Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Autonomous Lunar L1 Halo Orbit Navigation Using Optical Measurements to a Lunar Landmark

Mark B. Hinga and Dale A. Williams
NAVIGATION: Journal of the Institute of Navigation September 2023, 70 (3) navi.586; DOI: https://doi.org/10.33012/navi.586
Mark B. Hinga
1Air Force Research Laboratory, AFRL/RDST, New Mexico, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Dale A. Williams
2Purdue University, School of Aeronautics and Astronautics Indiana, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bate, R.,
    2. Mueller, D., &
    3. White, J.
    (1971). Fundamentals of astrodynamics. Dover Publications, Inc.
  2. ↵
    1. Battin, R. H.
    (1960). A comparison of fixed and variable time of arrival navigation for interplanetary flight. MIT Instrumentation Laboratory.
  3. ↵
    1. Bradley, M.,
    2. Olikara, Z.,
    3. Bhaskaran, S., &
    4. Young, B.
    (2020). Cislunar navigation accuracy using optical observations of natural and artificial targets. Journal of Spacecraft and Rockets, 57(4), 777–792. https://doi.org/10.2514/1.A34694
  4. ↵
    1. Crassidis, J. L.,
    2. Markley, F. L., &
    3. Cheng, Y.
    (2007). Survey of nonlinear attitude estimation methods. Journal of guidance, control, and dynamics, 30(1), 12–28. https://doi.org/10.2514/1.22452
    CrossRef
  5. ↵
    1. Curtis, H.
    (2013). Orbital mechanics for engineering students. Butterworth-Heinemann.
  6. ↵
    1. (ESA), E. S. A
    . (2004–2015). Advanced concepts team (act), european space agency (esa). The PaGMO development team. https://github.com/esa/pagmo
  7. ↵
    1. Escobal, P.
    (1965). Methods of orbit determination. John Wiley and Sons, Inc. New York.
  8. ↵
    1. Gauss, K. F.
    (1857). Theoria motus: Theory of the motion of the heavenly bodies moving about the sun in conic sections. CH Davis Translation, Little Brown, Boston, 161–234.
  9. ↵
    1. Gelb, A.,
    2. Kasper, J. F.,
    3. Nash, R. A.,
    4. Price, C. F., &
    5. Sutherland, A. A.
    (1974). Applied optimal estimation. The M.I.T. Press.
  10. ↵
    1. Gooding, R.
    (1996). A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celestial Mechanics and Dynamical Astronomy, 66(4), 387–423. https://doi.org/10.1007/BF00049379
  11. ↵
    1. Herget, P.
    (1948). The computation of orbits. [Work privately published by the author]. Cincinnati, OH.
  12. ↵
    1. Herget, P.
    (1965). Computation of preliminary orbits. The Astronomical Journal, 70, 1. https://doi.org/10.1086/109671
  13. ↵
    1. Herrick, S.
    (1971). Astrodynamics. volume 1-orbit determination, space navigation, celestial mechanics. https://ntrs.nasa.gov/citations/19720032196
  14. ↵
    1. Hinga, M. B.
    (2018). Spacebourne orbit determination of unknown satellites using a stabilized gauss-method, linear perturbation theory and angle-only measurements. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS 2018), Maui, HI. https://amostech.com/
  15. ↵
    1. Hinga, M. B.
    (2023). Hinga spacenavsim (Air Force Research Laboratory, in progress Report No. AFRL 2023-0720).
  16. ↵
    1. Janson, S.,
    2. Welle, R.,
    3. Rose, T.,
    4. Rowen, D.,
    5. Hardy, B.,
    6. Dolphus, R.,
    7. Doyle, P.,
    8. Faler, A.,
    9. Chien, D.,
    10. Chin, A.,
    11. Maul, G.,
    12. Coffman, C.,
    13. La Lumondiere, S.,
    14. Werner, N.,
    15. Hinckley, D.
    (2016). The NASA optical communications and sensor demonstration program: initial flight results. Proc. of the 29th Annual AIAA/USU Conference on Small Satellites. https://digitalcommons.usu.edu/smallsat/2016/TS3YearInReview/2/
  17. ↵
    1. Kalman, R. E.
    (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D), 35–45. https://doi.org/10.1115/1.3662552
    CrossRef
  18. ↵
    1. Karimi, R. R., &
    2. Mortari, D.
    (2011). Initial orbit determination using multiple observations. Celestial Mechanics and Dynamical Astronomy, 109(2), 167–180. https://doi.org/10.1007/s10569-010-9321-3
  19. ↵
    1. Laplace, P. S.
    (1780). Mémoires sur la détermination des orbites des com’etes. Mémoires de l’Academie Royale des Sciences de Paris.
  20. ↵
    1. Park, R. S.,
    2. Folkner, W. M.,
    3. Williams, J. G., &
    4. Boggs, D. H.
    (2021). The jpl planetary and lunar ephemerides de440 and de441. The Astronomical Journal, 161(3), 105. https://doi.org/10.3847/1538-3881/abd414
  21. ↵
    1. Vallado, D. A.
    (2001). Fundamentals of astrodynamics and applications (Vol. 12). Springer Science & Business Media.
  22. ↵
    1. Vetterling, W. T.,
    2. Press, W. H.,
    3. Teukolsky, S. A., &
    4. Flannery, B. P.
    (1992). Numerical recipes: Example book c. Cambridge University Press.
  23. ↵
    1. Zhao, H.
    (2020). Development of a low-cost multi-camera star tracker for small satellites (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.
  24. ↵
    1. Zimovan, E. M.
    (2017). Characteristics and design strategies for near rectilinear halo orbits within the earth-moon system (Unpublished doctoral dissertation). Purdue University.
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 3
Fall 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Autonomous Lunar L1 Halo Orbit Navigation Using Optical Measurements to a Lunar Landmark
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Autonomous Lunar L1 Halo Orbit Navigation Using Optical Measurements to a Lunar Landmark
Mark B. Hinga, Dale A. Williams
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.586; DOI: 10.33012/navi.586

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Autonomous Lunar L1 Halo Orbit Navigation Using Optical Measurements to a Lunar Landmark
Mark B. Hinga, Dale A. Williams
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.586; DOI: 10.33012/navi.586
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 EXPERIMENT
    • 3 THE FROBENIUS NORM
    • 4 CONCLUSION AND FUTURE WORK
    • HOW TO CITE THIS ARTICLE
    • AUTHOR CONTRIBUTIONS
    • CONFLICTS OF INTEREST
    • DISCLOSURES
    • ACKNOWLEDGMENTS
    • 5 APPENDIX
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Multi-layered Multi-Constellation Global Navigation Satellite System Interference Mitigation
  • SBAS Protection Levels with Gauss-Markov K-Factors for Any Integrity Target
  • Global Navigation Satellite System Channel Coding Structures for Rapid Signal Acquisition in Harsh Environmental Conditions
Show more Original Article

Similar Articles

Keywords

  • autonomous
  • lunar halo orbit
  • lunar landmark
  • navigation
  • optical

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire