Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Global Navigation Satellite System Channel Coding Structures for Rapid Signal Acquisition in Harsh Environmental Conditions

Lorenzo Ortega and Charly Poulliat
NAVIGATION: Journal of the Institute of Navigation September 2023, 70 (3) navi.585; DOI: https://doi.org/10.33012/navi.585
Lorenzo Ortega
1IPSA, Toulouse, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Charly Poulliat
1IPSA, Toulouse, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Anghileri, M.,
    2. Paonni, M.,
    3. Gkougkas, E., &
    4. Eissfeller, B.
    (2012). Reduced navigation data for a fast first fix. In 2012 Sixth ESA Workshop on Satellite Navigation Technologies (NAVITEC 2012) & European Workshop on GNSS Signals and Signal Processing, 1–7. https://doi.org/10.1109/NAVITEC.2012.6423105
  2. ↵
    1. Biglieri, E.,
    2. Proakis, J., &
    3. Shamai, S.
    (1998). Fading channels: Information-theoretic and communications aspects. IEEE Transactions on Information Theory, 44(6), 2619–2692. https://doi.org/10.1109/18.720551
  3. ↵
    1. Boutros, J.,
    2. Guillen i Fabregas, A. G.,
    3. Biglieri, E., &
    4. Zémor, G.
    (2010). Low-density parity-check codes for non-ergodic block-fading channels. IEEE Transactions on Information Theory, 56(9), 4286–4300. https://doi.org/10.1109/TIT.2010.2053890
  4. ↵
    1. Das, P.,
    2. Ortega, L.,
    3. Vilà-Valls, J.,
    4. Vincent, F.,
    5. Chaumette, E., &
    6. Davain, L.
    (2020). Performance limits of GNSS code-based precise positioning: GPS, Galileo & Meta-Signals. Sensors, 20(8), 2196. https://doi.org/10.3390/s20082196
  5. ↵
    1. Galileo-ICD
    . (2021). Galileo - Open Service-Signal in Space Interface Control Document (OS SIS ICD V1.3) (Tech. Rep.). European Union. Retrieved from https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_OS_SIS_ICD_v2.0.pdf
  6. ↵
    1. GPS-L1C-ICD
    . (2021). Interface Specification IS-GPS-800 NavStar GPS Space Segment/UserSegment L1C Interface (Tech. Rep.). Retrieved from https://www.gps.gov/technical/icwg/IS-GPS-800G.pdf
  7. ↵
    1. Guillen i Fabregas, A., &
    2. Caire, G.
    (2006). Coded modulation in the block-fading channel: Coding theorems and code construction. IEEE Transactions on Information Theory, 52(1), 91–114. https://doi.org/10.1109/TIT.2005.860414
  8. ↵
    1. Knopp, R., &
    2. Humblet, P.
    (2000). On coding for block fading channels. IEEE Transactions on Information Theory, 46(1), 189–205. https://doi.org/10.1109/18.817517
  9. ↵
    1. Li, Z.,
    2. Chen, L.,
    3. Zeng, L.,
    4. Lin, S., &
    5. Fong, W. H.
    (2006). Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Transactions on Communications, 54(1), 71–81. https://doi.org/10.1109/TCOMM.2005.861667
  10. ↵
    1. Liva, G., &
    2. Chiani, M.
    (2007). Protograph LDPC codes design based on EXIT analysis. IEEE Global Communications Conference (IEEE GLOBECOM 2007), 3250–3254. https://doi.org/10.1109/GLOCOM.2007.616
  11. ↵
    1. Medina, D.,
    2. Ortega, L.,
    3. Vilà-Valls, J.,
    4. Closas, P.,
    5. Vincent, F., &
    6. Chaumette, E.
    (2020). Compact CRB for delay, doppler and phase estimation - application to GNSS SPP & RTK performance characterization. IET Radar, Sonar & Navigation. https://doi.org/10.1049/iet-rsn.2020.0168
  12. ↵
    1. Ortega, L.
    (2019). Signal optimization for Galileo evolution. PhD dissertation. Retrieved from https://oatao.univ-toulouse.fr/26975/
  13. ↵
    1. Ortega, L., &
    2. Poulliat, C.
    (2021). On nested property of Root-LDPC codes. IEEE Wireless Communications Letters, 10(5), 1005–1009. https://doi.org/10.1109/LWC.2021.3054414
  14. ↵
    1. Ortega, L.,
    2. Poulliat, C.,
    3. Boucheret, M. L.,
    4. Aubault, M., &
    5. Al-Bitar, H.
    (2018a). New solutions to reduce the Time-To-CED and to improve the CED robustness of the Galileo I/NAV Message. Proc. in IEEE/ION Position Location and Navigation Symposium (PLANS 2018), Monterey, California, 1399–1408. https://doi.org/10.1109/PLANS.2018.8373532
  15. ↵
    1. Ortega, L.,
    2. Poulliat, C.,
    3. Boucheret, M.,
    4. Aubault, M., &
    5. Al-Bitar, H.
    (2018b). Co-design of message structure and channel coding scheme to reduce the time to CED and to improve the resilience for a Galileo 2nd generation new signal. Proc. of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, Florida, 4064–4078. https://doi.org/10.33012/2018.15878
  16. ↵
    1. Ortega, L.,
    2. Poulliat, C.,
    3. Boucheret, M.,
    4. Aubault, M., &
    5. Al-Bitar, H.
    (2018c). Advanced co-design of message structure and channel coding scheme to reduce the time to CED and to improve the resilience for a Galileo 2nd generation new signal. ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC 2018), Noordwijk, The Netherlands. Retrieved from https://oatao.univ-toulouse.fr/22526/
  17. ↵
    1. Ortega, L.,
    2. Poulliat, C.,
    3. Boucheret, M.,
    4. Aubault, M., &
    5. Al-Bitar, H.
    (2019). Optimal channel coding structures for fast acquisition signals in harsh environment conditions. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, Florida, 4026–4040. https://doi.org/10.33012/2019.17113
  18. ↵
    1. Ortega, L.,
    2. Poulliat, C.,
    3. Boucheret, M.,
    4. Aubault, M., &
    5. Al-Bitar, H.
    (2020). Optimizing the codesign of message structure and channel coding to reduce the TTD for a Galileo 2nd generation signal. NAVIGATION, 67(3), 471–492. https://doi.org/10.1002/navi.382
  19. ↵
    1. Paonni, M., &
    2. Bavaro, M.
    (2013). On the design of a GNSS acquisition aiding signal. Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 1445–1456. Retrieved from https://www.ion.org/publications/abstract.cfm?articleID=11330
  20. ↵
    1. Prieto-Cerdeira, R.,
    2. Perez-Fontan, F.,
    3. Burzigotti, P.,
    4. Bolea-Alamañ, A., &
    5. Sanchez-Lago, I.
    (2010). Versatile two-state land mobile satellite channel model with first application to DVB-SH analysis. International Journal of Satellite Communications and Networking, 28(5–6), 291–315. https://doi.org/10.1002/sat.964
  21. ↵
    1. Richardson, T.,
    2. Shokrollahi, M., &
    3. Urbanke, R.
    (2001). Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory, 47(2), 619–637. https://doi.org/10.1109/18.910578
  22. ↵
    1. Schotsch, B.,
    2. Anghileri, M.,
    3. Burger, T., &
    4. Ouedraogo, M.
    (2017). Joint Time-to-CED reduction and improvement of CED robustness in the Galileo I/NAV message. In Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, 1544–1558. https://doi.org/10.33012/2017.15374
  23. ↵
    1. Teunissen, P., &
    2. Montenbruck, O.
    (2017). Handbook of Global Navigation Satellite Systems. Springer International Publishing. Retrieved from https://books.google.fr/books?id=93goDwAAQBAJ
  24. ↵
    1. Thorpe, J.
    (2003). Low-density parity-check (LDPC) codes constructed from protographs. IPN progress report, 42(154), 42–154. https://ipnpr.jpl.nasa.gov/progress_report/42-154/154C.pdf
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 3
Fall 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Global Navigation Satellite System Channel Coding Structures for Rapid Signal Acquisition in Harsh Environmental Conditions
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Global Navigation Satellite System Channel Coding Structures for Rapid Signal Acquisition in Harsh Environmental Conditions
Lorenzo Ortega, Charly Poulliat
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.585; DOI: 10.33012/navi.585

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Global Navigation Satellite System Channel Coding Structures for Rapid Signal Acquisition in Harsh Environmental Conditions
Lorenzo Ortega, Charly Poulliat
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.585; DOI: 10.33012/navi.585
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 CO-DESIGN OF MESSAGE AND STRUCTURE WITH DESIRED CHANNEL CODING PROPERTIES
    • 3 PROPOSED ERROR-CORRECTING SCHEMES OF RATE 1/3
    • 4 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGMENT
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Keywords

  • demodulation threshold
  • full diversity
  • MDS codes
  • navigation message structure
  • nested Root-LDPC codes
  • protograph EXIT
  • TTD

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire