Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Optimized Position Estimation in Mobile Multipath Environments Using Machine Learning

Nesreen I. Ziedan
NAVIGATION: Journal of the Institute of Navigation June 2023, 70 (2) navi.569; DOI: https://doi.org/10.33012/navi.569
Nesreen I. Ziedan
Computer and Systems Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Barreto, G. A., &
    2. Araujo, A. F. R.
    (2004). Identification and control of dynamical systems using the self-organizing map. IEEE Transactions on Neural Networks, 15(5), 1244–1259. https://doi.org/10.1109/TNN.2004.832825
    PubMed
  2. ↵
    1. Bradbury, J.,
    2. Ziebart, M.,
    3. Cross, P.,
    4. Boulton, P., &
    5. Read, A.
    (2007). Code multipath modelling in the urban environment using large virtual reality city models: determining the local environment. The Journal of Navigation, 60(1), 95–105. https://doi.org/10.1017/S0373463307004079
  3. ↵
    1. Closas, P.,
    2. Fernandez-Prades, C., &
    3. Fernandez-Rubio, J. A.
    (2009). A Bayesian approach to multipath mitigation in GNSS receivers. IEEE Journal of Selected Topics in Signal Processing, 3(4), 695–706. https://doi.org/10.1109/JSTSP.2009.2023831
  4. ↵
    1. Garin, L., &
    2. Rousseau, J. -M.
    (1997). Enhanced strobe correlator multipath rejection for code & carrier. Proc. of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1997), Kansas City, MO, 559–568. https://www.ion.org/publications/abstract.cfm?articleID=2800
  5. ↵
    1. Garin, L.,
    2. van Diggelen, F., &
    3. Rousseau, J. -M.
    (1996). Strobe and edge correlator multipath mitigation for code. Proc. of the 9th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1996), Kansas City, MO, 657–664. https://www.ion.org/publications/abstract.cfm?articleID=2597
  6. ↵
    1. Giremus, A.,
    2. Tourneret, J. -Y., &
    3. Calmettes, V.
    (2007). A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements. IEEE Transactions on Signal Processing, 55(4), 1275–1285. https://doi.org/10.1109/TSP.2006.888895
  7. ↵
    1. Groves, P. D.,
    2. Zhong, Q.,
    3. Faragher, R., &
    4. Esteves, P.
    (2020). Combining inertially-aided extended coherent integration (supercorrelation) with 3D-mapping-aided GNSS. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2327–2346. https://doi.org/10.33012/2020.17767
  8. ↵
    1. Hsu, L. -T.,
    2. Gu, Y., &
    3. Kamijo, S.
    (2016). 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS Solutions, 20, 413–428. https://doi.org/10.1007/s10291-015-0451-7
  9. ↵
    1. Hsu, L. -T.,
    2. Jan, S. -S.,
    3. Groves, P. D., &
    4. Kubo, N.
    (2015). Multipath mitigation and NLOS detection using vector tracking in urban environments. GPS Solutions, 19, 249–262. https://doi.org/10.1007/s10291-014-0384-6
  10. ↵
    1. Hwang, P. Y., &
    2. Brown, R. G.
    (2006). RAIM-FDE revisited: a new breakthrough in availability performance with NIORAIM (novel integrity-optimized RAIM). NAVIGATION, 53(1), 41–51. https://doi.org/10.1002/j.2161-4296.2006.tb00370.x
  11. ↵
    1. Jiang, Z.,
    2. Groves, P. D.,
    3. Ochieng, W. Y.,
    4. Feng, S.,
    5. Milner, C. D., &
    6. Mattos, P. G.
    (2011). Multi-constellation GNSS multipath mitigation using consistency checking. Proc. of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, 3889–3902. https://www.ion.org/publications/abstract.cfm?articleID=9944
  12. ↵
    1. Kohonen, T.
    (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480. https://doi.org/10.1109/5.58325
    CrossRefWeb of Science
  13. ↵
    1. Kohonen, T.
    (2001). Self-organizing maps (3rd ed.). Springer-Verlag.
  14. ↵
    1. Lau, L., &
    2. Cross, P.
    (2007). Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling. Journal of Geodesy, 81, 713–732. https://doi.org/10.1007/s00190-007-0139-z
  15. ↵
    1. Lesouple, J.,
    2. Robert, T.,
    3. Sahmoudi, M.,
    4. Tourneret, J. -Y., &
    5. Vigneau, W.
    (2019). Multipath mitigation for GNSS positioning in an urban environment using sparse estimation. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1316–1328. https://doi.org/10.1109/TITS.2018.2848461
  16. ↵
    1. Li, D.,
    2. Zhang, P.,
    3. Zhao, J.,
    4. Cheng, J., &
    5. Zhao, H.
    (2019). MP mitigation in GNSS positioning by GRU NNs and adaptive wavelet filtering. IET Communications, 13(17), 2756–2766. https://doi.org/10.1049/iet-com.2018.5792
  17. ↵
    1. McGraw, G. A.,
    2. Groves, P. D., &
    3. Ashman, B. W.
    (2020). Robust positioning in the presence of multipath and NLOS GNSS signals. In Y. T. J. Morton, F. van Diggelen, J. J. Spilker Jr., B. W. Parkinson, S. Lo, & G. Gao (Eds.), Position, navigation, and timing technologies in the 21st century: integrated satellite navigation, sensor systems, and civil applications (Vol. 1, pp. 551–589). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119458449.ch22
  18. ↵
    1. Miura, S.,
    2. Hisaka, S., &
    3. Kamijo, S.
    (2013). GPS multipath detection and rectification using 3D maps. 16th International IEEE Conference on Intelligent Transportation Systems, The Hague, Netherlands. https://doi.org/10.1109/ITSC.2013.6728447
  19. ↵
    1. Orolia
    . (2020). Skydel software-defined GNSS simulator user manual. http://manuals.spectracom.com/skydel
  20. ↵
    1. Papadimitriou, S.,
    2. Mavroudi, S.,
    3. Vladutu, L., &
    4. Bezerianos, A.
    (2001). Ischemia detection with a self-organizing map supplemented by supervised learning. IEEE Transactions on Neural Networks, 12(3), 503–515. https://doi.org/10.1109/72.925554
    PubMed
  21. ↵
    1. Parkinson, B. W., &
    2. Axelrad, P.
    (1988). Autonomous GPS integrity monitoring using the pseudorange residual. NAVIGATION, 35(2), 255–274. https://doi.org/10.1002/j.2161-4296.1988.tb00955.x
  22. ↵
    1. Polzlbauer, G.,
    2. Lidy, T., &
    3. Rauber, A.
    (2008). Decision manifolds--a supervised learning algorithm based on self-organization. IEEE Transactions on Neural Networks, 19(9), 1518–1530. https://doi.org/10.1109/TNN.2008.2000449
    PubMed
  23. ↵
    1. Smolyakov, I.,
    2. Rezaee, M., &
    3. Langley, R. B.
    (2020). Resilient multipath prediction and detection architecture for low-cost navigation in challenging urban areas. NAVIGATION, 67(2), 397–409. https://doi.org/10.1002/navi.362
  24. ↵
    1. Song, T.,
    2. Jamshidi, M. M.,
    3. Lee, R. R., &
    4. Huang, M.
    (2007). A modified probabilistic neural network for partial volume segmentation in brain MR image. IEEE Transactions on Neural Networks, 18(5), 1424–1432. https://doi.org/10.1109/TNN.2007.891635
    PubMed
  25. ↵
    1. Steingass, A.,
    2. Krach, B., &
    3. Crisci, M.
    (2017). Robustness versus accuracy: multipath effects on land mobile satellite navigation. IET Radar, Sonar & Navigation, 11(3), 520–527. https://doi.org/10.1049/iet-rsn.2016.0361
  26. ↵
    1. van Nee, R. D. J.
    (1992). The multipath estimating delay lock loop. IEEE Second International Symposium on Spread Spectrum Techniques and Applications (ISSTA), Yokohama, Japan. https://doi.org/10.1109/ISSSTA.1992.665623
  27. ↵
    1. Vesanto, J., &
    2. Alhoniemi, E.
    (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586–600. https://doi.org/10.1109/72.846731
    CrossRefPubMedWeb of Science
  28. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2013). GNSS shadow matching: improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme. NAVIGATION, 60(3), 195–207. https://doi.org/10.1002/navi.38
  29. ↵
    1. Wen, W.,
    2. Zhang, G., &
    3. Hsu, L. -T.
    (2019). Correcting NLOS by 3D lidar and building height to improve GNSS single point positioning. NAVIGATION, 66(4), 705–718. https://doi.org/10.1002/navi.335
  30. ↵
    1. Xu, B.,
    2. Jia, Q., &
    3. Hsu, L. -T.
    (2020). Vector tracking loop-based GNSS NLOS detection and correction: algorithm design and performance analysis. IEEE Transactions on Instrumentation and Measurement, 69(7), 4604–4619. https://doi.org/10.1109/TIM.2019.2950578
  31. ↵
    1. Yozevitch, R., &
    2. ben-Moshe, B.
    (2015). A robust shadow matching algorithm for GNSS positioning. NAVIGATION, 62(2), 95–109. https://doi.org/10.1002/navi.85
  32. ↵
    1. Yu, J. Y.
    (1998). Fault detection and exclusion used in a Global Positioning System GPS Receiver (U.S. Patent No. 5841399A).
  33. ↵
    1. Zhang, M., &
    2. Zhang, J.
    (2009). A fast satellite selection algorithm: beyond four satellites. IEEE Journal of Selected Topics in Signal Processing, 3(5), 740–747. https://doi.org/10.1109/JSTSP.2009.2028381
  34. ↵
    1. Ziedan, N. I.
    (2006). GNSS receivers for weak signals. Artech House.
  35. ↵
    1. Ziedan, N. I.
    (2011). Multi-frequency combined processing for direct and multipath signals tracking based on particle filtering. Proc. of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, 1090–1101. https://www.ion.org/publications/abstract.cfm?articleID=9666
  36. ↵
    1. Ziedan, N. I.
    (2014). Modeling and analysis of composite multipath characteristics for a Bayesian-based dense multipath mitigation algorithm. Proc. of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, 2754–2766. https://www.ion.org/publications/abstract.cfm?articleID=12528
  37. ↵
    1. Ziedan, N. I.
    (2017). Urban positioning accuracy enhancement utilizing 3D buildings model and accelerated ray tracing algorithm. Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 3253–3268. https://doi.org/10.33012/2017.15366
  38. ↵
    1. Ziedan, N. I.
    (2018). Improved multipath and NLOS signals identification in urban environments. NAVIGATION, 65(3), 449–462. https://doi.org/10.1002/navi.257
  39. ↵
    1. Ziedan, N. I.
    (2019). Enhancing GNSS mobile positioning in urban environments through utilization of multipath prediction and consistency analysis. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3469–3483. https://doi.org/10.33012/2019.16929
  40. ↵
    1. Ziedan, N. I.
    (2020). Integrating GNSS signal tracking and map-matching for reflected and diffracted signals mitigation in urban environments. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 3012–3026. https://doi.org/10.33012/2020.17666
  41. ↵
    1. Ziedan, N. I.
    (2022). A novel model for multipath delay estimation and Its application to a modified optimized position estimation algorithm. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 2138–2152. https://doi.org/10.33012/2022.18334
  42. ↵
    1. Ziedan, N. I., &
    2. Garrison, J. L.
    (2008). System and method for acquiring weak signals in a global positioning satellite system (US Patent No. 7,358,895). https://patents.google.com/patent/US20070046534A1/en
  43. ↵
    1. Ziedan, N. I., &
    2. Garrison, J. L.
    (2009). Method and apparatus for detecting and processing Global Positioning System (GPS) signals [US Patent No. 7,545,894]. https://patents.google.com/patent/US7545894B2/en?inventor=Nesreen+Ziedan
  44. ↵
    1. Ziedan, N. I., &
    2. Garrison, J. L.
    (2011). System and method for high dynamic acquisition and tracking of signals from the Global Positioning System [US Patent No. 8,031,112]. https://patents.google.com/patent/US20060115022A1/en
Next
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 2
Summer 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Optimized Position Estimation in Mobile Multipath Environments Using Machine Learning
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Optimized Position Estimation in Mobile Multipath Environments Using Machine Learning
Nesreen I. Ziedan
NAVIGATION: Journal of the Institute of Navigation Jun 2023, 70 (2) navi.569; DOI: 10.33012/navi.569

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Optimized Position Estimation in Mobile Multipath Environments Using Machine Learning
Nesreen I. Ziedan
NAVIGATION: Journal of the Institute of Navigation Jun 2023, 70 (2) navi.569; DOI: 10.33012/navi.569
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 OPTIMIZED POSITION ESTIMATION (OPE)
    • 3 INTELLIGENT SIGNAL STATUS ESTIMATION (ISE)
    • 4 EXPERIMENTS AND RESULTS
    • 5 SUMMARY AND CONCLUSION
    • HOW TO CITE
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Accurate Covariance Estimation for Pose Data From Iterative Closest Point Algorithm
  • Multi-Parameter Adaptive Notch Filter (MPANF) for Enhanced Interference Mitigation
Show more Original Article

Similar Articles

Keywords

  • machine learning
  • multipath
  • self-organizing map
  • tracking
  • urban area

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire