Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago

Kana Nagai, Matthew Spenko, Ron Henderson, and Boris Pervan
NAVIGATION: Journal of the Institute of Navigation March 2024, 71 (1) navi.631; DOI: https://doi.org/10.33012/navi.631
Kana Nagai
1Mechanical and Aerospace Engineering, Illinois Institute of Technology, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Matthew Spenko
1Mechanical and Aerospace Engineering, Illinois Institute of Technology, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ron Henderson,
2Landscape Architecture + Urbanism Program, Illinois Institute of Technology, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Boris Pervan
1Mechanical and Aerospace Engineering, Illinois Institute of Technology, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bar-Shalom, Y.,
    2. Li, X., &
    3. Kirubarajan, T.
    (2004). Estimation with applications to tracking and navigation: Theory algorithms and software. Wiley. https://doi.org/10.1002/0471221279
  2. ↵
    1. Brown, R., &
    2. Hwang, P.
    (2012). Introduction to random signals and applied Kalman filtering with Matlab exercises (4th ed.). Wiley.
  3. ↵
    1. Chapman, L.,
    2. Thornes, J. E., &
    3. Bradley, A. V.
    (2002). Sky-view factor approximation using GPS receivers. International Journal of Climatology, 22(5), 615–621. https://doi.org/10.1002/joc.649
    CrossRef
  4. ↵
    1. Cosmen-Schortmann, J.,
    2. Azaola-Sáenz, M.,
    3. Martinez-Olague, M., &
    4. Toledo-López, M.
    (2008). Integrity in urban and road environments and its use in liability critical applications. Proc. of the IEEE/ION Position, Location, and Navigation Symposium (PLANS 2008), Monterey, CA, 972–983. https://doi.org/10.1109/plans.2008.4570071
  5. ↵
    1. Davis, J. M., &
    2. Kelly, R. J.
    (1993). RNP tunnel concept for precision approach with GNSS application. Proc. of the 49th Annual Meeting of the Institute of Navigation, Cambridge, MA, 135–154. https://www.ion.org/publications/abstract.cfm?articleID=4530
  6. ↵
    1. EUSPA
    . (2021). EU agency for the space programme report on road user needs and requirements. https://www.euspa.europa.eu/euspace-applications/euspace-users/user-needs-and-requirements-2020
  7. ↵
    1. Falco, G.,
    2. Pini, M., &
    3. Marucco, G.
    (2017). Loose and tight GNSS/INS integrations: Comparison of performance assessed in real urban scenarios. Sensors, 17(2), 255. https://doi.org/10.3390/s17020255
  8. ↵
    1. Feng, Y., &
    2. Wang, J.
    (2008). GPS RTK performance characteristics and analysis. Journal of Global Positioning Systems, 7(1), 1–8. https://www.scirp.org/html/376.html
  9. ↵
    1. Gao, J.,
    2. Petovello, M., &
    3. Cannon, M.
    (2006). Development of precise GPS/INS/wheel speed sensor/yaw rate sensor integrated vehicular positioning system. Proc. of the 2006 National Technical Meeting of the Institute of Navigation, Monterey, CA, 780–792. https://www.ion.org/publications/abstract.cfm?articleID=6582
  10. ↵
    1. Godha, S., &
    2. Cannon, M.
    (2007). GPS/MEMS INS integrated system for navigation in urban areas. GPS Solutions, 11(3), 193–203. https://doi.org/10.1007/s10291-006-0050-8
    CrossRefWeb of Science
  11. ↵
    1. Grejner-Brzezinska, D. A.,
    2. Yi, Y., &
    3. Toth, C. K.
    (2001). Bridging GPS gaps in urban canyons: The benefits of ZUPTs. NAVIGATION, 48(4), 216–226. https://doi.org/10.1002/j.2161-4296.2001.tb00246.x
  12. ↵
    1. Grimes, J.
    (2007). Global positioning system precise positioning service performance standard. Department of Defense, United States of America. https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf
  13. ↵
    1. Groves, P. D.
    (2011). Shadow matching: A new GNSS positioning technique for urban canyons. NAVIGATION, 64(3), 417–430. https://doi.org/10.1017/s0373463311000087
  14. ↵
    1. Groves, P. D.
    (2013). Principles of GNSS, inertial, and multisensor integrated navigation systems (2nd ed.). Artech House.
  15. ↵
    1. Hazlett, A.,
    2. Crassidis, J.,
    3. Fuglewicz, D., &
    4. Miller, P.
    (2011). Differential wheel speed sensor integration with GPS/INS for land vehicle navigation. AIAA Guidance, Navigation, and Control Conference, Portland, OR, 6577. https://doi.org/10.2514/6.2011-6577
  16. ↵
    1. Householder, A. S.
    (1958). Unitary triangularization of a nonsymmetric matrix. Journal of the ACM (JACM), 5(4), 339–342. https://doi.org/10.1145/320941.320947
  17. ↵
    1. Jakobsen, J.,
    2. Jensen, A. B., &
    3. Nielsen, A. A.
    (2015). Simulation of GNSS reflected signals and estimation of position accuracy in GNSS-challenged environment. Journal of Geodetic Science, 5(1). https://doi.org/10.1515/jogs-2015-0006
  18. ↵
    1. Joerger, M.,
    2. Arana, G. D.,
    3. Spenko, M., &
    4. Pervan, B.
    (2017). Landmark data selection and unmapped obstacle detection in lidar-based navigation. Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 1886–1903. https://doi.org/10.33012/2017.15406
  19. ↵
    1. Johnson, G. T., &
    2. Watson, I. D.
    (1984). The determination of view-factors in urban canyons. Journal of Applied Meteorology and Climatology, 23(2), 329–335. https://doi.org/10.1175/1520-0450(1984)023<0329:tdovfi>2.0.co;2
  20. ↵
    1. Khanafseh, S.,
    2. Kujur, B.,
    3. Joerger, M.,
    4. Walter, T.,
    5. Pullen, S.,
    6. Blanch, J.,
    7. Doherty, K.,
    8. Norman, L.,
    9. de Groot, L., &
    10. Pervan, B.
    (2018). GNSS multipath error modeling for automotive applications. Proc. of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, 1573–1589. https://doi.org/10.33012/2018.16107
  21. ↵
    1. Levinson, J.,
    2. Montemerlo, M., &
    3. Thrun, S.
    (2007). Map-based precision vehicle localization in urban environments. Robotics: Science and Systems, 4(Citeseer), 1. https://doi.org/10.15607/rss.2007.iii.016
  22. ↵
    1. Nagai, K.,
    2. Fasoro, T.,
    3. Spenko, M.,
    4. Henderson, R., &
    5. Pervan, B.
    (2020). Evaluating GNSS navigation availability in 3-D mapped urban environments. Proc. of the IEEE/ION Position, Location and Navigation Symposium (PLANS 2020), Portland, OR, 639–646. https://doi.org/10.1109/plans46316.2020.9109929
  23. ↵
    1. Nagai, K.,
    2. Spenko, M.,
    3. Henderson, R., &
    4. Pervan, B.
    (2021a). Evaluating INS/GNSS availability for self-driving cars in urban environments. Proc. of the 2021 International Technical Meeting of the Institute of Navigation, 243–253. https://doi.org/10.33012/2021.17830
  24. ↵
    1. Nagai, K.,
    2. Spenko, M.,
    3. Henderson, R., &
    4. Pervan, B.
    (2021b). Evaluating INS/GNSS/LiDAR availability for self-driving cars in urban environments. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 2121–2132. https://doi.org/10.33012/2021.18058
  25. ↵
    1. Nagai, K.,
    2. Spenko, M.,
    3. Henderson, R., &
    4. Pervan, B.
    (2022). Fault-free integrity and continuity for driverless urban vehicle navigation: A case study in downtown Chicago. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 1350–1365. https://doi.org/10.33012/2022.18319
  26. ↵
    1. Obst, M.,
    2. Bauer, S., &
    3. Wanielik, G.
    (2012). Urban multipath detection and mitigation with dynamic 3D maps for reliable land vehicle localization. Proc. of the IEEE/ION Position, Location and Navigation Symposium (PLANS 2012), Myrtle Beach, SC, 685–691. https://doi.org/10.1109/plans.2012.6236944
  27. ↵
    1. Ong, R. B.,
    2. Petovello, M. G., &
    3. Lachapelle, G.
    (2009). Assessment of GPS/GLONASS RTK under various operational conditions. Proc. of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, 3297–3308. https://www.ion.org/publications/abstract.cfm?articleID=8743
  28. ↵
    1. Reid, T. G.,
    2. Houts, S. E.,
    3. Cammarata, R.,
    4. Mills, G.,
    5. Agarwal, S.,
    6. Vora, A., &
    7. Pandey, G.
    (2019). Localization requirements for autonomous vehicles. SAE International Journal of Connected and Automated Vehicles, 2(3), 1–16. https://doi.org/10.4271/12-02-03-0012
  29. ↵
    1. SC-159, R. F.
    (2004). Minimum aviation system performance standards for the local area augmentation system (LAAS). RTCA. https://my.rtca.org/productdetails?id=a1B36000001IcjtEAC
  30. ↵
    1. Tanil, C.
    (2016). Detecting GNSS spoofing attacks using INS coupling [Doctoral dissertation, Illinois Institute of Technology]. http://www.navlab.iit.edu/uploads/5/9/7/3/59735535/tanil-dissertation.pdf
  31. ↵
    1. Wan, G.,
    2. Yang, X.,
    3. Cai, R.,
    4. Li, H.,
    5. Zhou, Y.,
    6. Wang, H., &
    7. Song, S.
    (2018). Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes. Proc. of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 4670–4677. https://doi.org/10.1109/icra.2018.8461224
  32. ↵
    1. Woodman, O. J.
    (2007). An introduction to inertial navigation. University of Cambridge, Computer Laboratory. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
  33. ↵
    1. Zhu, N.,
    2. Marais, J.,
    3. Bétaille, D., &
    4. Berbineau, M.
    (2018). GNSS position integrity in urban environments: A review of literature. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2762–2778. https://doi.org/10.1109/tits.2017.2766768
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 1
Spring 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago
Kana Nagai, Matthew Spenko, Ron Henderson,, Boris Pervan
NAVIGATION: Journal of the Institute of Navigation Mar 2024, 71 (1) navi.631; DOI: 10.33012/navi.631

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago
Kana Nagai, Matthew Spenko, Ron Henderson,, Boris Pervan
NAVIGATION: Journal of the Institute of Navigation Mar 2024, 71 (1) navi.631; DOI: 10.33012/navi.631
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 NAVIGATION PERFORMANCE REQUIREMENTS
    • 3 MULTI-SENSOR INTEGRATED NAVIGATION SYSTEMS
    • 4 CRITICAL ELEMENTS OF URBAN NAVIGATION
    • 5 COVARIANCE ANALYSIS
    • 6 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • APPENDIX A: MULTI-SENSOR MEASUREMENT MODELS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • integrity
  • multi-sensor
  • self-driving car
  • urban environment

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire