Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

RTK-Quality Positioning With Global Precise Point Positioning Corrections

Nacer Naciri and Sunil Bisnath
NAVIGATION: Journal of the Institute of Navigation September 2023, 70 (3) navi.575; DOI: https://doi.org/10.33012/navi.575
Nacer Naciri
Department of Earth & Space Science & Engineering, York University, Toronto, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Sunil Bisnath
Department of Earth & Space Science & Engineering, York University, Toronto, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Banville, S.,
    2. Collins, P.,
    3. Zhang, W., &
    4. Langley, R. B.
    (2014). Global and regional ionospheric corrections for faster PPP convergence. NAVIGATION, 61(2), 115–124. https://doi.org/10.1002/navi.57
  2. ↵
    1. Bertiger, W.,
    2. Desai, S. D.,
    3. Haines, B.,
    4. Harvey, N.,
    5. Moore, A. W.,
    6. Owen, S., &
    7. Weiss, J. P.
    (2010). Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5), 327–337. https://doi.org/10.1007/s00190-010-0371-9
  3. ↵
    1. Bisnath, S., &
    2. Gao, Y.
    (2009). Precise point positioning a powerful technique with a promising future. GPS World, 20(4), 43–50.
  4. ↵
    1. Bisnath, S.,
    2. Saeidi, A.,
    3. Wang, J.-G., &
    4. Seepersad, G.
    (2013). Evaluation of network RTK performance and elements of certification—a southern Ontario case study. Geomatica, 67(4), 243–251. https://doi.org/10.5623/cig2013-050
  5. ↵
    1. Bock, Y.,
    2. Nikolaidis, R. M.,
    3. de Jonge, P. J., &
    4. Bevis, M.
    (2000). Instantaneous geodetic positioning at medium distances with the Global Positioning System. Journal of Geophysical Research: Solid Earth, 105(B12), 28223–28253. https://doi.org/10.1029/2000JB900268
  6. ↵
    1. Chang, X.-W.,
    2. Yang, X., &
    3. Zhou, T.
    (2005). MLAMBDA: a modified LAMBDA method for integer least-squares estimation. Journal of Geodesy, 79(9), 552–565. https://doi.org/10.1007/s00190-005-0004-x
  7. ↵
    1. Collins, P.
    (2008). Isolating and estimating undifferenced GPS integer ambiguities. In Proc. of the 2008 Institute of National Technical Meeting of the Institute of Navigation, San Diego, CA, 720–732.
  8. ↵
    1. Collins, P.,
    2. Lahaye, F., &
    3. Bisnath, S.
    (2012). External ionospheric constraints for improved PPP-AR initialisation and a generalised local augmentation concept. In Proc. of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012). Nashville, TN, 3055–3065.
  9. ↵
    1. Collins, P.,
    2. Lahaye, F.,
    3. Heroux, P., &
    4. Bisnath, S.
    (2008). Precise point positioning with ambiguity resolution using the decoupled clock model. In Proc. of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008). Savannah, GA, 1315–1322.
  10. ↵
    1. Deng, Z.,
    2. Nischan, T., &
    3. Bradke, M.
    (2017). Multi-GNSS rapid orbit-, clock-&EOP-product series. GFZ Data Services. https://doi.org/10.5880/GFZ.1.1.2017.002
  11. ↵
    1. El-Mowafy, A.,
    2. Deo, M., &
    3. Rizos, C.
    (2016). On biases in precise point positioning with multi-constellation and multi-frequency GNSS data. Measurement Science and Technology, 27(3), 035102. https://doi.org/10.1088/0957-0233/27/3/035102
  12. ↵
    1. Gao, Y.,
    2. Li, Z., &
    3. McLellan, J.
    (1997). Carrier phase based regional area differential GPS for decimeter-level positioning and navigation. In Proc. of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1997). Kansas City, MO, 1305–1313.
  13. ↵
    1. Ge, M.,
    2. Gendt, G.,
    3. Rothacher, M.,
    4. Shi, C., &
    5. Liu, J.
    (2008a). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0187-4
  14. ↵
    1. Ge, M.,
    2. Gendt, G.,
    3. Rothacher, M.,
    4. Shi, C., &
    5. Liu, J.
    (2008b). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399. Retrieved 2020-05-05, from https://doi.org/10.1007/s00190-007-0187-4
  15. ↵
    1. Geisler, I.
    (2006). Performance improvement of network RTK positioning. In Proc. of the 2006 National Technical Meeting of the Institute of Navigation. Monterey, CA, 869–880.
  16. ↵
    1. Geng, J., &
    2. Bock, Y.
    (2013). Triple-frequency GPS precise point positioning with rapid ambiguity resolution. Journal of Geodesy, 87(5), 449–460. https://doi.org/10.1007/s00190-013-0619-2
  17. ↵
    1. Geng, J., &
    2. Guo, J.
    (2020). Beyond three frequencies: an extendable model for single-epoch decimeter-level point positioning by exploiting Galileo and BeiDou-3 signals. Journal of Geodesy, 94(1), 1–15. https://doi.org/10.1007/s00190-019-01341-y
  18. ↵
    1. Geng, J.,
    2. Guo, J.,
    3. Meng, X., &
    4. Gao, K.
    (2020). Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data. Journal of Geodesy, 94(1), 1–15. https://doi.org/10.1007/s00190-019-01330-1
  19. ↵
    1. Geng, J.,
    2. Shi, C.,
    3. Ge, M.,
    4. Dodson, A. H.,
    5. Lou, Y.,
    6. Zhao, Q., &
    7. Liu, J.
    (2012). Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. Journal of Geodesy, 86(8), 579–589. https://doi.org/10.1007/s00190-011-0537-0
  20. ↵
    1. GPS.gov: Selective Availability
    . (2021). Retrieved from https://www.gps.gov/systems/gps/modernization/sa/ Accessed on 17.01.2022
  21. ↵
    1. Hakansson, M.,
    2. Jensen, A. B.,
    3. Horemuz, M., &
    4. Hedling, G.
    (2017). Review of code and phase biases in multi-GNSS positioning. GPS Solutions, 21(3), 849–860. https://doi.org/10.1007/s10291-016-0572-7
  22. ↵
    1. Jensen, A. B. O., &
    2. Cannon, M. E.
    (2000). Performance of network RTK using fixed and float ambiguities. In Proc. of the 2000 National Technical Meeting of the Institute of Navigation, Anaheim, CA, 797–805.
  23. ↵
    1. Jiao, G.,
    2. Song, S., &
    3. Jiao, W.
    (2020, 2). Improving BDS-2 and BDS-3 joint precise point positioning with time delay bias estimation. Measurement Science Technology, 31(2), 025001. https://doi.org/10.1088/1361-6501/ab41cf
  24. ↵
    1. Katsigianni, G.,
    2. Loyer, S., &
    3. Perosanz, F.
    (2019). PPP and PPP-AR kinematic post-processed performance of GPS-only, Galileo-only and multi-GNSS. Remote Sensing, 11(21), 2477. https://doi.org/10.3390/rs11212477
    1. Kouba, J.
    (2009). Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. Journal of Geodesy, 83(3-4), 199–208. https://doi.org/10.1007/s00190-008-0229-6
  25. ↵
    1. Kouba, J., &
    2. Héroux, P.
    (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12–28. https://doi.org/10.1007/PL00012883
    CrossRef
  26. ↵
    1. Kouba, J., &
    2. Mireault, Y.
    (1998). [IGSMAIL-1943]New IGS ERP Format (version 2). Retrieved from https://lists.igs.org/pipermail/igsmail/1998/003315.html
  27. ↵
    1. Laurichesse, D., &
    2. Banville, S.
    (2018). Instantaneous centimeter-level multi-frequency precise point positioning: GPS World. Retrieved from https://www.gpsworld.com/innovation-instantaneous-centimeter-level-multi-frequency-precise-point-positioning/ Accessed on 21.01.2022
  28. ↵
    1. Laurichesse, D., &
    2. Blot, A.
    (2016). Fast PPP convergence using multi-constellation and triple-frequency ambiguity resolution. In Proc. of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016). Portland, Oregon, 2082–2088. https://doi.org/10.33012/2016.14633
  29. ↵
    1. Laurichesse, D.,
    2. Mercier, F.,
    3. Berthias, J.-P.,
    4. Broca, P., &
    5. Cerri, L.
    (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. NAVIGATION, 56(2), 135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x
  30. ↵
    1. Li, X.,
    2. Liu, G.,
    3. Li, X.,
    4. Zhou, F.,
    5. Feng, G.,
    6. Yuan, Y., &
    7. Zhang, K.
    (2020). Galileo PPP rapid ambiguity resolution with five-frequency observations. GPS Solutions, 24(1), 24. https://doi.org/10.1007/s10291-019-0930-3
  31. ↵
    1. List of Positioning Satellites
    | Technical Information | QZSS (Quasi-Zenith Satellite System) - Cabinet Office (Japan). (2022). Retrieved from https://qzss.go.jp/en/technical/satellites/index.html Accessed on 19.01.2022
  32. ↵
    1. Mervart, L.,
    2. Lukes, Z.,
    3. Rocken, C., &
    4. Iwabuchi, T.
    (2008). Precise point positioning with ambiguity resolution in real-time. In Proc. of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008). Savannah, GA, 397–405.
  33. ↵
    1. Muellerschoen, R. J.,
    2. Bar-Sever, Y. E.,
    3. Bertiger, W. I., &
    4. Stowers, D. A.
    (2001). Decimeter accuracy: NASA’s global DGPS for high-precision users. GPS world, 12(1).
  34. ↵
    1. Naciri, N., &
    2. Bisnath, S.
    (2020). Multi-GNSS ambiguity resolution as a substitute to obstructed satellites in precise point positioning processing. In Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 2960–2971. https://doi.org/10.33012/2020.17637
  35. ↵
    1. Naciri, N., &
    2. Bisnath, S.
    (2021a). Approaching global instantaneous precise positioning with the dual-and triple-frequency multi-GNSS decoupled clock model. Remote Sensing, 13(18), 3768. https://doi.org/10.3390/rs13183768
  36. ↵
    1. Naciri, N., &
    2. Bisnath, S.
    (2021b). An uncombined triple-frequency user implementation of the decoupled clock model for PPP-AR. Journal of Geodesy, 95(5), 1–17. https://doi.org/10.1007/s00190-021-01510-y
  37. ↵
    1. Naciri, N.,
    2. Hauschild, A., &
    3. Bisnath, S.
    (2021). Exploring signals on L5/E5a/B2a for dual-frequency GNSS precise point positioning. Sensors, 21(6), 2046. https://doi.org/10.3390/s21062046
  38. ↵
    1. Nadarajah, N.,
    2. Khodabandeh, A.,
    3. Wang, K.,
    4. Choudhury, M., &
    5. Teunissen, P. J.
    (2018). Multi-GNSS PPP-RTK: from large-to small-scale networks. Sensors, 18(4), 1078. https://doi.org/10.3390/s18041078
  39. ↵
    1. Psychas, D.,
    2. Teunissen, P. J. G., &
    3. Verhagen, S.
    (2021). A multi-frequency Galileo PPP-RTK convergence analysis with an emphasis on the role of frequency spacing. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163077
  40. ↵
    1. Psychas, D., &
    2. Verhagen, S.
    (2020). Real-time PPP-RTK performance analysis using ionospheric corrections from multi-scale network configurations. Sensors, 20(11), 3012. https://doi.org/10.3390/s20113012
  41. ↵
    1. RTK From The Sky
    | Hexagon Autonomy & Positioning. (2021). Retrieved from https://hexagonpositioning.com/rtk-from-the-sky Accessed on 28.01.2022
  42. ↵
    1. Schmid, R.,
    2. Dach, R.,
    3. Collilieux, X.,
    4. Jäggi, A.,
    5. Schmitz, M., &
    6. Dilssner, F.
    (2016). Absolute IGS antenna phase center model igs08.atx: status and potential improvements. Journal of Geodesy, 90(4), 343–364. https://doi.org/10.1007/s00190-015-0876-3
  43. ↵
    1. Seepersad, G.
    (2018). Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution. Retrieved from http://hdl.handle.net/10315/35570
  44. ↵
    1. Teunissen, P. J.,
    2. Odijk, D., &
    3. Zhang, B.
    (2010). PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. Journal of Aeronautics, Astronautics, and Aviation Series A, 42(4), 223–230.
  45. ↵
    1. Townsend, B.,
    2. Lachapelle, G.,
    3. Fortes, L. P.,
    4. Melgard, T. E.,
    5. Nørbech, T., &
    6. Raquet, J.
    (1999). New concepts for a carrier phase based GPS positioning using a national reference station network. In Proc. of the 1999 National Technical Meeting of the Institute of Navigation. San Diego, CA, 319–326.
  46. ↵
    1. Van Diggelen, F.
    (1997). GPS and GPS+GLONASS RTK. In Proc. of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1997). Kansas City, MO, 139–144.
  47. ↵
    1. Wang, J.,
    2. Huang, G.,
    3. Yang, Y.,
    4. Zhang, Q.,
    5. Gao, Y., &
    6. Zhou, P.
    (2020). Mitigation of short-term temporal variations of receiver code bias to achieve increased success rate of ambiguity resolution in PPP. Remote Sensing, 12(5), 796. https://doi.org/10.3390/rs12050796
  48. ↵
    1. Wanninger, L., &
    2. Beer, S.
    (2015). BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solutions, 19(4), 639–648. https://doi.org/10.1007/s10291-014-0423-3
  49. ↵
    1. Wübbena, G.,
    2. Schmitz, M., &
    3. Bagge, A.
    (2005). PPP-RTK: precise point positioning using state-space representation in RTK networks. In Proc. of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005). Long Beach, CA, 2584–2594.
  50. ↵
    1. Wübbena, G., &
    2. Willgalis, S.
    (2001). State space approach for precise real time positioning in GPS reference networks. In Proc. Int. Symp. on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS2001). Banff, Canada, 5–8.
  51. ↵
    1. Xiao, G.,
    2. Li, P.,
    3. Gao, Y., &
    4. Heck, B.
    (2019). A unified model for multi-frequency PPP ambiguity resolution and test results with Galileo and BeiDou triple-frequency observations. Remote Sensing, 11(2), 116. https://doi.org/10.3390/rs11020116
  52. ↵
    1. Xin, S.,
    2. Geng, J.,
    3. Guo, J., &
    4. Meng, X.
    (2020). On the choice of the third-frequency Galileo signals in accelerating PPP ambiguity resolution in case of receiver antenna phase center errors. Remote Sensing, 12(8). https://doi.org/10.3390/rs12081315
  53. ↵
    1. Zhang, B.,
    2. Teunissen, P. J., &
    3. Odijk, D.
    (2011). A novel un-differenced PPP-RTK concept. The Journal of Navigation, 64(S1), S180–S191. https://doi.org/10.1017/S0373463311000361
  54. ↵
    1. Zhodzishsky, M.,
    2. Vorobiev, M.,
    3. Khvalkov, A.,
    4. Rapoport, L., &
    5. Ashjaee, J.
    (1999). Dual-frequency GPS/GLONASS RTK: experimental results. In Proc. of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1999). Nashville, TN, 805–810.
  55. ↵
    1. Zumberge, J.,
    2. Heflin, M.,
    3. Jefferson, D.,
    4. Watkins, M., &
    5. Webb, F.
    (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017. https://doi.org/10.1029/96JB03860
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 3
Fall 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
RTK-Quality Positioning With Global Precise Point Positioning Corrections
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
RTK-Quality Positioning With Global Precise Point Positioning Corrections
Nacer Naciri, Sunil Bisnath
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.575; DOI: 10.33012/navi.575

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
RTK-Quality Positioning With Global Precise Point Positioning Corrections
Nacer Naciri, Sunil Bisnath
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.575; DOI: 10.33012/navi.575
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 MODEL DESCRIPTION AND REDUNDANCY ANALYSIS
    • 3 PROCESSING AND ANALYSIS STRATEGY
    • 4 RESULTS
    • 5 CONCLUSION AND FUTURE WORK
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • decoupled clock model
  • epoch-by-epoch PPP
  • multi-frequency
  • PPP-AR

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire