Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Mitigation of Global Navigation Satellite System Cycle Slips Due to Scintillation Using Radio Backpropagation

Brian Breitsch and Jade Morton
NAVIGATION: Journal of the Institute of Navigation September 2023, 70 (3) navi.593; DOI: https://doi.org/10.33012/navi.593
Brian Breitsch
Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Jade Morton
Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Banville, S.,
    2. Langley, R.,
    3. Saito, S., &
    4. Yoshihara, T.
    (2010). Handling cycle slips in GPS data during ionospheric plasma bubble events. Radio Science, 45(06), 1–14. https://doi.org/10.1029/2010RS004415
  2. ↵
    1. Breitsch, B.
    (2021). Characterization and mitigation of GNSS carrier phase cycle slips [Doctoral Dissertation]. University of Colorado at Boulder. https://gnssrange.com/images/thesesAndDissertations/2021breitschBrian.pdf
  3. ↵
    1. Breitsch, B.,
    2. Morton, Y. T.,
    3. Rino, C., &
    4. Xu, D.
    (2020). GNSS carrier phase cycle slips due to diffractive ionosphere scintillation: Simulation and characterization. IEEE Transactions on Aerospace and Electronic Systems. https://doi.org/10.1109/TAES.2020.2979025
  4. ↵
    1. Carrano, C. S.,
    2. Groves, K. M.,
    3. Caton, R. G.,
    4. Rino, C. L., &
    5. Straus, P. R.
    (2011). Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Science, 46(06), 1–14. https://doi.org/10.1029/2010RS004591
  5. ↵
    1. de Oliveira Moraes, A.,
    2. da Silveira Rodrigues, F.,
    3. Perrella, W. J., &
    4. de Paula, E. R.
    (2012). Analysis of the characteristics of low-latitude GPS amplitude scintillation measured during solar maximum conditions and implications for receiver performance. Surveys in Geophysics, 33(5), 1107–1131. https://doi.org/10.1007/s10712-011-9161-z
  6. ↵
    1. Ghafoori, F., &
    2. Skone, S.
    (2015). Impact of equatorial ionospheric irregularities on GNSS receivers using real and synthetic scintillation signals. Radio Science, 50(4), 294–317. https://doi.org/10.1002/2014RS005513
  7. ↵
    1. Humphreys, T. E.,
    2. Psiaki, M. L.,
    3. Ledvina, B. M.,
    4. Cerruti, A. P., &
    5. Kintner, P. M.
    (2010). Data-driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation. IEEE Transactions on Aerospace and Electronic Systems, 46(4), 1609–1623. https://doi.org/10.1109/TAES.2010.5595582
  8. ↵
    1. Myer, G. T., &
    2. Morton, Y. T.
    (2018). Ionosphere scintillation effects on GPS measurements, a new carrier-smoothing technique, and positioning algorithms to improve accuracy. Proc. of the 2018 International Technical Meeting of the Institute of Navigation (ITM 2018), Reston, VA. 420–439. https://doi.org/10.33012/2018.15581
  9. ↵
    1. Rino, C.
    (2011). The theory of scintillation with applications in remote sensing. John Wiley & Sons.
  10. ↵
    1. Rino, C.,
    2. Breitsch, B.,
    3. Morton, Y.,
    4. Jiao, Y.,
    5. Xu, D., &
    6. Carrano, C.
    (2018). A compact multi-frequency GNSS scintillation model. NAVIGATION, 65(4), 563–569. https://doi.org/10.1002/navi.263
  11. ↵
    1. Rovira-Garcia, A.,
    2. Juan, J. M.,
    3. Sanz, J., &
    4. Gonzalez-Casado, G.
    (2020). The geodetic detrending technique: enabling high-accuracy navigation under scintillation. Proc. of the IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE 2020), Vicenza, Italy. 1–4. https://doi.org/10.1109/WiSEE44079.2020.9262461
  12. ↵
    1. Sokolovskiy, S.,
    2. Schreiner, W.,
    3. Rocken, C., &
    4. Hunt, D.
    (2002). Detection of high-altitude ionospheric irregularities with GPS/MET. Geophysical research letters, 29(3), 3–1. https://doi.org/10.1029/2001GL013398
  13. ↵
    1. Vadakke Veettil, S.,
    2. Aquino, M.,
    3. Marques, H. A., &
    4. Moraes, A.
    (2020). Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. Journal of Geodesy, 94(2), 1–10. https://doi.org/10.1007/s00190-020-01345-z
  14. ↵
    1. Wang, Y.,
    2. Breitsch, B., &
    3. Morton, Y. T. J.
    (2020). A state-based method to simultaneously reduce cycle slips and noise in coherent GNSS-R phase measurements from open-loop tracking. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2020.3036031
  15. ↵
    1. Xu, D.
    (2019). GPS equatorial ionospheric scintillation signals simulation, characterization, and estimation [Doctoral Dissertation]. Colorado State University. https://www.proquest.com/openview/874c9b6983adcb283cad1fc7aac064a0/1?pq-origsite=gscholar&cbl=18750&diss=y
  16. ↵
    1. Xu, D.,
    2. Morton, Y. J.,
    3. Rino, C. L.,
    4. Carrano, C. S., &
    5. Jiao, Y.
    (2020). A two-parameter multifrequency GPS signal simulator for strong equatorial ionospheric scintillation: modeling and parameter characterization. NAVIGATION, 67(1), 1–15. https://doi.org/10.1002/navi.350
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 3
Fall 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mitigation of Global Navigation Satellite System Cycle Slips Due to Scintillation Using Radio Backpropagation
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Mitigation of Global Navigation Satellite System Cycle Slips Due to Scintillation Using Radio Backpropagation
Brian Breitsch, Jade Morton
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.593; DOI: 10.33012/navi.593

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Mitigation of Global Navigation Satellite System Cycle Slips Due to Scintillation Using Radio Backpropagation
Brian Breitsch, Jade Morton
NAVIGATION: Journal of the Institute of Navigation Sep 2023, 70 (3) navi.593; DOI: 10.33012/navi.593
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 BACKGROUND
    • 2 SIMULATION RESULTS
    • 3 REAL-WORLD DATA
    • 4 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Multi-layered Multi-Constellation Global Navigation Satellite System Interference Mitigation
  • SBAS Protection Levels with Gauss-Markov K-Factors for Any Integrity Target
  • Global Navigation Satellite System Channel Coding Structures for Rapid Signal Acquisition in Harsh Environmental Conditions
Show more Original Article

Similar Articles

Keywords

  • backpropagation
  • cycle slips
  • global navigation satellite system
  • scintillation

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire