Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Real-Time Ionosphere Prediction Based on IGS Rapid Products Using Long Short-Term Memory Deep Learning

Jianping Chen and Yang Gao
NAVIGATION: Journal of the Institute of Navigation June 2023, 70 (2) navi.581; DOI: https://doi.org/10.33012/navi.581
Jianping Chen
Department of Geomatics Engineering, University of Calgary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Yang Gao
Department of Geomatics Engineering, University of Calgary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Aggrey, J., &
    2. Bisnath, S.
    (2019). Improving GNSS PPP Convergence: The case of atmospheric-constrained, multi-GNSS PPP-AR. Sensors, 587. https://doi.org/10.3390/s19030587
    1. Boulch, A.,
    2. Cherrier, N., &
    3. Castaings, T.
    (2018). Ionospheric activity prediction using convolutional recurrent neural networks. IEEE transactions on Big Data. https://doi.org/10.48550/arXiv.1810.13273
  2. ↵
    1. Chung, J.,
    2. Gulcehre, C.,
    3. Cho, K., &
    4. Bengio, Y.
    (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. NIPS 2014 Deep Learning and Representation Learning Workshop. https://doi.org/10.48550/arXiv:1412.3555
  3. ↵
    1. Fang, W.,
    2. Jiang, J.,
    3. Liu, S.,
    4. Gong, Y.,
    5. Tao, Y.,
    6. Tang, Y.,
    7. Yan, P.,
    8. Luo, H., &
    9. Liu, J.
    (2020). A LSTM algorithm estimating pseudo measurements for aiding INS during GNSS signal outages. Remote Sensing, 256. https://doi.org/10.3390/rs12020256
  4. ↵
    1. Ferreira, A. A.,
    2. Borges, R. A.,
    3. Paparini, C.,
    4. Ciraolo, L., &
    5. Radicella, S. M.
    (2017). Short-term estimation of GNSS TEC using a neural network model in Brazil. Advances in Space Research, 1765–1776. https://doi.org/10.1016/j.asr.2017.06.001
  5. ↵
    1. Habarulema, J. B.,
    2. McKinnell, L.-A., &
    3. Opperman, D. L.
    (2011). Regional GPS TEC modeling; attempted spatial and temporal extrapolation of TEC using neural networks. Journal of Geophysical Research. https://doi.org/10.1029/2010JA016269
  6. ↵
    1. Han, Y.,
    2. Wang, L.,
    3. Fu, W.,
    4. Zhou, H.,
    5. Li, T., &
    6. Chen, R.
    (2022). Machine learning-based short-term GPS TEC forcasting during high solar activity and magnetic storm periods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 115–126. https://doi.org/10.1109/JSTARS.2021.3132049
  7. ↵
    1. Haykin, S.
    (2009). Neural Networks and Learning Machines. 3rd Edition. Pearson.
  8. ↵
    1. Hochreiter, S., &
    2. Schmidhuber, J.
    (1997). Long short-term memory. Neural Computation, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  9. ↵
    IGS: IGS State Space Representation (SSR) Format Version 1.00. (2020). Retrieved March 3, 2023, from https://files.igs.org/pub/data/format/igs_ssr_v1.pdf
  10. ↵
    1. Iluore, K., &
    2. Lu, J.
    (2022). Long short-term memory and gated recurrent neural networks to predict the ionospheric vertical total electron content. Advances in Space Research, 652–665. https://doi.org/10.1016/j.asr.2022.04.066
  11. ↵
    1. Karevan, Z., &
    2. Suykens, J. A.
    (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks, 1–9. https://doi.org/10.1016/j.neunet.2019.12.030
  12. ↵
    1. Kaselimi, M.,
    2. Doulamis, N.,
    3. Doulamis, A., &
    4. Delikaraoglou, D.
    (2020). A sequence-to-sequence temporal convolutional neural network for ionosphere prediction using GNSS observations. 2020 XXIV ISPRS Congress, 813–820. Nice, France. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-813-2020
  13. ↵
    1. Leandro, R. F., &
    2. Santos, M. C.
    (2007). A neural network approach for regional vertical total electron content modelling. Studia Geophysica et Geodaetica, 279–292. https://doi.org/10.1007/s11200-007-0015-6
  14. ↵
    1. Liu, L.,
    2. Zou, S.,
    3. Yao, Y., &
    4. Wang, Z.
    (2020). Forcasting global ionospheric TEC using deep learning Approach. Space Weather. https://doi.org/10.1029/2020SW002501
  15. ↵
    1. Liu, Q.,
    2. Hernández-Pajares, M.,
    3. Yang, H.,
    4. Monte-Moreno, E.,
    5. Roma-Dollase, D.,
    6. García-Rigo, A.,
    7. Li, Z.,
    8. Wang, L.,
    9. Laurichesse, D.,
    10. Blot, A.,
    11. Zhao, Q.,
    12. Zhang, Q.,
    13. Hauschild, A.,
    14. Agrotis, L.,
    15. Schmitz, M.,
    16. Wübbena, G.,
    17. Stürze, A.,
    18. Krankowski, A.,
    19. Schaer, S.,
    20. Feltens, J.,
    21. Komjathy, A., &
    22. Ghoddousi-Fard, R.
    (2021). The cooperative IGS RT-GIMs: a reliable estimation of the global ionospheric electron content distribution in real time. Earth System Science Data, 4567–4582. https://doi.org/10.5194/essd-13-4567-2021
  16. ↵
    1. Mallika, I. L.,
    2. Ratnam, D.,
    3. Ostuka, Y., &
    4. Sivavaraprasad, G.
    (2019). Implementation of hybrid ionospheric TEC forecasting algorithm using PCA-NN method. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 371–281. https://doi.org/10.1109/JSTARS.2018.2877445
  17. ↵
    1. Mallika, L.,
    2. Ratnam, D. V.,
    3. Raman, S., &
    4. Sivavaraprasad, G.
    (2020). Machine learning algorithm to forecast ionospheric time delays using global navigation satellite system observations. Acta Astronautica, 221–231. https://doi.org/10.1016/j.actaastro.2020.04.048
  18. ↵
    1. Mckinnell, L.-A., &
    2. Poole, W. V.
    (2004). Neural network-based ionospheric modelling over the South African region. South African Journal of Science. https://journals.co.za/doi/pdf/10.10520/EJC96195
  19. ↵
    1. Nie, Z.,
    2. Yang, H.,
    3. Zhou, P.,
    4. Gao, Y., &
    5. Wang, Z.
    (2019). Quality assessment of CNES real-time ionospheric products. GPS Solutions. https://doi.org/10.1007/s10291-018-0802-2
  20. ↵
    1. Perez, R. O.
    (2018). Using tensorFlow-based neural network to estimate GNSS signal frequency ionospheric delay (IONONet). Advances in Space Research, 1607–1618. https://doi.org/10.1016/j.asr.2018.11.011
  21. ↵
    1. Products
    . (2020). Retrieved from INTERNATIONAL GNSS SERVICE: https://igs.org/products/
  22. ↵
    RTCM-SC: Proposal of new RTCM SSR messages, SSR Stage 2: Vertical TEC (VTEC) for RTCM Standard 10403.2 Differential GNSS Services - Version 3. (2014). RTCM Special Committee, 104.
  23. ↵
    1. Schaer, S.
    (1997). How to use CODE’s global ionosphere maps. Astronomical Institute, University of Berne.
  24. ↵
    1. Schaer, S., &
    2. Gurtner, W.
    (1998). IONEX: The IONosphere Map EXchange. Proc. of the IGS AC Workshop. Darmstadt, Germany.
    1. Sorkhabi, O. M.
    (2021). Deep learning of total electron content. SN Appl. Sci., 685. https://doi.org/10.1007/s42452-021-04674-6
  25. ↵
    1. Sun, W.,
    2. Xu, L.,
    3. Huang, X.,
    4. Zhang, W.,
    5. Yuan, T.,
    6. Chen, Z., &
    7. Yan, Y.
    (2017). Forecasting of ionospheric vertical total electron content (TEC) using LSTM networks. Proc. of the 2017 International Conference on Machine Learning and Cybernetics, 340–344. Ningbo, China. https://doi.org/10.1109/ICMLC.2017.8108945
  26. ↵
    1. Tang, R.,
    2. Zeng, F.,
    3. Chen, Z.,
    4. Wang, J.-S.,
    5. Huang, C.-M., &
    6. Wu, Z.
    (2020). The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq. Atmosphere. https://doi.org/10.3390/atmos11040316
  27. ↵
    1. Ulukavak, M.
    (2021). Deep learning for ionospheric TEC forcasting at mid-latitude stations in Turkey. Acta Geophysica, 589–606.
  28. ↵
    1. Uwamahoro, J. C.,
    2. Giday, N. M.,
    3. Habarulema, J. B.,
    4. Katamzi-Joseph, Z. T., &
    5. Seemala, G. K.
    (2018). Reconstruction of storm-time total electron content using ionospheric tomography and artificial neural networks: A comparative study over the African Region. Radio Science, 1328–1345. https://doi.org/10.1029/2017RS006499
  29. ↵
    1. Xia, G.,
    2. Zhang, F.,
    3. Wang, C., &
    4. Zhou, C.
    (2021). ED-ConvLSTM: A novel global ionospheric total electron content medium-term forcast model. Space Weather. https://doi.org/10.1029/2021SW002959
    1. Xiang, Y.
    (2018). Carrier Phase-Based Ionospheric Modeling and Augmentation in Uncombined Precise Point Positioning. Calgary: University of Calgary Thesis.
  30. ↵
    1. Xiong, P.,
    2. Zhai, D.,
    3. Long, C.,
    4. Zhou, H.,
    5. Zhang, X., &
    6. Shen, X.
    (2021). Long short-term memory neural network for ionospheric total electron content forcasting over China. Space Weather. https://doi.org/10.1029/2020SW002706
    1. Zhang, Q., &
    2. Zhao, Q.
    (2019). Analysis of the data processing strategies of spherical harmonic expansion model on global ionosphere mapping for moderate solar activity. Advances in Space Research, 1214–1226. https://doi.org/10.1016/j.asr.2018.10.031
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 2
Summer 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Real-Time Ionosphere Prediction Based on IGS Rapid Products Using Long Short-Term Memory Deep Learning
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Real-Time Ionosphere Prediction Based on IGS Rapid Products Using Long Short-Term Memory Deep Learning
Jianping Chen, Yang Gao
NAVIGATION: Journal of the Institute of Navigation Jun 2023, 70 (2) navi.581; DOI: 10.33012/navi.581

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Real-Time Ionosphere Prediction Based on IGS Rapid Products Using Long Short-Term Memory Deep Learning
Jianping Chen, Yang Gao
NAVIGATION: Journal of the Institute of Navigation Jun 2023, 70 (2) navi.581; DOI: 10.33012/navi.581
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 METHODOLOGY
    • 3 EXPERIMENTS AND RESULTS
    • 4 EVALUATION OF PROPOSED IONOSPHERE MODEL IN SINGLE-FREQUENCY STANDARD POINT POSITIONING (SPP)
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Keywords

  • deep learning
  • Ionospheric prediction
  • LSTM
  • neural network

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire