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O R I G I N A L  A R T I C L E

Performance-Based GNSS Satellite Selection: 
A Linear Matrix Inequality (LMI) Approach 

Jyh-Ching Juang

1  INTRODUCTION 

In the multi-GNSS (global navigation satellite system) era, the number of navi-
gation satellites from GPS, GLONASS, Galileo, BDS, QZSS, IRNSS, and so forth is 
more than one hundred (Kaplan & Hegarty, 2017; Morton et al., 2020). Yet, if all 
visible satellites are used in the navigation processing, the demands on the compu-
tational load and power consumption are high while improvement on performance 
is marginal. Thus, in practice, it is desired to investigate the issue of GNSS satellite 
selection with the aim of selecting a subset of satellites for navigation processing 
with little degradation on performance. The paper aims to provide a general formu-
lation of the performance-based satellite selection problem and propose a numeri-
cally feasible method for the selection of satellites. 

Many satellite selection methods have been investigated in the past. It is known 
that high elevation satellites are less susceptible to errors due to atmosphere and 
multipath, one may thus rank the satellites in terms of their elevations and pick 
some high elevation satellites for navigation. In contrast, the geometric distri-
bution of satellites is another important factor to be considered in affecting the 
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Abstract 
In the multi-GNSS era, the observable satellites are more than needed and the 
benefit of processing more than enough satellites is marginal. It is thus desired 
to select a subset of satellites so that the receiver operation complexity and nav-
igation performance can be balanced. In the paper, performance requirements 
in navigation accuracy and integrity are represented in terms of a performance 
index and the performance-based satellite selection is to determine the satel-
lite combination to minimize the performance index. A linear matrix inequal-
ity (LMI) relaxation approach is developed to solve the problem and render 
candidates of satellites. The proposed approach quantifies the significance of 
each satellite on the resulting performance metric and, more importantly, pro-
vides a lower bound in satellite selection for performance-based navigation. 
The generalizations of the proposed approach in multi-epoch satellite selec-
tion is also discussed. Examples are provided to illustrate the effectiveness of 
the proposed approach. 
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navigation performance. As the navigation error is typically expressed as a product 
of the dilution of precision and user equivalent range error (Parkinson, 1996), the 
geometric dilution of precision (GDOP) or its variations such as the position dilu-
tion of precision is often employed as a criterion in satellite selection. Indeed, as 
the GDOP serves as an amplification factor in relating ranging error to naviga-
tion error, based on the GDOP consideration, some low elevation satellites may 
be included to enhance the geometric strength and numerical condition in navi-
gation processing. The GDOP is known to be inversely proportional to the volume 
of the tetrahedron formed by the ends of unit user-to-satellite vectors (Hsu, 1994; 
Yarlagadda et al., 2000). Consequently, the subset of satellites can be determined 
by maximizing the tetrahedron/polyhedron volume (Kihara & Okada, 1984) or the 
convex hull (Balanco-Delgado & Nunes, 2010a) formed by the observation vectors. 
Alternatively, the concept of the optimal geometric distribution of satellites can be 
adopted to shed light on the selection of satellites (Zhang & Zhang, 2009). One can 
also examine the angles of pair-wise observation vectors to scrutinize the satellites 
for removal (Park & How, 2001; Phatak, 2001; Liu et al., 2009; Wei et al., 2012). 
Some variations of the above concepts have been discussed by Roongpiboonsopit 
and Karim (2009) and Swaszek et al. (2017). 

The selection approaches can be categorized as either combinatorial or iterative. 
The brute force method is to perform an exhaustive search to examine every com-
bination. Such a method leads to the optimal configuration at the expense of search 
time. To avoid the complexity in the combinatorial search, many heuristic and iter-
ative procedures have been proposed. Essentially, there are two types of iterative 
procedures in GNSS satellite selection: one is the constructive paradigm and the 
other is the reductive paradigm. The former attempts to include some satellites to 
the selection list that enhances the performance while the latter aims to remove 
some satellites from a candidate list with a graceful degradation of performance. 
In the recursive approach, the reductive paradigm is often preferred since the 
all-in-view covariance matrix is typically nonsingular and, as a result, numerical 
stability can be better maintained. Among these reductive schemes, the so-called 
greedy algorithm which performs removal one-at-an-iteration is often used as the 
matrix inversion can be simplified through the Schur complement technique. In 
comparison, the inclusive paradigm often starts with a four-satellite configuration 
that corresponds to the maximum volume.

More recently, as satellites from multiple constellations may be brought to 
bear and the error characteristics of different constellations and satellites may 
not be similar, a weighted GDOP is adopted as a criterion in satellite selection 
(Balanco-Delgado & Nunes, 2010b; Nie et al. 2016; Sairo et al., 2003). As satellite 
selection is also deemed important in integrity monitoring, criteria such as the ver-
tical protection level, horizontal protection level, or their weighted combination 
have been investigated by Walter et al. (2016) and Meng et al. (2015). Finally, some 
evolutionary learning methods have been proposed for satellite selection (Simon & 
El-Sherief, 1995; Xia et al., 2020).

In the paper, the GNSS satellite selection problem is tackled through a rigorous 
formulation and a numerically feasible approach. The main contributions are

1.	 Navigation performance is often measured in terms of accuracy, integrity, 
continuity of service, and availability (Kaplan & Hegarty, 2017). It is shown 
that navigation accuracy in terms of mean squared error and integrity in 
terms of an upper bound on the protection level can be characterized by a 
performance metric that is affected by satellite distribution and measurement 
error characteristics, leading to a general satellite selection formulation.
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2.	 The performance-based satellite selection problem is formulated as an 
optimization problem in which a 0/1 vector that dictates the selection of 
satellites is to be determined.

3.	 A semi-definite relaxation or linear matrix inequality (LMI) relaxation 
approach is developed to render a computationally feasible procedure. More 
exactly, the search space is relaxed from a 0/1 integer vector to a bounded 
real vector. As a result, the satellite selection problem is formulated as an 
optimization problem with a linear objective function and subject to LMI 
constraints. The optimization problem becomes a semi-definite program 
(Boyd et al., 1994; Vandenberghe & Boyd, 1996) and can be solved efficiently 
as the problem is of polynomial complexity and methods such as the interior 
point method (Nesterov & Nemirovsky, 1994; Wright, 1997) can be used.

4.	 Solving the semi-definite programming problem results in a real score vector 
that represents the significance of each satellite on the performance metric. 
This score vector reveals some insights for the selection of satellites. 

5.	 In addition to providing candidates for the selection of the subset of satellites, 
the LMI relaxation approach results in a lower bound on the objective function. 
Such a low bound which appears to be new in the satellite selection literature 
characterizes the achievable performance for a given number of satellites 
in theory. In contrast, existing methods render a set of satellite candidates 
without knowing the discrepancy between the achievable and achieved 
performance. Alternatively, the LMI-based method can be formulated to 
reveal the information on the minimal number of satellites that are needed to 
provide a level of assured navigation performance. 

6.	 It is shown that the proposed relaxation approach can be generalized to 
multi-epoch satellite selection to balance the navigation performance and 
implementation complexity. The latter addresses not only the number of 
satellites but also the frequency of switching from one epoch to another. It is 
shown that the LMI-based approach can be generalized to take multi-epoch 
observations into accounts so that the issue of channel re-allocations in the 
receiver can be addressed. 

The remaining of the paper is organized as follows. In Section 2, the GNSS sat-
ellite selection problem is formulated as an optimization problem which consid-
ers the effects of satellite distributions, measurement error characteristics, and 
the desired performance aims. In Section 3, an LMI-based approach is developed 
to address the optimization problem. The properties of the proposed method are 
discussed. A generation of the satellite selection approach to account for obser-
vations at multiple epochs is then presented. Simulation examples are provided 
in Section 4 to illustrate the design approaches. In Section 5, concluding remarks 
are given.

2  GNSS SATELLITE SELECTION: PROBLEM 
FORMULATION

In this section, the GNSS satellite selection problem is discussed. The perfor-
mance metric on navigation performance about accuracy and integrity is first 
described. The satellite selection problem is then formulated in which the effect of 
the selection process on the performance metric is depicted. 
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2.1  Performance Metric

Let m be the number of GNSS constellations under consideration and n be the 
number of observable satellites. The linearized multi-GNSS positioning equations 
for the determination of position and time can be formulated as follows (Kaplan & 
Hegarty, 2017; Misra & Enge, 2006)

	 y H x L b v= + + � (1)

where y is the pseudo-range measurement vector of dimension n, x is the position 
vector of dimension 3, b is the receiver clock bias vector of dimension m, v is the 
measurement noise vector of dimension n, H is the n × 3 observation matrix, and 
L is the n × m clock association matrix. The i-th row of the observation matrix H is 
the unit-length vector from the i-th satellite to the receiver. In contrast, the i-th row 
of the clock association matrix L is the unit vector of dimension m in which the 
j-th entry is 1 if this measurement is associated with the j-th constellation. Suppose 
that the measurement noise v is of zero mean with covariance matrix R, then the 
minimal variance estimate of the unknown position and clock bias vectors for the 
linear model Equation (1) is given by (Mendel, 2008)

	 T 1 1 T 1
ˆ

= ( )ˆ
− − −

 
 
  

x
G R G G R y

b
� (2)

where G = [H L] is the design matrix. Define the position estimation error as ˆ−x x and 
clock estimation error as ˆ−b b, then by substituting Equation (1) into Equation (2), the 

estimation error is given by ( ) 1T 1 T 1
ˆ
ˆ

−− −
 −

= − 
−  

x x
G R G G R v

b b
 and the error covariance 

matrix becomes ( )
T

1T 1
ˆ ˆ

E ˆ ˆ
−−

    − −  =    − −        

x x x x
G R G

b b b b
 where E{˚} stands for the expec-

tation operator (Mendel, 2008). Consequently, the mean squared error is given by:

	 { } ( ) 1T T T 1ˆ ˆˆ ˆE ( ) ( ) ( ) ( ) trace
−− − − + − − =  

 
x x x x b b b b G R G � (3)

where trace stands for the trace of a matrix which is the summation of all diagonal 
elements of the matrix. 

In the paper, the following performance metric which is a weighted combination 
of the estimation errors is considered.

	 { }T T
x c

ˆ ˆˆ ˆJ E ( ) ( ) ( ) ( )= − − + − −x x Q x x b b Q b b � (4)

In this performance metric Equation (4), Qx and Qc are positive semi-definite matri-
ces which are selected to reflect the performance requirements on different compo-
nents of the position estimation error and clock estimation error. Let Cx and Cc  be 
factors that are obtained from Qx and Qc, respectively, through Cholesky factorization 
or singular value decomposition such that Q C Cx = x x

T  and Q C Cc = c c
T  (Strang, 2016). 

Then, it can be shown that the performance metric in Equation (4) can be expressed as:

	 J � � ��
�
�

�
�
�� �

trace T TP G R G P1 1
� (5)
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where P
C

C
�
�

�
�
�

�

�
�
�

x

c

0
0

. Further, let W be a matrix that satisfies R−1 = W TW, the 

performance metric in Equation (5) becomes:

	 J � � ��
�
�

�
�
�

�
trace T T TP G W WG P

1
� (6)

In the above performance metric, the matrix W is governed by the noise covari-
ance matrix, the matrix G is related to the distribution of satellites, and P is used to 
reflect the performance requirement.

It is remarked that in the special case when both P and W are identity matri-
ces, the performance metric Equation (6) is indeed the square of the GDOP. 
The use of P and W allows a more flexible design formulation for perfor-
mance assessment. For example, by setting P as the identity matrix, i.e., P = I, 
and adjusting W to represent measurement errors, the performance metric 
Equation (4) or Equation (6) is the same as the mean squared error Equation (3).  
Methods for the selection of W or R can be found in Misra and Enge (2006), 
Tiberius (1999), and Walter and Enge (1995). For simplicity, it is hereaf-
ter assumed that covariance matrix R is a positive definite diagonal matrix as  

R �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� � �
�

�

�

�

�

1
2

2
2

2

2
1

0 0
0

0

�

� �

n

i i

n
 diag  for some variances σ i

2. Thus, the matrix W 

is given as W � � �
�

diag � i i

n�1
1
. In contrast, the matrix P is generally at the disposal 

of the user in quantifying the desired navigation performance. For example, if the 
timing accuracy is to be assessed, then one can set Cx = 0 and Cc = I. On the other 
hand, if the position estimation error is of interest and the position vector is coor-
dinated in the east-north-up (ENU) frame, then by setting Cc as the zero matrix, the 
performance metric becomes:

	 trace traceT T T
e en eu

en n

eu

P G W WG P C� ��
�
�

�
�
� �

�1

2 2 2

2 2 2
x
T

nu

� � �

� � �

� 22 2 2� �nu

x

u

�

�

�
�
�

�

�

�
�
�

�

�

�
�
��

�

�

�
�
��

C � (7)

Where σe
2, σn

2, and σ u
2  are the variances along the east, north, and up directions, 

respectively. The variables σen
2 , σeu

2 , and σnu
2  in Equation (7) are cross-covariance 

terms. Clearly, one can then specify the matrix Cx for the desired positioning accu-
racy in the ENU frame.

 In the sequel, we will adopt concepts in matrix inequality to bound the per-
formance matrix. It can be shown that the performance metric Equation (6) is 
bounded as follows:

 	 trace trace T T T( )M P G W WG P� � ��
�
�

�
�
�

�1
� (8)

for any matrix M that satisfies:

	 M P G W WG P

T T T� ��1
� (9)
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The notation   is interpreted in the sense of matrix definiteness. That 
is, Equation (9) implies that the matrix M−P T(G TW TWG)−1P is a positive 
semi-definite matrix (Strang, 2016). In Equation (9), the matrix M is unstructured 
and trace(M) is an upper bound on the performance metric. In the optimization 
problem or satellite selection, the matrix M serves as a parameter matrix in the 
search space. In GNSS RAIM (receiver autonomous integrity monitoring), a per-
formance metric is given by (Walter et al., 2016):

	 J HPL VPLRAIM � �
1
4

2 2( ) ( ) � (10)

where HPL and VPL are horizontal protection level and vertical protection level, 
respectively. The VPL is related to σ u

2  through VPL = Kvσu where Kv depends on 
the integrity risk. Also, the HPL which is the radius of a circle in the horizon-
tal plane that bounds the navigation solutions can be computed as HPL = Khλ 
where Kh is a function of the allocated integrity risk and λ is the semimajor axis 

of the error ellipse which is indeed the minimal λ such that �
� �

� �
2

2 2

2 2I  e en

en n

�

�
�
�

�

�
�
�

.  

From Equation (7), this implies that the integrity requirement can be achieved 

by finding M of the form M �

�

�

�
�
�

�

�

�
�
�

m
m

m

1

1

3

0 0
0 0
0 0

 for some m1 and m3 such that 

trace(M) ≥ JRAIM with Cx

h

h

v

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�

2 2
0 0

0
2 2

0

0 0

.  

In summary, the performance metric Equation (6) is a general term in representing 
the performance in satellite navigation. It characterizes the navigation accuracy 
and, through the argument of inequality, it also governs the navigation integrity. 
The matrix P and, to some extent, the matrix W can be specified to reflect the per-
formance on position error, clock error, and integrity. 

2.2  Satellite Selection Problem

In the multi-GNSS era, there are abundant satellites that can be observed. In 
practice, if all satellites in view are used, the receiver is subject to a high com-
putational load and power consumption. Thus, it is desired to have a satel-
lite selection scheme to process only a subset of the observable satellites. Let 
k be the number of satellites to be selected from n satellites in view. Define 
S = = diag , = 0 or 1, trace( ) =

=
s s ss s ki i 1

n
i� �� �  as the set of diagonals, 0/1 integer  

n × n matrices with k elements of 1. A matrix s in the set S can be used to charac-
terize the selection scheme through 

	 s
i

ii �
1
0
, -
, -

th satellite is selected
th satellite is not seleected

�
�
�

��
� (11)
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A selection matrix s in S is called an admissible matrix. The selection can also 
be characterized in terms of a set that contains the indices of the satellites that are 
selected. In this case, the selection set s is defined as s = {i|si = 1}. Further, one can 
define s  as the complement of s, that is, s � �� �i si 0 . Under the selection S or s, 
the part of the measurement Equation (1) that is processed becomes Qy = QHx + 
QLb + Qv where Q is a k × n matrix that contains non-zero rows of S. Note that the 
covariance matrix of the equivalent noise Qv is QRQT and the resulting minimum 
variance estimate is given by:

	 ( ) 1s T T T 1 T T T 1

s

ˆ
( ) ( )ˆ

−− −
 

= 
  

x
G Q QRQ QG G Q QRQ Q y

b
� (12)

The matrices QT(QRQT)−1Q and W TSW are identical because both are diago-
nal matrix and their (i,i)-th elements are � i

�2  if si is 1 and become 0 if si is 0. This 
implies that the covariance matrix of the estimation error (GTQT(QRQT)−1QG)−1 
can be expressed as (GTWTSWG)−1 and, consequently, the performance metric 
under satellite selection becomes:

{ } −= − − + − − =T T T T T 1
S x c

ˆ ˆˆ ˆE ( ) ( ) ( ) ( ) trace( ( ) )J x x Q x x b b Q b b P G W SWG P � (13)

The above equation exhibits the relationship between the selection matrix s and 
the performance metric. Clearly, if all satellites are used, then Js in Equation (13) is 
the same as J in Equation (6). The satellite selection problem thus aims to determine 
the selection matrix s so that the performance metric Equation (13) is minimized. 
More exactly, given G, P, and W, the satellite selection problem is formulated as: 

	 min  trace T T T 1

S S
P G W SWG P

�

�� ��
�
�

�
�
� � (14)

It is remarked that a brute force method in tackling the problem Equation (14) 
is to perform an exhaustive search for all admissible s. The number of elements in 

the set S or the number of candidates to be searched is 
n

k n k
!

! ( )!� �  which can be 

significant when n is large. For example, if n = 30 and k = 12, then the number of 

candidates is 86,493,225. Therefore, an exhaustive search is deemed not practical. 
In the next section, an LMI-based method is proposed.

3  LMI-BASED SATELLITE SELECTION

In the section, the GNSS satellite selection problem Equation (14) is reformu-
lated in terms of a matrix inequality that is linear on the unknown and a relaxation 
technique is then used to cast the satellite selection problem as a semi-definite pro-
gramming problem. In Section 3.1, the single epoch satellite selection is discussed. 
The properties of the proposed method and resulting solutions are elaborated. As 
many existing satellite selection methods are iterative, the LMI-based method is 
then re-stated as an iterative method in Section 3.2. Some remarks on the compar-
isons with the existing methods are made. In Section 3.3, another extension of the 
LMI-based method is presented to account for the processing of measurements at 
multiple epochs. 
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3.1  Single Epoch Satellite Selection

Recall that the satellite selection problem is formulated as the determination of 

an admissible S such that the performance metric trace T T TP G W SWG P� ��
�
�

�
�
�

�1
 

is minimized. In the following, in addition to S, an upper bound of the perfor-
mance metric is also considered in the satellite selection process. More precisely, 
the satellite selection problem in Equation (14) is stated as the determination 
of an admissible S and a matrix M so that trace(M) is minimized subject to the 
following condition:

	 M P G W SWG P

T T T� ��1
� (15)

Through the Schur complement technique (Boyd et al., 1994), the matrix 
inequality Equation (15) can be rewritten as: 

	
M P
P G W SWG

T

T T

�

�
�
�

�

�
�
�
 0 � (16)

Even though the dimension of the underlying matrix is increased, Equation (16) 
is beneficial in two aspects: the matrix inversion operation is removed and, more 
importantly, the matrix inequality is linear on the unknown matrices S and M. One 
can then state the satellite selection problem as follows:

	 min   trace( )
,S M∈S

M � (17)

subject to Equation (16). 
The problem Equation (17) involves a linear objective function and linear con-

straints of the unknowns. Yet, the fact that the selection matrix s is a 0/1 integer matrix 
remains difficult to deal with when n is large. To account for the problem, define 

U � � � � � � �� ��
U U Udiag traceu u ki i

n
i1

, , ( )0 1  to represent any real diagonal matrix  

whose diagonal elements are bounded between 0 and 1 and the summation of the 
diagonal elements is not greater than k. The set U is a relaxation of S as any matrix 
s in S is also an element of U. It is noted that S is a discrete set while U is a real con-
vex set. Note that the diagonal elements of the selection matrix s are the vertices 
of an n-dimensional hypercube. In contrast, the diagonal elements of the matrix 
U are in a convex set of the n-dimensional hypercube that is further subject to a 
linear or hyperplane constraint due to trace(U)≤k. Figure 1 illustrates the two sets S 
and U for n = 3 and k = 2. The set S contains the three vertices in red while the set 
U is the hypercube that is bounded by the shaded plane. Through the relaxation, 
instead of finding a 0/1 integer matrix s, a real diagonal matrix U is determined. 

The LMI relaxation approach for satellite selection is thus be stated as follows. 
Given the design matrix G, the projection matrix P, and the weighting matrix W, 
find M and U so as to 

	 min   trace( )
,U M∈U

M � (18)
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subject to 

	
M P
P G W UWG

T

T T

�

�
�
�

�

�
�
�
 0 � (19)

Note that the constraints in the above, U∈U and Equation (19), are linear on the 
unknowns and the objective function in Equation (18) is a linear function of the 
unknown M. Thus, the problem is a semi-definite program. A semi-definite pro-
gramming problem involves the optimization of a linear function subject to LMI 
constraints. The semi-definite programming problem can be solved efficiently due 
to the convexity in the optimization problem, the polynomial complexity, and the 
existence of solution approaches such as the interior point method (Boyd et al., 
1994; Vandenberghe & Boyd, 1996). Thus, the proposed LMI relaxation method is 
numerically feasible for satellite selection. A software tool that can be used to solve 
the problem is Matlab LMI toolbox (Gahinet et al., 1995). It is also remarked that 
the above formulation can be easily generalized to problems in which the matrix 
M is structured as discussed previously for performance metric in Equation (10). 
Imposing a constraint on M does not introduce difficulties as far as the solution 
approach is concerned.

Let U* and M* be the optimal arguments of Equation (18). One can then deter-
mine the selection matrix from U * *�� �

�
ui i

n

1
 by a sorting process or ranking opera-

tion. The value ui*  reveals insights of the satellite selection problem and can indeed 
be regarded as a score in quantifying the significance of the i-th satellite on the 
overall performance metric. If ui*  is close to 1, then the inclusion of the i-th satel-
lite in the selection list may enhance the information content, thereby reducing the 
performance metric. Conversely, a small ui*  means that the corresponding satellite 
is less significant. Hence, the selection matrix S* *�� �

�
si i

n

1
 can be obtained by set-

ting si*  as 1 if ui*  is among the leading k elements. In addition to ranking, one can 
collect a subset of candidates based on the scores and perform an in-depth search 
accordingly. For example, if n = 30 and k = 12, one can pick the top 15 satellites 
from U* after solving Equation (18). Afterwards, an exhaustive search is performed 
and the number of candidates in this search is 455, which is manageable. 

FIGURE 1 Difference between S and U for n = 3 and k = 2
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Once the selection matrix S* is determined, the performance level can be assessed  

as trace T T TP G W S WG P*� ��
�
�

�
�
�

�1
 in view of Equation (13). Therefore, by solving the  

LMI optimization problem Equation (18), two performance levels can be obtained.  
The first is the optimal trace(M*) and the other is the performance level 

trace T T TP G W S WG P*� ��
�
�

�
�
�

�1
. As an admissible s belongs to the set of U, one can 

infer that the optimal performance by any admissible selection matrix satisfies the 
following inequalities:

	

   trace

min  trace

T T T * 1

T T T 1

P G W U WG P

P G W SWG P
S S

� ��
�
�

�
�
�

� � ��

�

�

�

��
�

�
�
�

� � ��
�
�

�
�
�

�
trace T T T * 1

P G W S WG P

� (20)

Thus, the proposed LMI relaxation method provides both lower and upper 
bounds of the optimal configuration. The lower bound reveals the achievable per-
formance in theory and the upper bound renders an attainable performance by 
using the selection S*. Figure 2 depicts this situation when the problem is solved 
for different k so that the lower and upper bounds are obtained. The curves are 
illustrated as continuous in the figure for simplicity. For a specified number of sat-
ellites, the solving of Equation (18) results in a lower bound and the ranking of the 
solution yields an upper bound. The optimal performance metric versus number 
of satellites curve is bounded by the two curves. It is reminded that the optimal 
curve is computationally demanding to obtain. Existing satellite selection methods 
typically render a performance metric vs number of satellites that is over the opti-
mal curve. In practice, no information is available about the difference between 
the performance of the selected configuration and the optimal performance. The 
LMI-based method yields a lower bound in the solution process and this lower 
bound reveals the discrepancy between the attainable performance and the theo-
retic optimal performance. 

FIGURE 2 Performance metric versus number of satellites
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The performance metric is a monotonically non-increasing function of the num-
ber of satellites as illustrated in Figure 2. A variation of Equation (18) can be formu-
lated to assess the relationship from a different perspective. It is desired to find the 
minimal number of satellites that can render a prescribed performance level. Let 

γ2 be the bound on the performance metric and U � � � � � �� ��
U U diag u ui i

n
i1

,0 1 , 
the problem can be cast as a semi-definite program:

	 min   trace( )
,U∈U M

U � (21)

subject to Equation (19) and

	 trace( )M � � 2 � (22)

Once the problem is solved, it is claimed that the number of satellites that is 
required to yield the performance level must be greater than or equal to trace(U). 
This solution of the problem Equation (21) is also marked in Figure 1. The infor-
mation is useful in channel allocation in GNSS receiver operation. 

3.2  Iterative Methods

The selection of satellites is often accomplished through an iterative procedure 
in trading off performance and complexity. Assume that the selection set s contains 
ns distinct elements and it is desired to include additional I satellites to the selec-
tion set. Let Ws be the ns × n concatenation of the rows of W that are indexed in s 
and Ws  be the (n−ns) × n matrix that contains the rows of W that are indexed in 
the complementary set s . Each step in the iterative procedure can be formulated 
as the determination of M and U� � � �

diag ui i
n ns
1

-  so as to minimize trace(M) subject 
to 0≤ui≤1, trace(U)≤ I, and: 

	
M P
P G W W G G W UW Gs s s s

T

T T T T�

�

�
�
�

�

�
�
�
 0 � (23)

In the above, the scalar I serves as a bound on the satellites to be included in the 
iteration step. If the number of satellites to be selected is prescribed as k, then the 
scalar I should be bounded by k−ns. Note that for the problem Equation (18), the 
unknown matrix U contains n variables to be determined. In contrast, the number 
of unknown variables of the matrix U in the above iteration step is n−ns. Based on 
the above discussions, an iterative approach for GNSS satellite selection is devised 
as follows. 

1.	 Initialize the selection set s as the empty set.
2.	 Determine the complementary set s  and find the corresponding Ws and Ws .
3.	 Solve the LMI problem by finding M and U� � � �

diag ui i
n ns
1

-  where ns is the 
cardinal number of s such that trace(M) is minimized subject to 0 ≤ ui ≤ 1, 
trace(U) ≤ I, and Equation (23).

4.	 Select some satellites from s  based on the optimal ui and update the 
selection set s. 

5.	 If the cardinal number of s is k, exit; otherwise, go to Step 2.
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The iterative procedure allows an incremental buildup of the selection set. One 
can initialize the procedure with an empty selection list since numerical problem 
associated with matrix inversion is alleviated. Alternatively, methods such as Kihara 
and Okada (1984), Hsu (1994), Yarlagadda et al. (2000), and Balanco-Delgado and 
Nunes (2010a) can also be used to initialize the iteration. In this procedure, the 
optimization in Step 3 can be accomplished by using efficient semidefinite pro-
gramming tools. In contrast, Step 4 attempts to select some satellites from the com-
plementary set based on the score ui. There are several options that can be employed 
through ranking, thresholding, or their combination. As mentioned before, one 
can sort ui and select a certain number, say I, of satellites from the leading indices. 
Alternatively, one can compare ui against a threshold and the corresponding satel-
lite is selected if ui is greater than the threshold. The threshold can be priori speci-
fied. It is also remarked that the gap between the sorted ui can be used to facilitate 
the determination of the threshold. Further, the selection of satellites can be made 
by combining the relative order of ui and absolute value of ui. As the average value 

of ui is l
n ns−

, the threshold is advised to be between l
n ns−

 and u = max max i iu . 

Such a strategy will guarantee that at least one additional satellite is selected so that 
the overall procedure will converge in finite iterations. 

Alternatively, one may start with all satellites-in-view and de-select some sat-
ellites progressively. Such an arrangement implies that the number of unknown 
variables in the LMI problem is reduced in each iteration. More precisely, let c be 
the candidate set that contains nc elements and the goal is to de-select I satellites 
from the set while the performance is not degraded too significantly. Let Wc be the 
nc × n concatenation of the rows of W that are indexed in c, the problem can thus 
be formulated as the determination of M and U� � � �

diag ui i
nc
1

 so as to:

	 min  trace( )
, U M

M � (24)

subject to: 

	
M P
P G W UW G

T

T
c
T

c

�

�
�
�

�

�
�
�
 0 � (25)

In the problem Equation (24), the matrix U is nc × nc diagonal matrix that sat-
isfies 0 ≤ ui ≤ 1 and trace(U) ≥ nc −I. This allows the removal of I satellites in one 
iteration. Note that if the number of satellites to be removed in each iteration is 
one, then the matrix U can be expressed as U I e e� � i i

T  where ei is the unit vector 
in which the i-th entry is one and the other entries are zeros. Based on the matrix 
inversion lemma, it is known that:

   trace

trace

T T T

T T T

P G W UW G P

P G W W G P

c c

c c

� ��
�
�

�
�
�

� � ��
�
�

�
�
� �

�

�

1

1 ee W G G W W G PP G W W G G W e

e W G G W W G

i
T

c c c c c c i

i
T

c c c

T T T T T T T

T T

� � � �
� �

� �1 1

1 ���1
G W eT T

c i

�
�
�
� (26)

The satellite to be removed can then be determined by evaluating and rank-
ing the second term on the right-hand side of Equation (25) for each ei. This 
one-at-an-iteration approach is termed as the greedy algorithm or greedy reduction. 
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Both the greedy reduction and LMI reduction in Equation (24) reveal that the 
performance metric is increased by removing satellites, making it possible to 
trade-off between performance metric and number of satellites in an explicit 
manner. There are, however, two fundamental distinctions between the two 
methods. In the greedy reduction method, the search space is constrained to 
be some vertices of the nc dimensional hypercube constituted by U. The search 
space of the LMI reduction method is typically a hypersurface that contains the 
vertices. As for the solutions, the LMI reduction results in an nc dimensional 
vector with entries bounded between 0 and 1 that entails the significance of each 
satellite while the greedy reduction simply yields a 0/1 vector with no additional 
quantitative information.

3.3  Multi-Epoch Satellite Selection

One stated objective of satellite selection is to reduce the number of satel-
lites to be processed to save computational load and power consumption. In 
practice, the reduction of the number of satellites is often accompanied by the 
fact that low elevation satellites are more likely to be selected, which, in turn, 
implies that the receiver may be subject to frequent switching between different 
optimal configurations. Indeed, existing GNSS satellite selection approaches 
are typically epoch-based, which may result in frequent switching of satellites 
between different epochs. It is thus desired to find a satellite selection scheme 
that works for some consecutive epochs without compromising too much on 
the worst-case performance metric. The proposed LMI relaxation technique can 
be generalized to account for this multiple epoch satellite selection problem. 
Let Gt, Pt, and Wt be the design matrix, projection matrix, and weighting matrix 
at epoch t, respectively. Then, the multiple epoch satellite selection problem can 
be stated as the finding of a set of Mt, a real selection matrix U, and a scalar γ2 
as follows:

	 min  
, 

2
U U M� t

� � (27)

subject to: 

	
M P
P G W UW G

t

t t t t
t

T

T T      
�

�
�
�

�

�
�
�

� 0, � (28)

	 trace( )Mt � � 2 � (29)

The above optimization problem involves more unknown variables and more 
constraints. Yet, it can still be solved by using semi-definite programming tools. 
The resulting bound γ2 is an upper bound on the performance metric at each and 
every epoch. 

4  SIMULATION ANALYSES 

In the section, simulation examples are provided to illustrate the proposed 
LMI-based techniques in GNSS satellite selection.
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4.1  Example 1

In the first example, a three-constellation satellite selection problem is consid-
ered. The receiver is located at Tainan, Taiwan and the almanacs of GPS, Galileo, 
and Beidou satellites on August 2, 2022 are used to form the design matrix G. 
Figure 3 depicts the sky plot of the satellites at one epoch in which nine GPS satel-
lites, five Galileo satellites, and 24 Beidou satellites are observed. The total number 
of observable satellites is 38. In this example, both W and P are assumed to be the 
identity matrices. Thus, the satellite selection problem is the minimal GDOP prob-
lem. Four approaches are considered in the following. The first approach is the exhaus-
tive search method in which each and every combination is examined to assess 
the performance. The configuration that corresponds to the minimal performance 
metric is selected. This method is known to be time consuming; yet, it establishes 
the optimal achievable performance level for benchmarking. The optimal perfor-
mance as a function of the number of satellites is depicted in Figure 4. The second 
approach is based on the LMI relaxation technique. With respect to different k, the 
optimization problem Equation (18) is solved to render the optimal performance of 
trace(M*) and the matrix U*. Consequently, k satellites are selected by sorting the 
elements of U* to give the corresponding selection matrix S*. In actuality, the sec-
ond approach leads to two performance curves as a function of k, one is trace(M*) 

which is labeled as ‘LMI’ and the other is trace T T TP G W S WG P*� ��
�
�

�
�
�

�1
 which is 

labeled as LMI + ranking. The third and fourth methods are the iterative methods 
discussed in Section 3.2. The iteration begins with all satellites in view and gradu-
ally reduces the number of satellites. Both the LMI-based reduction method and 
the so-called greedy reduction method are applied and the results are also depicted 
in Figure 4. It is clearly observed that the LMI-based approach yields a lower bound 
on the performance curve. This lower bound is close to the optimal one when the 
number of satellites being selected is high, k ≥ 15 in this case. In contrast, there may 
exist some discrepancy between the lower bound and the optimal performance 

FIGURE 3 Skyplot in example 1
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through exhaustive search when k is small. The LMI+ranking, LMI reduction, and 
greedy reduction approaches provide satellite selection sets that can be used in the 
receiver. When the number of satellites is large, the performance of these three 
methods is relatively close. In this example, the LMI reduction method appears to 
outperform the other two methods when k is small.

To better assess the LMI-based method Equation (18), the optimized U*, the 
assigned S*, and the optimal selection configuration at different k are illustrated in 
Figures 5, 6, and 7. In each row of these figures, satellites of the optimal selection 
configuration are illustrated in terms of blue bars, the scores due to U* are illustrated 
in terms of red bars, selected satellites of the LMI reduction are depicted in terms of 
yellow bars, and the indices of the corresponding S* are labeled under the horizon-
tal axis. Thus, when k is 6, the optimal configuration is characterized by the satel-
lites with identification numbers 5, 6, 11, 14, 22, and 31. The satellite identification 
numbers from the LMI-based method are 3, 6, 11, 14, 22, and 27. Also, the LMI 
reduction method yields the following satellite identification numbers: 3, 6, 11, 14, 
22, and 27, which are the same as those of the LMI-based method. In general, there 
is a high degree of similarity between the optimal selection configuration and S*. A 
closer examination also reveals that as k varies, the selection S* does not experience 
a significant variation. In comparison, the exhaustive search may lead to abrupt 
change of satellites. Finally, it is noted from Figures 6 and 7 that for k at 19 or larger, 
the three approaches result in the same satellite list.

4.2  Example 2

The second example considers the satellite selection for integrity in which the per-
formance metric in Equation (10) is adopted. Figure 8 depicts the number of satel-
lites for a duration of 12 hours at Tainan, Taiwan on August 2, 2022. The number 
of observable GNSS satellites including GPS, QZSS, Galileo, Beidou, and GLONASS 

FIGURE 4 Performance metrics of different approaches
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FIGURE 5 Comparison of the score and selection of the LMI relaxation and the optimal 
selection for k between 6 and 13

FIGURE 6 Comparison of the score and selection of the LMI relaxation and the optimal 
selection for k between 14 and 21

 

FIGURE 7 Comparison of the score and selection of the LMI relaxation and the optimal 
selection for k between 22 and 29
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satellites varies. The GNSS measurement errors are modeled as discussed in (Misra 
& Enge, 2006) in which ephemeris error, clock error, receiver noise, multipath effect, 
ionospheric error, and tropospheric error are considered. The variances of iono-
spheric and tropospheric errors depend on the elevation angle and appropriate map-
ping functions Misra and Enge (2006) are used in the analysis. Based on the ephemeris 
and the error model, the matrices Gt and Wt at different epochs for the application 
of single and multiple epoch satellite selection are determined. The matrices Pt are 

the same at different epochs with its submatrix Cx
h h

v�
�
�
�

�
�
�

diag
�

2 2 2 2
, ,
�

�  and the 

variables Kh and Kv are 5.33 and 6, respectively (Walter, Blanch & Kropp, 2016).
The single-epoch approach solves Equation (18) at every two-minute epoch. The 
multi-epoch approach catenates the data and solve Equation (24) to determine the 
satellite list at an interval of half an hour or 15 epochs. Figure 9 depicts the perfor-
mance metrics as a function of time when the number of selected satellites is 20.  

FIGURE 8 Number of GPS, QZSS, Galileo, BDS, and GLONASS satellites in Example 2

FIGURE 9 Performance metrics and switches of the single-epoch and multi-epoch 
approaches
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The performance of the multi-epoch approach is slightly inferior to that of the 
single-epoch approach. In the subplots of the figure, the instants at which there are 
satellite changes or switches are depicted as vertical bars. The number of switches of 
the multi-epoch approach is 24 while that of the epoch-based approach is 227. The 
single-epoch approach leads to more frequent switches. The example also demon-
strates that the LMI relaxation approach can be used in trading-off performance and 
number of switches. 

5  CONCLUSION 

The paper formulates the GNSS satellite selection problem as a combinatorial 
optimization problem that depends on the satellite distribution, measurement 
error characteristics, and performance aim. An LMI relaxation technique is devel-
oped to tackle the problem and it is shown that the problem can indeed be regarded 
as an optimization of the linear function that is subject to LMI constraints. By 
using semi-definite programming tools, the problem can be solved efficiently. The 
LMI relaxation approach provides scores about the contribution of satellites on 
the performance metric and satellites can be selected accordingly. Moreover, both 
upper and lower bounds can be obtained for satellite selection and performance 
assessment. The generalization of the LMI relaxation approach for multi-epoch 
satellite selection is also discussed. It is believed that the proposed approach brings 
a more rigorous treatment of the satellite selection problem and will be beneficial 
in multi-GNSS navigation and performance assessment.
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