Podivilova, E. O.
    (2015). Set-valued estimation of linear dynamical system state when disturbance is decomposed as a system of functions. Procedia Engineering, 129, 252–258. https://doi.org/10.1016/j.proeng.2015.12.045
  33. ↵
    1. Suzuki, T.
    (2016). Integration of GNSS positioning and 3D map using particle filter. Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, 1296–1304. https://doi.org/10.33012/2016.14857
  34. ↵
    1. van Diggelen, F., &
    2. Wang, J.
    (2020). Improving urban GPS accuracy for your app. Android Developers Blog. https://android-developers.googleblog.com/2020/12/improving-urban-gps-accuracy-for-your.html
  35. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2013a). GNSS shadow matching: Improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme. NAVIGATION, 60(3), 195–207. https://doi.org/10.1002/navi.38
  36. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2013b). Urban positioning on a smartphone: Real-time shadow matching using GNSS and 3D city models. Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 1606–1619. https://www.ion.org/publications/abstract.cfm?articleID=11339
  37. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2014). Smartphone shadow matching for better cross-street GNSS positioning in urban environments. Journal of Navigation, 68(3), 411–433. https://doi.org/10.1017/s0373463314000836
  38. ↵
    1. Zhu, N.,
    2. Marais, J.,
    3. Bétaille, D., &
    4. Berbineau, M.
    (2018). GNSS position integrity in urban environments: A review of literature. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2762–2778. https://doi.org/10.1109/tits.2017.2766768
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (4)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 4
Winter 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Set-Valued Shadow Matching Using Zonotopes for 3D-Map-Aided GNSS Localization
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Set-Valued Shadow Matching Using Zonotopes for 3D-Map-Aided GNSS Localization
Sriramya Bhamidipati, Shreyas Kousik,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2022, 69 (4) navi.547; DOI: 10.33012/navi.547

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Set-Valued Shadow Matching Using Zonotopes for 3D-Map-Aided GNSS Localization
Sriramya Bhamidipati, Shreyas Kousik,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2022, 69 (4) navi.547; DOI: 10.33012/navi.547
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PRELIMINARIES OF SET REPRESENTATIONS
    • 3 PROPOSED ZSM ALGORITHM
    • 4 EXPERIMENTAL RESULTS
    • 5 CONCLUSIONS
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Commercial GNSS Radio Occultation on Aerial Platforms With Off-The-Shelf Receivers
  • Improving GNSS Positioning Using Neural-Network-Based Corrections
Show more Original Article

Similar Articles

Keywords

  • 3D-map-aided GNSS
  • constrained zonotope
  • localization
  • set intersection
  • set-valued estimate
  • shadow matching

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire