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O R I G I N A L  A R T I C L E

Probabilistic Map Matching for Robust Inertial 
Navigation Aiding

Xuezhi Wang*1  Christopher Gilliam2  Allison Kealy1  John Close3  Bill Moran4

1  INTRODUCTION

In GNSS-denied (or contested) environments, platform navigation performance 
is dominated by the accuracy of onboard inertial sensors. Even with high-end iner-
tial sensors, which exhibit extremely low bias and drift, it is not possible to avoid 
the build up of navigation errors over long-time frames (Titterton & Weston, 2004). 
Removing these accumulated navigation errors is crucial to retain the confidence of 
navigation accuracy (Groves, 2013). This removal, or correction, is achieved using 
one or more aiding sources that provide positional information, i.e., a position fix. 
Aiding sources can be categorized into three groups based on the technologies 
involved: 1) Radio-based aiding, which uses a transmitted ratio signal to obtain 
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Abstract
Robust aiding of inertial navigation systems in GNSS-denied environments is 
critical for the removal of accumulated navigation error caused by the drift and 
bias inherent in inertial sensors. One way to perform such an aiding uses match-
ing of geophysical measurements, such as gravimetry, gravity gradiometry or 
magnetometry, with a known geo-referenced map. Although simple in concept, 
this map-matching procedure is challenging: The measurements themselves are 
noisy, their associated spatial location is uncertain, and the measurements may 
match multiple points within the map (i.e., non-unique solution). In this paper, 
we propose a probabilistic multiple-hypotheses tracker to solve the map-matching 
problem and allow robust inertial navigation aiding. Our approach addresses 
the problem both locally, via probabilistic data association, and temporally by 
incorporating the underlying platform kinematic constraints into the tracker. 
The estimated platform position from the output of map matching is then inte-
grated into the navigation state using an unscented Kalman filter. Additionally, we 
present a statistical measure of local map information density — the map feature 
variability — and use it to weight the output covariance of the proposed algo-
rithm. The effectiveness and robustness of the proposed algorithm are demon-
strated using a navigation scenario involving gravitational map matching.

Keywords
Expectation maximization, gravity map matching, map matching, probabilistic 
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a position fix the canonical example is GNSS-based aiding. 2) Electromagnetic  
imaging, such as visual camera systems or synthetic aperture radar (SAR) imaging, 
which obtain a position fix by imaging the terrain around the platform and regis-
tering the corresponding image to known landmarks. 3) Geophysics-based aiding, 
which obtains a position fix by measuring geophysical quantities and matching 
these measurements to a known geo-referenced map process known as map 
matching. Examples of the geophysical quantities and their associated maps, include 
one or more of the elements of the gravitation vector and/or the gravity gradient 
tensor; the corresponding magnetic quantities; and bathymetry. In this paper, we 
focus on this geophysics-based aiding and present a novel map-matching algorithm.

Map-matching techniques are widely used in localization and navigation sce-
narios where GNSS is not readily available such as underwater, urban, or hostile 
environments. Based on how the measurements and corresponding maps are used, 
approaches to geophysical map-matching navigation can be split into two groups: 
implicit map matching and explicit map matching. Implicit map-matching tech-
niques feed the geophysical measurements directly into statistical filters along with 
the inertial measurements. In this framework, the geo-referenced maps are used as 
lookup functions to compute the predicted geophysical measurements in the pre-
diction step of the statistical filters. Due to the non-linear relationship between the 
estimation states and geophysical measurements, early approaches opted to use 
extended Kalman filters (EKF), to perform the estimation; examples include EKFs 
involving gravimetry (Affleck & Jircitano, 1990), gravity gradiometry (Jekeli, 2006), 
or both for submarine navigation Moryl et al. (1996). A performance analysis of a 
gravity gradiometry EKF was presented in (Lee et al., 2015). More recently, to avoid 
the linearisation present in the EKF, unscented Kalman filters (UKF), have been 
proposed for gravimetry (Wu et al., 2010) and gravity gradiometry (Gao et al., 2021). 
Finally, particle filters have been proposed for terrain-aided navigation using 
bathymetry data (Teixeira et al., 2017). A limitation of implicit map-matching tech-
niques, however, is that the statistical filters need to be redesigned when either 
changing the type of geophysical measurements used or incorporating new geo-
physical quantities. A more flexible approach is found in explicit map matching.

Explicit map-matching techniques determine an estimate of the platform’s loca-
tion by directly matching the geophysical measurement to a point in the map,  
i.e., the matching occurs explicitly in the map space. The resulting location estimate 
is then integrated into the navigation system in a similar way to a loosely coupled 
GNSS/INS system. Figure 1 shows a block diagram of a generic inertial navigation 
system (INS) with aiding from an explicit map-matching system. The key idea is to 
match the geophysical measurements s to a location in the map and then use this 
location to improve the INS position estimate x. The improved position estimate, 
xm, is then integrated into the full INS state vector, XINS. Although conceptually 
simple, this map-matching procedure is challenging for the following reasons. 
First, the geophysical measurements themselves are corrupted by sensor noise so 
the measurements will not match the map exactly. Second, the measurements may 
match multiple points within the map (i.e., non-unique solution). Finally, the loca-
tions where the measurements were acquired is of course uncertain. We term these 
challenges as the map measurement ambiguity problem and the development of a 
technique to resolve this problem is the main interest of this paper.

In the literature, one approach to explicit map matching is to choose a position 
(or set of positions) in the map that minimize as standard error, such as mean 
square error or mean absolute error, between the geophysical measurement  
(or measurements) and the values in the map within a given region. However, as 
noted above, this is unlikely to yield a unique solution as multiple locations in the 
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map may match the measurements. To solve this issue, the trajectory of the posi-
tions were constrained in (Wu et al., 2015 2017) using the observation that the 
relative INS position change is approximately equal to relative change between 
the true locations. In contrast, DeGregoria (2010) opted to constrain the problem 
by performing a joint minimization over all five of the independent elements of 
the gravity gradient tensor. Although straightforward, these approaches do not 
take account of the uncertainty in both the measurements and positional esti-
mates, nor the structure of the map. An alternative set of approaches focuses 
on utilizing the non-uniqueness of a geophysical measurement in the map 
space. Specifically, a single scalar measurement belongs to an iso-contour of 
similar values in the geo-referenced map. Using this concept, Tuohy et al. (1996) 
proposed a generic map-matching technique for use with two or more maps; 
each measurement results in a different contour and the position of the plat-
form is determined by the intersection of these contours. Measurement uncer-
tainty was introduced by expanding the contours to a surface envelope. Building 
on this work, a single map approach based on iso-contours was proposed in 
(Kamgar-Parsi & Kamgar-Parsi, 1999). The authors posed the problem in terms 
of fitting a trajectory to a set of iso-contours based on initial position estimates 
and sensor measurements. To make the problem well posed, a stiffness regular-
ization term was introduce to regularize the shape of the trajectory. However, 
linking the kinematic constraints of the platform’s motion to the regularization 
term is not straightforward. More recently, a map-matching method based on 
iterated closest contour point (ICCP) algorithm was proposed in (B. Wang et 
al., 2022). It essentially follows the same idea as described by Kamgar-Parsi & 
Kamgar-Parsi (1999) to fit the vehicle trajectory to a set of iso-contours, which 
are closest to the set of sensor measurements. The work uses gravitational con-
tour maps generated from a gravity anomaly database. The same research group 
also proposed an improved particle-filter-based matching method in (B. Wang et 
al., 2021), where samples are drawn uniformly to cover range and yaw difference 
between two INS data points. While it shows an improved error performance 
compared with the standard gravity vector matching method, it is not clear how 
the particles are updated from gravimeter measurement in the matching pro-
cess. As both the maps and the ICCP algorithm used by B. Wang et al. (2022) 
are not available, we implemented a standard ICCP algorithm (Han et al., 2018; 
Kamgar-Parsi & Kamgar-Parsi, 1999) to compare with the algorithm proposed 
in this work.

FIGURE 1 Illustration of a generic single recursion map-matching aided inertial navigation system 
(INS). The proposed map-matching block estimates the position of platform by filtering platform 
kinematic state and covariance ˆ( , )x Σ  taken from the INS with the map position identified by 
processing the geophysical measurement Sk. The estimated platform position and covariance ˆ( , )s sx Σ  
are then feeded into the navigation integration filter for navigation position drifting correction. 
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In this paper, we propose a probabilistic multiple-hypotheses tracking 
map-matching (PMHT-MM) algorithm to aid the onboard INS that performs plat-
form localization by matching the onboard gravimetric sensor measurements with 
a geo-referenced data map. As shown in Figure 1, the estimated platform posi-
tion is then integrated into the navigation state1 using an unscented Kalman filter 
(UKF) for navigation state compensation (Titterton & Weston, 2004). The INS com-
pensation is treated as a recursive Bayesian estimation problem. At each epoch, the 
prior platform location distribution is obtained from the INS computed navigation 
state and updated by the gravimetric signal coordinates, estimated from the map 
matching via UKF. Map measurement ambiguity is addressed with the Expectation 
Maximization iterative approach, locally using a probabilistic data association, 
and temporally by considering the kinematic constraints of platform motion. 
Simulations using online data maps demonstrate that the proposed PMHT-MM 
aided INS can effectively eliminate long-term INS position errors caused by inertial 
sensor bias and drift in the GNSS denied environment. To the best of our knowl-
edge, the use of probabilistic multiple-hypotheses tracking algorithm for map 
matching is novel and is a major contribution presented in this paper.

Following the introduction, the problem formulation is given in Section 2. We 
then present the PMHT-MM algorithm for INS aiding in Section 3. In Section 4, 
the performance of the proposed algorithm for aiding of INS using online maps is 
demonstrated in a realistic navigation scenario without GNSS. Results and discus-
sions are presented, followed by conclusions in Section 5.

2  PROBLEM FORMULATION

Let s represent the sensed signal. This may reasonably be assumed a Gaussian 
distributed random variable s s� � � 0 2,� ,��  where s0 is the noiseless signal and 
σσ  the standard deviation of signal error. We assume, too, that the prior distribu-
tion of platform location is Gaussian with mean and covariance being x s  and ΣΣs ,  
respectively. The signal location from the map, denoted by , based on the mea-
surement s can be expressed as: 

 Zm s s� f x s( , , , ).��   (1)

Equation (1) is referred to as the map lookup function. Note that the prior loca-
tion distribution of the platform, together with a threshold γ , defines an ellipsoidal 
area on the map centered at x s. Regardless of field measurement noise, the dis-
tribution of the map lookup function from a single measurement s can result in 
more than one likely location being compatible with the measurement. Figure 2 
illustrates a one dimensional example of the map lookup process via Equation (1). 
We write Z i nm i� �� �z ,� , ,1  for the collection of possible candidate locations of s 
from the measurement that also satisfy 

 z x z xi
s s

i
s�� � �� � ��( ) '�� 1 �  (2)

where γ  is a constant probability threshold. Choice of the value of γ  means that 
the ellipsoid area contains the signal location with a certain level of confidence. 
In this work, we refer to such an area as a search window. It will often be approx-
imated by a rectangular area (rather than ellipsoidal); this provides significant 

1  The navigation state of INS consists of 15 components including vehicle longitude, latitude, height, velocity 
vector in navigation frame, pitch, roll, yaw, and inertial sensor bias components (three for accelerometer, three for 
gyroscope).
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computational efficiency with only a minor loss of accuracy. Figure 3 shows an 
example of a search window on a gravity map corresponding to the down compo-
nent of the gravitational vector. It spreads over an area of 5 5 2× �� �km  with a collec-
tion Zm  of 50 candidate locations of the measured signal with the mean of prior 
at the center. The data map is the Global Gravity Model Plus gravity field map 
obtained from Geodesy Group (2016).

The map-matching problem is to find the posterior density p Zm( | )x  of the loca-
tion x of the signal s  on the map   based on the candidate locations, Zm, and 
the prior.

In this work, we propose the PMHT-MM tracker to estimate this posterior 
density for INS aiding. The algorithm works with a sequence of sensor measure-
ments that are correspond to a batch of platform locations over time. Each time, 
the algorithm runs iteratively, using an expectation-maximization technique 
(Dempster et al., 1977) to approximate the optimal estimator, taking into account 
data correlation locally and over time through the platform kinematic constraints.

FIGURE 2 Illustration of the map lookup process by a one dimensional example. The 
location of the sensed signal s with standard deviation of noise σ  on the 1D map is found the 
search window centered at the prior of signal location x s  with uncertain offset δ x.  In this 
example, the collected signal location candidates on the map are x x1 2, ,  and x3.

FIGURE 3 Illustration of signal location search window with the collection of signal 
location candidates (red dots) obtained via the map lookup function Equation (1) with the 
field measurement s = 9 7974 2. � /m s  and the standard deviation of measurement noise 
� � � �0 9776 10 5 2. � / .m s  The green dot is the true signal location and black dot signifies the 
probabilistic data association (PDA) solution. 
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3  PROBABILISTIC MULTIPLE-HYPOTHESES MAP 
MATCHING

In this section, we present our method to solve the map-matching problem. This 
combines a probabilistic data association (PDA) technique from Bar-Shalom & 
Fortmann (1988), used to resolve the map measurement ambiguity issue, with a 
probabilistic multiple-hypotheses tracker (Streit & Luginbuhl, 1994), to provide a 
robust map-matching solution in the context of INS aiding.

3.1  Map Access via Probability Data Association

PDA is a key method to determine where a gravimeter signal is originated in 
the position coordinates on the data map in the presence of non-unique, noisy 
data-location mapping. As part of integration filtering process shown in Figure 1, 
the position components of the navigation state X INS ,  denoted by x INS ,  serve as 
the filter predicted position vector and will be updated using a UKF if a position fix 
from an external source (e.g., GPS location, map-matching position, etc.) is present. 
Note that, if no external fix is present, the system shown in Figure 1 is simply a 
standard INS, with state estimator x INS  and a covariance ΣΣ  describing a statistical 
uncertainty ellipse providing a restriction on where the signal s is measured on the 
map. Therefore, a finite set of potential locations for signal s on the map can be 
obtained via Equation (2). The above process is illustrated in Figure 4. 

As we mentioned above, the location of a sensed signal s (e.g., obtained from 
the onboard INS) is assumed to follow a Gaussian distribution x INS � ( ,� ).x �
The PDA solution of the map location z  of signal s, denoted by x̂  in Figure 4, is 
a probabilistic combination of the set of n  candidate locations Zm �� �z1, , zn  
selected using the map lookup function Equation (1) and according to the criterion 
Equation (2). The probability weight of each candidate location zi  is proportional 
to the geometric distance between zi  and the window center x s .  The probability 
weight can be calculated as: 

 w
p

i
i

s

j
n

j
s

�

�

p( | )

( | )

z

z x

x

1�
 (3)

where p i
s

i
s

i( | ) ,� ,( )z x z x R� �� � �  and Ri ( )σ  is the associated variance which 
is a function of the signal noise variance, or in other words, signal-to-noise ratio 
(SNR). Thus, the PDA solution, combining multiple locations to a single location, 
for the map location of sensed signal s over the area described by Equation (2) is 
the following weighted mean: 

 z z�
�i

n

i iw
1
�  (4)

and the associated weighted variance: 

 R R z z z z� � � � ��� ��
�
�
i

n

i i i iw
1

( ) ( )( ) .�  (5)

The PDA solution described in this subsection is a popular technique for target 
tracking in clutter, which involves a gating process (X. Wang et al., 2002) and prob-
abilistic data association (Bar-Shalom & Fortmann, 1988).
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3.2  PMHT-MM Algorithm

The proposed PMHT-MM algorithm is derived directly from the PMHT algorithm, 
originally proposed by Streit & Luginbuhl (1994) for the application of multi-target 
tracking in clutter. We adopt this technique here for the map-matching to aid an 
INS, where only a single target—the platform—is involved. It provides an iterative 
multiple-hypotheses processing framework that handles measurement ambiguity 
locally, and system uncertainties over time under platform kinematic constraints. 
As pointed out by Davey (2007), it has good data association performance with a 
cost that is linear in time and the number of targets.

Let xt  denote the kinematic state of the platform, which involves position and 
velocity. Its evolution over time is locally described by the state space model: 

 x Fx w w Qt t t t� � � �1 0, ( ,�� ),  (6)

and measurement model: 

 z Hx v v Rt t t t� � �, ( ,�� ), 0  (7)

where F, H, Q and R are known matrices.
The PMHT-MM algorithm works in a batch mode involving T > 1  data sampling 

periods, also known as scans; a scan is the duration between two consecutive mea-
surement sampling points. Let: 

X �� �x x x1 2, , , T

denote the kinematic states over a batch of T  scans and 

Z �� �Z Z ZT1 2, , ,

be the set of measurements during the batch of scans, where Zt n t�� �z z z1 2, , , ( )  
signifies the set of n(t) measurements collected at scan t.

The PMHT-MM seeks to maximize the posterior probability density function 
p( | )X Z  by performing the following expectation-maximization (EM) iteration 

 
( 1)ˆ arg max ( )i+ = Φ

X
X X  (8)

where 

 ( )( | , )log ( , | )ip Z p
Θ

Φ( ) = Θ Θ∑X X Z X  (9)

FIGURE 4 Illustration of the collection of candidate signal locations zis i n,� , , ,�� �1 2  
obtained via Equation (1) and Equation (2) based on knowledge of predicted vehicle position 
x INS  from INS, and sensor noise level. 
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and Θ  is the latent variable describing the hypothesis for data association. In the 
context of this work Z is the batch of T subsets of platform location candidates cor-
responding to the field measurements observed in the T scans, and Θ  represents 
the set of gravitational field measurement association events.

At time k t T� � , the prior kinematic state of platform ˆ ,kX , as expressed in 
Equation (11) for i = 0,  is obtained from the navigation state of the INS, and the set 
of signal candidate locations Zk  which are obtained via the map lookup function 
in Equation (1) based on the set of gravimeter sensed signals s sk T k�� �, , .  The 
PMHT-MM then runs the following two steps iteratively. At the i−th iteration: 

Step 1:  Calculate the PDA solution of map locations z z1, , T� �  and their associated 
variances R R1, , T� �  for the set of sensed signals s sk T k�� �, ,  based on 
knowledge of ( )ˆ i

kX  via Equations (3), (4), and (5). Note that the likelihood 
of the j–th candidate location p j

s( | )z x  in Equation (3) is replaced by 

 ( )
| 1( | ) ( ; , ), 1, ,ˆ .is

j j t t tp t T−= =z x z Hx R   (10)

 where ( )
| 1ˆ i

t t−x  is the i−th iteration PMHT-MM predicted kinematic state of 
the platform at time k t− . As only one platform is involved, hypotheses 
are made only in the measurement origin; particularly, we assume that a 
measurement may originate from the platform or is a false alarm. 

Step 2:  State update and smoothing. The prior state estimates and the associated 
covariance matrices 

 x x x1 2 1 2
( ) ( ) ( ) ( ) ( ) ( ), , , ,����� ����� , , ,i i

T
i i i

T
i

 and ΣΣ ΣΣ ΣΣ  (11)

 are updated via a fixed lag Kalman smoother in a forward (update) and backward 
(smoothing) recursion using the set of measurements obtained from Step 1. 

• Forward process: 

( ) ( )
1|1 1 1|1 1,     aˆ nd     i i= =y x P Σ

For t T� �1 1, , ,  we have (standard Kalman filtering) 

P F P F Qt t t t� � ��1| |

K P H H P H Rt t t t t t
i

� � � �
� �

� � � �� �1 1 1 1
1 1

| |
( )

P P K H Pt t t t t t t� � � � �� �1 1 1 1 1| | |

( 1)
1| 1 | 1 1 | )ˆ ˆ(ˆ i

t t t t t t t t
+

+ + + += + −y F y K z H F y  (12)

• Backward process: 
( 1)

|ˆi
T T T
+ =x y

For t T� �1 2 1, , , ,  (smoothing) 

 ( 1) ( 1)1
| | 1| 1 |ˆ ˆ( )i i

t t t t t t t t t t
+ +−

+ + −′= +x y P F P x Fy  (13)

The iteration may be stopped if the criterion  X X( ) ( )i i� � �1 �  is met, or after a 
fixed number of iterations. In this work, we chose the number of iterations as 15 in 
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all simulations as, in our context, almost no error difference between two consecu-
tive iterations is observed after 15 iterations.

3.3  Map-Matching Aiding

The PMHT-MM algorithm is designed to work locally in coordinates consistent 
with the INS and map geo-reference, so that it deals with the (noisy) linear kine-
matics using standard Kalman filters. In this work, the kinematic components of 
the INS navigation state are taken as priors and an estimate is made of the current 
platform kinematic state based on a batch of sensed signals taken from a gravimet-
ric sensor independent of INS. As illustrated in Figure 1, the posterior estimate 
( ˆ ,   )x Σ  of the platform is integrated into the INS via a loosely coupled unscented 
Kalman filter (UKF). Interested readers may refer to (Titterton & Weston, ) and 
(Crassidis, 2006) for more information on the strapdown INS with UKF integra-
tion. We highlight several points below specifically regarding PMHT-MM aiding 
integration. 

• Platform kinematic behavior may be quite complex, but locally, within the 
batch length T, can be approximated by a linear system. A trade-off between 
aiding robustness and allowable platform maneuver capability is achieved by 
choosing a suitable batch length. 

• Two alternative approaches can be used to implement the PMHT-MM algorithm: 

Standard: An update occurs after every batch time duration T t�� ;  for 
example, T t� �30 10, � , then the aiding interval will be 300 s, where ∆t  
is the gravimetric sensor sampling interval. 

Retrodiction: An update occurs after every T t�� , and the past navigation 
states involved in the current batch are also updated by retrodiction. This 
is equivalent to having an aiding interval �t � 10 s.  

Our simulation suggests that the estimated platform trajectory is more smoother 
by using retrodiction, though more computational resources are required. 

• In view of the fact that the data variability (variation of features) of a map varies 
from place to place, it is desirable to define a measure to describe that variability, 
and to find a way to take this into account in the filter for map-matching aiding. In 
this work, such a measure, called map feature variability is defined. It is denoted 
by i, where i  indicates the pixel around which the variability is quantified. 
The map feature variability at the ith pixel (location xis) within a fixed search 
window template centered at i  is

 i
j

n

x x j j in
s s

i j
� � � ��
1 2( ) ,���� � � ,� ��x x xsearch��window  (14)

where n is the number of points in the search window. The map feature 
variability for a given map location provides a local measure on map data 
variation extent. In practice, this quantity is normalized over a fixed number 
of samples. If it is too small, it might be more effective to stop the aiding as, in 
these circumstances, the map-matching contributes little and might actually 
impair the performance of the INS integration filter. To achieve such a goal, 
the covariance of the estimated location by PMHT-MM algorithm (i.e., the 
covariance of external fix) is weighted by 1/ i.
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Figure 5 shows an example of the map feature variability sequence computed 
along the platform travel path in the simulation scenario presented next. The 
magnitude of the map feature variability reflects the level of data variation on the 
map as indicated by the vertical gravity disturbance measurement sequence curve 
shown in the top figure along the platform trajectory taken by a noiseless sensor. 
Note that in practice, the vertical gravity disturbance measurement is the vertical 
part of the deflections from the normal gravity. In this work, we assume that the 
reading error of deflection angle is determined by the onboard gyroscope accuracy 
and is contained in the field sensor model.

4  EXPERIMENT AND RESULTS

In this section, the proposed PMHT-MM aiding method is tested in a scenario 
of inertial navigation with aiding only from map-matching using gravimetric sen-
sor measurements with associated data maps. The maps used in the experiment 
are the ultra-high resolution, non-parametric gravity maps, known as GGMplus 
(Hirt et al., 2013). We use two maps from GGMplus: a vertical gravity field data map 
and a vertical gravity disturbance map, both obtained online (Geodesy Group, 2016). 

4.1  Geophysical Data

To exemplify our algorithm, we use the ultra-high resolution, non-parametric 
gravity maps presented by Hirt et al. (2013 2014). These maps, known as Global 
Gravity Model Plus (GGMplus), achieve a spatial resolution of ∼ 250  m and covers 
all land and near-coastal areas for the Earth between ±60  latitude. This ultra-high 
resolution map is obtained by fusing the following three elements: 

1. GOCE/GRACE satellite gravity (spatial scales of ∼10,000 km down to ∼100 km). 
2. Global geopotential model EGM2008 (spatial scales of ∼ 100 km to ∼ 10 km). 
3. Topographic gravity due to terrain (spatial scales of ∼ 10 km to ∼ 250 m). 

Note that the topographic gravity is obtained assuming a mass density of 
2 670 3, � .kgm−  For our simulations, we use gravitational acceleration in the down 

FIGURE 5 Noiseless vertical gravity disturbance measurements and the map feature 
variability along the vehicle travel trajectory. 
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and the gravity disturbance (the radial derivatives of the disturbing gravity poten-
tial). These maps can be accessed at (Geodesy Group, 2016).

4.2  Simulation Scenario

The simulation scenario is a constant velocity vehicle traveling along the surface 
of the Earth at a fixed height of 100 m from [–38°, 144.5°] to [–35°, 150°] (i.e., from 
the Melbourne area to Sydney area) and at a ground speed of 22 m/s. The entire 
journey takes more than 3.6 hours and the PMHT-MM tracker is the only form 
of aiding to the onboard INS. Figure 6 shows the vehicle travel trajectory and the 
geo-referenced data map used for the test. The onboard INS computes the navigation 
state consisting of the platform geographical coordinates, navigation frame veloc-
ity, attitude and associated accelerometer and gyroscope biases at a sampling rate of 
1 Hz, corresponding to a standard INS implementation as described in (Groves, 2013; 
Titterton & Weston, 2004). We assume that a low noise gravimeter is onboard the 
vehicle to take gravity field measurements at an interval of every �t � 10  seconds. 
As mentioned earlier, a UKF is used to incorporate the PMHT-MM output to update 
navigation state of the INS at an interval of T t�� .  For comparison, we choose the 
batch lengths of PMHT-MM T = 15 and T = 30, respectively.

The primary simulation objectives is to compare the performance of the INS 
equipped high-end inertial sensors with that of the INS aided by PMHT-MM to see 
what level of bias correction can be acquired after the PMHT-MM aiding. The perfor-
mance is measured using the metric of root-mean-squared (RMS) position error on 
the vehicle trajectories. In addition, track divergence rate in multiple Monte-Carlo 
runs is counted as an indication of the robustness of the PMHT-MM. A track in a 
single run is deemed to be divergent if the RMS position error becomes increasingly 
large over time without apparent bound. PMHT-MM tracker divergence is caused by 
a large uncertainty in a search window center estimation with a short batch length T; 
this results in repeated exclusion of true signal locations in the search windows.

100 Monte-Carlo runs are carried out for the INS with each of the following two 
sets of inertial sensors: 

1. Precision-grade accelerometer and gyroscope (PCAG); 
2. Quantum-grade accelerometer and precision grade gyroscope (QAPCG); 

FIGURE 6 The ultra-high resolution data map of gravity field obtained from 
(Geodesy Group, 2016): The platform travel trajectory (blue line) is superimposed on the map.
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The noise characterization of the inertial sensors is given in Table 1. 
In addition, 100 Monte-Carlo runs are carried out for each of the PMHT-MM 

aided INS cases: 

1. Batch length T = 15  and the standard deviation of gravimetric sensor noise is 
� � �10 5 2� /m s  or � � � �2 10 4 2� /m s ; 

2. Batch length T = 30  and the standard deviation of gravimetric sensor noise is 
� � �10 5 2� /m s  or � � � �2 10 4 2� /m s . 

where precision grade inertial sensors (PCAG) are used. Both low and high noise 
levels are chosen for the gravimetric sensor in the simulation. The low noise levels 
are chosen to model the best available high-end field sensors. On the other hand, the 
high noise levels are chosen to get a similar divergence rate for map-matching-aided 
inertial navigation using PMHT-MM algorithm with each of the two maps. In such 
a sensor noise setting, the comparison of the PMHT-MM performances between 
the two different data maps, e.g., the RMS position errors, is on a similar ground.

In the map-matching simulations, we observed that a search window centered at 
the map location of the measured signal s predicted by the onboard INS; a set of up 
to 20 locations (of data values closest to s) is collected via the map lookup function 
in Equation (1) and Equation (2). These candidate locations are then combined to 
the measured sensor location via the PDA method. At each PMHT-MM operation 
period, map-matching is performed between a batch of T measured sensor locations 
and a batch of predicted sensor locations iteratively. Both measured and predicted 
sensor locations are recalculated in each of EM iterations. The average size of search 

FIGURE 7 Ultra-high resolution data map of gravity disturbance (unit: m/s2) downloaded 
from (Geodesy Group, 2016): The platform trajectory (red line) is superimposed on the map.

TABLE 1
Bias and Noise Ranges of Inertial Sensors in the Simulation According to Jekeli (2005).

Sensor Grade Sensor Type Bias b White Noise σσ  

Precision (PC) 

Accel. horiz. 2 10 6 2� � m s/  8 10 5 2� � m s Hz/ /  

Accel. Vert. 2 5 10 8 2. /� � m s  1 6 10 6 2. / /� � m s Hz  

Gyro. horiz. 2 10 5� � deg h/  1 10 3� � deg h Hz/ /  

Gyro. vert. 1 10 3� � deg h/  3 10 2� � deg h Hz/ /  

Quantum (QS) 
Accel. 1 10 8 2� � m s/  3 10 8 2� � m s Hz/ /  

Gyro. 1 10 5� � deg h/  1 2 10 4. / /� � deg h Hz  
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windows is about 5 5 2× �� �km  for using the gravity field map shown in Figure 6 and 
this number is slightly larger with the gravity disturbance map shown in Figure 7.

The above mentioned simulations are also repeated with the map matching 
using the gravity disturbance map, which has a larger grid cell (thus lower reso-
lution) than that of the gravity field map as shown in Figure 7. In that case, the 
gravity disturbance measurement at each epoch is obtained by processing the mea-
surement of an onboard gravimetric sensor. Two sensor noise levels are considered: 
the standard deviations of the sensor noise are 10 6 2− m s/  and 4 10 5 2� � m s/ . 

4.3  Results and Discussions

4.3.1  Overview Simulation Results

Before going to detail, we present a summary of the simulation results in Figure 8. 
The figure compares the RMS position errors of computed vehicle trajectories by 
the INS equipped with each of the two inertial sensor suites, PCAG and QAPCG, 
respectively. Along them, we plot the RMS position errors of the INS navigated 
trajectories with PCAG aided by the PMHT-MM algorithm with a batch length of 
T = 30  using the two GGMplus maps, respectively. Each result is averaged over 
100  runs. In the navigation experiment aided by the PMHT-MM, a PCAG iner-
tial sensor suite is used, and the aiding from PMHT-MM is integrated by an UKF 
whose predicted state is purely based on INS.

Observations are made from Figure 8 as follows. 

• In the INS without aiding scenario, the RMS position error caused by the 
accumulative bias and drift grow unboundedly over time. The use of quantum-
grade accelerometers reduces the RMS position error by a little over 6%  after 
3.5 hours compared with the PCAG. Nevertheless, the position error drift 
remains unbounded. 

• With the aiding by the proposed PMHT-MM algorithm using field measurements 
and the data map, the position drift is bounded and a stable RMS position 
error performance can be maintained. However, the error bound level of the 
PMHT-MM aiding depends on the field sensor precision and map resolution. 
For example, in the first half hour the aided position errors with the GGplus dgz 

FIGURE 8 Comparison of RMS position errors of the INS 1) with PCAG; 2) with QAPCG; 
3) with PCAG and PMHT-MM aiding using the vertical gravity field map (black curve); 4) with 
PCAG and PMHT-MM aiding using the vertical gravity disturbance map (pink curve).



WANG et al.

map are higher because the map feature variability in the travel area is lower 
and the sensor signal is relatively flat as shown in Figure 5, or in other words, 
because the resolution of both sensor measurements and the map along that 
part of travel trajectory are poorer. 

• In the simulation, we assume that a sampling interval of the field sensors 
is 10 s, thus one aiding interval of PMHT-MM, which involves 30 scans, is 
10 30 300� � s. The INS sampling interval is 1 s. 

4.3.2  Result with the Gravity Field Map

The gravimetric sensor measurement sequences along the platform travel tra-
jectory with the standard deviations of noise � � �0 10 5,  and 2 × 10–4 m / s2 are 
shown in Figure 9. The mean position error and track divergence rate under three 
levels of measurement noise, and averaged over 100 runs, are shown in Table 2. 
The results shown in Table 2 suggest that the position aiding output estimated by 
the PMHT-MM from gravimeter measurements matched against the GGMplus 
map yields an average position error in excess of 500 m at the measurement noise 
level � � �10 5 2� /m s  (SNR = 120 dB). This position error grows rapidly as the mea-
surement noise level increases. Correspondingly, the tracker divergence rate also 
increases. The RMS position error comparison for T = 30  shown in Figure 10 con-
firms this observation. A similar situation for T = 15  is shown in Figure 11, though 
the error differences between the two levels of sensor noise become even larger. 
We see from Table 2 that with low sensor noise (� � �10 5 2� /m s ) map matching is 

TABLE 2
Mean Error and Diverge Rate of the INS with PMHT-MM Aid Using the GGMplus Gravity Field Map

Batch Length Mean Position Error σσ  (m s/ 2) & SNR Diverge Rate 

T=30 507 m � � �10 5, SNR = 120 dB 0% 

T=15 510 m � � �10 5, SNR = 120 dB 0% 

T=30 1,820 m � � � �2 10 4, SNR = 93 dB 6% 

T=15 4,199 m � � � �2 10 4, SNR = 93 dB 22% 

FIGURE 9 Gravity field measurements along the vehicle trajectory with noise � � �0 10 5,  
and 2 10 4 2� � � / ,m s  respectively
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robust with zero divergence rate for both T = 15  and T = 30  and RMS error perfor-
mance is dependent on the quality of the data map.

4.3.3  Result with Gravity Disturbance Map

In the case of PMHT-MM aiding using the gravity disturbance map, the mean 
position error and track divergence rate under three levels of measurement noise, 
and averaged over 100 runs, are shown in Table 3. 

The RMS position error performances of the PMHT-MM aided INS along the 
platform trajectory are shown in Figure 12 for T = 30  and Figure 13 for T = 15,  
respectively. These results obtained with the GGMplus gravity disturbance map 
show no significant difference compared with those using the GGMplus vertical 
gravity field map shown in Figure 10 and Figure 11. In addition, map-dependent 

FIGURE 10 Comparison of RMS position error of the INS with PMHT-MM aiding for T = 30  
at measurement noise levels � � �10 5 2� /m s  (SNR = 120 dB) and 2 10 4 2� � � /m s  (SNR = 93 dB), 
respectively 

FIGURE 11 RMS position error of the INS with PMHT-MM aiding for T = 15  at measurement 
noise levels � � �10 5 2� /m s  (SNR = 120 dB) and 2 10 4 2� � � /m s  (SNR = 93 dB), respectively 
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PMHT-MM-aiding accuracy is clearly observed from the RMS position error of 
vehicle first hour trip: This is overwhelmingly large because of a small map feature 
variability in that area evidenced by the map feature variability along the trajectory 
shown in the bottom plot of Figure 5.

TABLE 3
Mean Error and Divergence Rate with the GGMplus Gravity Disturbance Map.

Batch Length Mean position error σσ ( / )2m s  & SNR Diverge Rate 

T=30 544 m 1e-6, 51 dB 0% 

T=15 868 m 1e-6, 51 dB 13% 

T=30 1056 m 4e-5, 20 dB 13% 

T=15 2673 m 4e-5, 20 dB 69% 

FIGURE 13 RMS position errors of the INS with PMHT-MM aiding at every 300 seconds 
using the GGMplus vertical gravity disturbance map shown in Figure 7, where the batch length 
of PMHT-MM is T = 15.

FIGURE 12 RMS position errors of the INS with PMHT-MM aiding at every 300 seconds 
using the GGMplus vertical gravity disturbance map shown in Figure 7, where the batch length 
of PMHT-MM is T = 30.
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4.3.4  Discussion

• The experimental results show that a robust map-matching performance 
is obtained by the PMHT-MM algorithm because it takes into account both 
local and spatial data correlation to provide an estimate of signal coordinates 
using an EM approach. While it works in a batch mode, only a relatively 
small amount of data samples is required to obtain a reasonable signal 
location estimate. This is in contrast to those map-matching approaches, i.e., 
(H.Wang et al., 2017; Wu et al., 2017) that require enormous measurements to 
carry out an area-based cross correlation.

• A standard ICCP map-matching algorithm, denoted by ICCP-MM, is 
implemented in this work to compare its performance with that of the 
proposed PMHT-MM in the simulation using the GGMplus data map. In the 
overall simulation, we observed that the ICCP-MM experiences frequent track 
divergence. In fact, in all of our simulations, the ICCP-MM algorithm causes 
every track divergence when batch length T = 15. It can work when T = 30 in 
low sensor noise cases but with a high track divergence rate. Table 4 shows 
the simulation result for the batch length T = 30 and gravimeter noise level 
� � �10 5 2m s/  with the GGMplus gravity field map. The RMS position error 
comparison is shown in Figure 15. While similar error performances of the two 
algorithms are observed, the ICCP-MM suffers from an 80% track divergence 
rate. A divergence rate of 64% is observed for the case of using GGMplus 
gravity disturbance map where the sensor noise level is 10 6 2− m s/ . The poor 
performance of ICCP algorithm is partially due to the lack of control of trajectory 
shape in the iteration regularized by line fitting. 

TABLE 4
Batch Length T = 30, � � �10 5 2m s/ , GGMplus Gravity Field Map.

Algorithm Mean Position Error Diverge Rate 

ICCP-MM 760 m 80% 

PMHT-MM 507 m 0% 

FIGURE 14 A snapshot of the PMHT-MM iteration process with gravity field map at the 
Scan 4951: The PMHT-MM starts the iteration from the INS-predicted sensed locations (pink 
circles) and ends the iteration after 15 iterations at the final estimated locations (black stars) based 
on the sequence of T=15 subsets of candidate measurement locations (blue plus symbols).
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• We plot a snapshot of the PMHT-MM iterative localization process at a sampling 
epoch in Figure 14 in a run with aiding using the gravity field map. The plot 
shows the process that the algorithm drag the belief state (pink circle from 
INS) to the final estimated locations (black stars), i.e., to the state iteratively 
updated by the measurement location collection (blue plus symbols) with 
linear kinematic constraints.

• Gravimetric sensor noise levels have a direct impact on the accuracy and 
robustness of map-matching aiding. The simulation results suggest that, using 
a low noise field sensor, the PMHT-MM algorithm is able to use a batch state 
of small length to yield a robust aided inertial navigation performance without 
track divergence. 

• The proposed algorithm may be used for map matching with other types 
of sensor measurements, such as the gravity gradient tensor (Jekeli, 2006), 
magnetometer measurements (Kim et al., 2019), or terrain-based navigation 
(Nygren & Jansson, 2004), etc. 

5  CONCLUSION

In this paper, we present a probabilistic multiple-hypotheses tracking map-matching 
algorithm for gravimetric data map-matching to aid an inertial navigation system 
in the absence of other aiding sources. The approach eliminates map measure-
ment ambiguity by taking into account kinematic constraints of the platform and 
permits incorporation of data maps with a range of accuracy levels. Simulation 
results using online maps show the robustness and effectiveness of the algorithm 
for removing position drift that arises in INS over a long duration. Although the 
application shows an integrated gravimetric sensor map-matching inertial navi-
gation scenario, the algorithm is applicable to other map-matching-based applica-
tions with measurements under a low data sampling regime.

The proposed PMHT-MM solves the map-matching localization problem via an 
iterative batch processing procedure that handles map measurement ambiguity 
with kinematic constraints. As suggested by the simulation results, it is capable 
of working at a low measurement rate with low resolution geophysical maps and 

FIGURE 15 Comparison of the RMS position errors between ICCP-MM and PMHT-MM aiding 
for T= 30 at gravimeter noise level � � �10 5 2m s/  in the simulation as in Figure 10: The ICCP-MM 
aiding has an 80% track divergence rate, while no track divergence in the PMHT-MM aiding.
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giving a larger margin for trade-off between aiding robustness and ability of the 
tracker to handle vehicle maneuvers.
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