Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Extending the Real-Time Kinematics Survey Method to Global Navigation Satellite System-Denied Areas Using a Low-Cost Inertial-Aided Positioning Pole

Changxin Lai, Ruonan Guo, Qijin Chen and Xiaoji Niu
NAVIGATION: Journal of the Institute of Navigation September 2023, 70 (3) navi.584; DOI: https://doi.org/10.33012/navi.584
Changxin Lai
1GNSS Research Center, Wuhan University, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruonan Guo
2School of Geodesy and Geomatics, Wuhan University, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qijin Chen
1GNSS Research Center, Wuhan University, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Xiaoji Niu
1GNSS Research Center, Wuhan University, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Chen, Q.,
    2. Niu, X.,
    3. Zuo, L.,
    4. Zhang, T.,
    5. Xiao, F.,
    6. Liu, Y., &
    7. Liu, J.
    (2018). A railway track geometry measuring trolley system based on aided INS. Sensors (Basel), 18(2), 538. https://doi.org/10.3390/s18020538
  2. ↵
    1. Chen, Q. J.,
    2. Lin, H.,
    3. Guo, R. N., &
    4. Niu, X. J.
    (2020). Rapid and accurate initial alignment of the low-cost MEMS IMU chip dedicated for tilted RTK receiver. GPS Solutions, 24(4). https://doi.org/10.1007/s10291-020-01032-8
  3. ↵
    1. Chen, Q. J.,
    2. Niu, X. J.,
    3. Zhang, Q., &
    4. Cheng, Y. H.
    (2015). Railway track irregularity measuring by GNSS/INS integration. NAVIGATION, 62(1), 83–93. https://doi.org/10.1002/navi.78
  4. ↵
    1. Chen, Q. J.,
    2. Zhang, Q.,
    3. Niu, X. J., &
    4. Wang, Y.
    (2019). Positioning accuracy of a pipeline surveying system based on MEMS IMU and odometer: Case study. IEEE Access, 7, 104453–104461. https://doi.org/10.1109/Access.2019.2931748
  5. ↵
    1. Chowdhury, M. S., &
    2. Abdel-Hafez, M. F.
    (2016). Pipeline inspection gauge position estimation using inertial measurement unit, odometer, and a set of reference stations. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B, Mechanical Engineering, 2(2), 021001–021001. https://doi.org/10.1115/1.4030945
  6. ↵
    1. El-Sheimy, N., &
    2. Youssef, A.
    (2020). Inertial sensors technologies for navigation applications: State of the art and future trends. Satellite Navigation, 1(1), 2. https://doi.org/10.1186/s43020-019-0001-5
  7. ↵
    1. Feliz Alonso, R.,
    2. Zalama Casanova, E., &
    3. Gómez García-Bermejo, J.
    (2009). Pedestrian tracking using inertial sensors. Journal of Physical Agents, 3(1), 35–42. https://doi.org/10.14198/JoPha.2009.3.1.05
  8. ↵
    1. Foxlin, E.
    (2005). Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, 25(6), 38–46. https://doi.org/10.1109/mcg.2005.140
    CrossRefPubMed
  9. ↵
    1. Gao, Z. Z.,
    2. Ge, M. R.,
    3. Li, Y.,
    4. Shen, W. B.,
    5. Zhang, H. P., &
    6. Schuh, H.
    (2018). Railway irregularity measuring using Rauch-Tung-Striebel smoothed multi-sensors fusion system: Quad-GNSS ppp, IMU, odometer, and track gauge. GPS Solutions, 22(2), 14, Article 36. https://doi.org/10.1007/s10291-018-0702-5
  10. ↵
    1. Guan, L.,
    2. Cong, X.,
    3. Zhang, Q.,
    4. Liu, F.,
    5. Gao, Y.,
    6. An, W., &
    7. Noureldin, A.
    (2020). A comprehensive review of micro-inertial measurement unit based intelligent PIG multi-sensor fusion technologies for small-diameter pipeline surveying. Micromachines (Basel), 11(9), Article 840. https://doi.org/10.3390/mi11090840
  11. ↵
    1. Hein, G. W.
    (2020). Status, perspectives and trends of satellite navigation. Satellite Navigation, 1(1), 22. https://doi.org/10.1186/s43020-020-00023-x
  12. ↵
    1. Hong, S. P.,
    2. Lee, M. H.,
    3. Chun, H. H.,
    4. Kwon, S. H., &
    5. Speyer, J. L.
    (2005). Observability of error states in GPS/INS integration. IEEE Transactions on Vehicular Technology, 54(2), 731–743. https://doi.org/10.1109/Tvt.2004.841540
  13. ↵
    1. Luo, X.,
    2. Schaufler, S.,
    3. Carrera, M., &
    4. Celebi, I.
    (2018, May 6–11). High-precision RTK positioning with calibration-free tilt compensation. International Federation of Surveyors (FIG) Congress 2018, Istanbul, Turkey. http://fig.net/resources/proceedings/fig_proceedings/fig2018/papers/ts04e/TS04E_luo_schaufler_et_al_9407.pdf
  14. ↵
    1. Maybeck, P. S.
    (1979). Stochastic models, estimation and control. Academic Press. https://www.elsevier.com/books/stochastic-models-estimation-and-control/maybeck/978-0-12-480703-7
  15. ↵
    1. Niu, X. J.,
    2. Li, Y.,
    3. Kuang, J., &
    4. Zhang, P.
    (2019). Data fusion of dual foot-mounted IMU for pedestrian navigation. IEEE Sensors Journal, 19(12), 4577–4584. https://doi.org/10.1109/Jsen.2019.2902422
  16. ↵
    1. Rauch, H. E.,
    2. Tung, F., &
    3. Striebel, C. T.
    (1965). Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445–1450. https://doi.org/10.2514/3.3166
  17. ↵
    1. Ren, M.,
    2. Pan, K.,
    3. Liu, Y.,
    4. Guo, H.,
    5. Zhang, X., &
    6. Wang, P.
    (2016). A novel pedestrian navigation algorithm for a foot-mounted inertial-sensor-based system. Sensors (Basel), 16(1), 139. https://doi.org/10.3390/s16010139
  18. ↵
    1. Scherzinger, B.
    (2005). Walking stick navigator for position determination (US Patent No. 6853909B2). U.S. Patent and Trademark Office. https://www.freepatentsonline.com/y2009/0024325.html
  19. ↵
    1. Scherzinger, B.
    (2009). AINS enhanced survey instrument (US Patent No. 20090024325A1). U.S. Patent and Trademark Office. https://www.freepatentsonline.com/y2009/0024325.html
  20. ↵
    1. Schwarz, K. P.
    (1983). Inertial surveying and geodesy. Reviews of Geophysics, 21(4), 878–890. https://doi.org/10.1029/RG021i004p00878
  21. ↵
    1. Shin, E.-H.
    (2005). Estimation techniques for low-cost inertial navigation [Unpublished doctoral thesis]. University of Calgary. http://dx.doi.org/10.11575/PRISM/2386
  22. ↵
    1. Teunissen, P., &
    2. Montenbruck, O.
    (2017). Springer handbook of global navigation satellite systems (1st ed. 2017). Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 3
Fall 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Extending the Real-Time Kinematics Survey Method to Global Navigation Satellite System-Denied Areas Using a Low-Cost Inertial-Aided Positioning Pole
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Extending the Real-Time Kinematics Survey Method to Global Navigation Satellite System-Denied Areas Using a Low-Cost Inertial-Aided Positioning Pole
Changxin Lai, Ruonan Guo, Qijin Chen, Xiaoji Niu
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.584; DOI: 10.33012/navi.584

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Extending the Real-Time Kinematics Survey Method to Global Navigation Satellite System-Denied Areas Using a Low-Cost Inertial-Aided Positioning Pole
Changxin Lai, Ruonan Guo, Qijin Chen, Xiaoji Niu
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.584; DOI: 10.33012/navi.584
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 METHODOLOGY
    • 3 EXPERIMENTS AND RESULTS
    • 4 Discussion
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • consumer-grade IMU
  • GNSS-denied positioning
  • inertial-aided positioning pole
  • RTK survey
  • zero velocity update

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire