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1  INTRODUCTION

After more than 50 years since the Apollo program, there is a growing interest 
in establishing a sustainable human presence on the Moon. To support increas-
ing plans for lunar exploration, various missions are being planned in different 
lunar orbit regimes, e.g., the European Space Agency’s lunar Pathfinder (Giordano 
et al., 2022), which is to be deployed in an elliptical lunar frozen orbit (ELFO), and 
the Lunar Gateway (Winternitz et al., 2019), which is being spearheaded by the 
National Aeronautics and Space Administration (NASA), in a near-rectilinear halo 
orbit (NRHO). These missions require precise positioning and onboard timing to 
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execute reliable communication; onboard guidance, navigation, and control; and 
mission activity planning. As per NASA’s Services Requirement Document (SRD) 
for lunar relay satellites (National Aeronautics and Space Administration, 2022), 
the required signal-in-space error (SISE) in position is 13.34 m (3σ, 99.7% of the 
time), and the SISE requirement in velocity is 1.2 mm/s (3σ) over any 10-s interval.

1.1  Prior Work on Positioning, Navigation, and Timing in 
Lunar Orbits

In the Lunar Reconnaissance Orbiter (LRO) mission, positioning accuracy 
better than 20 m is achieved by combining range and Doppler radiometric data 
tracked from the Universal Space Network and altimetric data from the lunar 
orbiter laser altimeter (Mazarico et al., 2012). However, in ground-based tracking, 
the position, navigation, and timing (PNT) information is estimated with a delay 
due to the time required for data post-processing and uplinking, thus restricting 
the real-time estimation of lunar satellite position. In addition, the scalability of 
these ground-station-based techniques is limited because they require dedicated 
deep-space antennas for recurring downlink/uplink tasks. Moreover, conducting 
orbit determination via ground station measurements requires human-in-the-loop 
operations, which could lead to an increase in mission operation costs. To this end, 
efforts have been made to achieve onboard navigation for lunar orbits. For example, 
the cislunar autonomous positioning system technology operations and navigation 
experiment (CAPSTONE) satellite, which entered an NRHO around the Moon, 
estimates its position in space without having to rely exclusively on Earth tracking 
stations (Cheetham et al., 2022). In particular, the CAPSTONE satellite communi-
cates directly with the LRO and utilizes crosslink data to measure its distance and 
rate of distance change from the LRO, thus determining CAPSTONE’s position.

There has been growing interest in harnessing the signals being broadcast by 
the legacy terrestrial Global Positioning System (GPS) to achieve precise, stand-
alone positioning in a lunar orbit. This research is motivated by the widespread 
use of terrestrial GPS for near-Earth space applications. Prior simulation works 
(Capuano et al., 2016, 2017; Schonfeldt et al., 2020) have demonstrated the pres-
ence of continual time segments at lunar distances during which terrestrial GPS 
signals are not occluded by Earth or the Moon, and their received signal power 
is sufficient for signal acquisition and tracking. These findings establish that, in a 
lunar orbit, it is possible to intermittently track a sufficient number of terrestrial 
GPS satellite signals required for estimating a full navigation solution (i.e., posi-
tion, velocity, and timing). SpacePNT has developed a high-sensitivity, spaceborne 
global navigation satellite system (GNSS) receiver named NAVIMOON (Pultarova, 
2021; Scotti et al., 2022), which will fly onboard the Lunar Pathfinder in 2026 and 
will perform a satellite navigation positioning fix in a lunar orbit. Additionally, the 
NASA Goddard Space Flight Center (GSFC) has pioneered work in developing the 
Navigator, a fully space-flight-qualified receiver with the ability to track very weak 
terrestrial GPS signals (Winternitz et al., 2004). GSFC is planning to test GPS nav-
igation in the Earth-Moon transfer orbit in 2024 during the Lunar GNSS Receiver 
Experiment (Parker et al., 2022).

Particularly, achieving precise positioning and timing of satellites in lunar orbits 
poses significant challenges, including the following key issues:

• Increased measurement noise due to the low carrier-to-noise ratio (C/N0) of 
weak terrestrial GPS signals;
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• Weak central gravitational potential and significant gravitational anomaly of 
the Moon, stronger third-body effects due to Earth, and relatively stronger 
solar radiation perturbations compared with central gravity, especially in 
highly eccentric orbits such as ELFOs and NRHOs;

• Intermittent outage of terrestrial GPS signals in low lunar orbits and near 
perilunes of eccentric orbits; and

• Poor geometry of terrestrial GPS satellites as seen from lunar satellites, leading 
to large dilution of precision (DOP) values and low observability of terrestrial 
GPS measurements.

Several works have also evaluated terrestrial GPS-based positioning and timing 
performance in various lunar orbits, including Earth-Moon transfer orbits, ELFOs, 
NRHOs, and low lunar orbits (Capuano et al., 2016, 2017; Lopes et al., 2014; Small 
et al., 2022; Winternitz et al., 2019). Capuano et al. (2016) and Capuano et al. 
(2017) developed an orbital filter that fuses observations of terrestrial GPS pseu-
dorange and pseudorange rate with an orbital force model through an adaptive 
extended Kalman filter framework. In our prior works (Bhamidipati et al., 2022a, 
2022b), we successfully demonstrated the use of terrestrial GPS pseudoranges to 
achieve precise and standalone timing onboard small satellites (SmallSats) in vari-
ous lunar orbits such as low lunar orbit, prograde circular orbit, ELFO, and NRHO. 
In another prior work (Iiyama et al., 2021), we developed a decentralized, auton-
omous state estimation algorithm for SmallSats that provides PNT service using 
terrestrial GPS pseudoranges and inter-satellite communication links. However, 
all of these works rely on pseudorange measurements with only meter-level accu-
racy, thus restricting the positioning and timing accuracy achieved in lunar orbits.

1.2  Opportunities and Challenges of Using Terrestrial GPS 
Carrier-Phase Measurements in a Lunar Orbit

To achieve precise navigation in a lunar orbit, it would be beneficial to explore 
leveraging carrier-phase measurements that provide millimeter-level ranging accu-
racy when integer ambiguities are correctly fixed, unlike the meter-level pseudor-
ange measurements used in prior lunar PNT works.

While carrier-phase measurements could provide more precision compared with 
pseudorange, this precision comes at the cost of fixing the unknown integer ambi-
guity. Integer ambiguity is often resolved via a least-squares ambiguity decorrela-
tion adjustment (Teunissen et al., 1997). For pairs of satellites in an Earth orbit, 
several missions have demonstrated that precise real-time relative navigation can 
be achieved by processing single-difference carrier-phase measurements (D’Amico 
et al., 2013; Kahr et al., 2018). However, it is difficult to resolve integer ambiguity 
for the absolute positioning of lunar satellites because of the following challenges:

• Currently, base stations or reference satellites with well-known positions that 
could be used for differential positioning do not exist on the Moon or in a lunar 
orbit.

• It is difficult to fix integer ambiguities when the terrestrial GPS geometry seen 
from the user is poor compared with Earth orbits.

• It is challenging to keep track of the carrier-phase signal from the same 
terrestrial GPS satellite for a long time in a lunar orbit, because of signal 
blockage by the Earth and Moon.
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The time-differenced carrier-phase (TDCP) formulation avoids the problem of 
integer ambiguity fixing by differentiating the carrier-phase measurement between 
two time steps (Guillard et al., 2022; Kim et al., 2019; Zhao, 2017). The TDCP appra-
och utilizes the fact that the integer ambiguity is constant over time while the car-
rier phase is tracked, which is true except when a cycle slip occurs. The TDCP 
formulation is also beneficial for removing slow-varying signal errors caused by 
terrestrial GPS satellite clocks and relativistic effects. Moreover, the TDCP formu-
lation is well suited for the rapid motion of a lunar satellite, as we can benefit from 
the geometrical diversity of the terrestrial GPS satellites between two carrier-phase 
values at different time steps.

1.3  Proposed Framework

We propose a precise positioning and timing technique (see Figure 1) for lunar 
satellites that harnesses the intermittently available terrestrial GPS TDCP measure-
ments and the gravitational accelerations predicted by the orbital filter. Note that 
our proposed framework can improve state estimates only when terrestrial GPS 
satellites are available. When terrestrial GPS measurements are not visible because 
of occultations from Earth and the Moon, the orbital filter can mitigate the drift in 
the position estimate (see results in Section 4 for further details).

Here, we design a TDCP-based extended Kalman filter framework. To account 
for time correlations across TDCP measurements, we design an augmented 
state vector that incorporates consecutive lunar satellite states and performs 
fixed-point smoothing at each measurement update. The increase in the com-
putational cost of the time and measurement update due to the increase in state 
size is minimized by effectively skipping unnecessary computations in the clas-
sical Kalman filter. The filter also executes cycle-slip detection, which discards 
corrupted TDCP measurements via measurement residual analysis. Moreover, 
we also implement an adaptive state noise compensation (ASNC) algorithm 
(Stacey & D’Amico, 2021) to adaptively adjust the process noise of the filter and to 
enhance the robustness of estimation in the challenging, dynamic lunar environ-
ment (i.e., with weak gravity and strong external perturbations). This approach 

FIGURE 1 Our proposed framework performs precise positioning and timekeeping onboard 
a lunar satellite by leveraging the intermittently available terrestrial GPS TDCP measurements. 
The figure is not to scale.
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is particularly beneficial for elliptical lunar orbits such as ELFOs, wherein the 
dynamic environment changes significantly between periapsis and apoapsis, thus 
also changing the process noise statistics. Our proposed framework will bridge 
the gap in lowering the current standards for positioning and timing accuracy 
achievable in a lunar orbit and thereby facilitate reliable operations during the 
entire mission life cycle of a lunar satellite. To the best of the authors’ knowledge, 
this is the first work to leverage TDCP measurements of terrestrial GPS satellites 
to navigate lunar satellites.

1.4  Key Contributions

Our key contributions are listed below. This work is based on our prior confer-
ence paper presented at the 2023 International Technical Meeting of the Institute 
of Navigation (Iiyama et al., 2023a).

• We propose a precise PNT technique for lunar satellites that harnesses the 
intermittently available terrestrial GPS TDCP values and gravitational 
accelerations predicted by the orbital filter.

• We address the problem of conditional dependence that occurs in the 
processing of GPS TDCP measurements by introducing augmented states 
constructed by concatenating states of two time steps.

• We propose a time update and measurement update scheme that effectively 
reduces the computational cost compared with directly applying the Kalman 
filter update equations to the augmented state.

• We detect outliers to discard TDCP measurements corrupted by increased 
measurement noise due to a low received (C/N0) and cycle slips.

• We execute an ASNC algorithm to optimally adjust the process noise of the 
filter based on the dynamic characteristics of a lunar satellite within orbit.

• Through high-fidelity Monte-Carlo simulations of a lunar satellite in an ELFO 
and quasi-frozen low lunar orbit (QFLLO), we confirm that our proposed 
framework achieves improved positioning and onboard timing as compared 
with the pseudorange-only navigation technique.

The remainder of this paper is organized as follows. Section 2 describes the for-
mulation of lunar satellite dynamics and terrestrial GPS TDCP measurements. 
Section 3 discusses our proposed TDCP-based extended Kalman filter framework. 
Section 4 explains our simulation setup and experimental results. Section 5 pro-
vides concluding remarks.

2  PRELIMINARIES

We now describe the preliminaries regarding the linearized dynamics associated 
with the nonlinear motion of lunar satellites. We also introduce the math related to 
terrestrial GPS-based TDCP measurement formulation.

2.1  Lunar Satellite Dynamics Formulation

The satellite dynamics in a lunar orbit can be explained in terms of the equations 
of motion associated with their a) position and velocity via orbital dynamics, and 
b) time via dynamics of the onboard clock.
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2.1.1  Orbital Dynamics

Based on the work by Montenbruck and Gill (2000), at any time step k, the 
 satellite dynamics is a nonlinear function of time, position, velocity, and the solar 
radiation pressure coefficient and is given by the following:
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where γ denotes the ballistic coefficient of the solar radiation pressure, tk denotes 
the time based on GPS time, ru ∈ R3 and vu ∈ R3 denote the position and velocity of 
the lunar satellite in the Moon-centered inertial (MCI) frame, respectively, and rv 
denotes the associated process noise. In this paper, we use a Moon-centered J2000 
frame for the MCI frame. Additionally, a(t, ru, vu, γ) is the total acceleration on the 
lunar satellite, which equals the sum of the gravitational acceleration ag(t, ru, vu) 
and the acceleration due to solar radiation pressure a



(γ).
In Equation (1), the gravitational acceleration of the lunar satellite, which is 

calculated as the sum of the high-order gravitational terms from the Moon and 
third-body perturbations from the Earth, Sun, and Jupiter, can be expressed as fol-
lows (Montenbruck & Gill, 2000):
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where Ug and ∇Ug denote the gravitational potential and its  gradient, respectively, 
G  is  the universal gravitational constant, which equals 6.67430 × 10−11 m3/kg s2, 
M, R are the mass and position of the Moon, r p is the position of the third-body 
planets (Earth, Sun, and Jupiter), and Mp is the corresponding mass. At each time 
step, r p is obtained from the DE440 ephemerides data available in the Spacecraft, 
Planet, Instrument, C-matrix, Events (SPICE) library of the Navigation and 
Ancillary Information Facility (NAIF) (Acton et al., 2018). Additionally, ϕ and λ 
are the latitude and longitude of the spacecraft position in the Moon-fixed frame, 
respectively. Pnm  is the normalized Legendre function, and Cnm  and Snm  are 
the normalized geopotential coefficients. For the Moon-fixed frame, we used the 
“IAU_MOON” frame provided in the NAIF SPICE library. Nsph  is the maximum 
degree and order of the higher-order gravity terms.

In Equation (1), the acceleration due to solar radiation pressure a


 is calculated 
from the cannon ball model as follows:
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where Φ


 denotes the solar flux at 1 astronomical unit (AU) (= 1360 W/m2; 
1 AU = 1.498 × 108 km) and Au and Mu denote the surface area and mass of the 
lunar satellite, respectively. Additionally, d denotes the heliocentric distance to the 
lunar satellite, ˆSune  denotes the sun unit direction vector from the lunar satellite, 
and CR � �1   denotes the coefficient of reflection, where 0 1≤ ≤  is the radiation 
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reflection ratio of the spacecraft body. Finally, c  denotes the speed of light, which 
equals 299792.458 km/s. To account for orbital perturbations due to solar radiation 
pressure with high precision, existing literature on orbit determination of satellites 
(Montenbruck & Gill, 2000) estimates � � C A

M
R

u

u  as part of the state.
Let S r v( ) [ ( ) ( ) ]t t tu u� �   be the vector of states related to the orbital dynam-

ics. To obtain the linearized dynamics, consider the linearized state sk  around the 
reference state Sk*  as follows:

 s S S( ) ( ) ( )t t t� � �  (5)

where the reference state is initialized at the current estimate of the states, 
ˆ ˆ[( ) ( ) ( ) ]u ut t t γ∗ =S r v   (e.g., the predicted state estimated via a time update 

step, as explained in Section 3.2).
By re-defining a r v( , , , )t u u γ  from Equation (1) as a S( , ( ))t t ,  we obtain the lin-

earized dynamics as follows:
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By propagating Equation (6) from tk−1  to tk ,  we have the following:

 s sk
rvc

k k kt t� � �� ( ), 1 1  (8)

where �rvc
k kt t( ), �

��1
7 7R  is the state transition matrix. The state transition matrix 

can be computed by propagating the following equation from tk−1  to tk :  
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2.1.2  Clock Dynamics

The clock bias � u �R  and clock drift � u �R  are propagated by using the follow-
ing discrete, two-state error model taken from Galleani (2008):
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where the noise vector ε ε εk
clk

k� [ ]� �
�  is Gaussian noise sampled from the 

random-walk process of the clock.
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2.2  Terrestrial GPS TDCP Formulation

It is difficult to resolve the integer ambiguity in a non-differential mode and 
poor GPS geometry scenario, as considered in this paper. However, as discussed 
in Section 1, under the condition that the integer ambiguity is constant over time, 
the integer ambiguity can be eliminated by differencing the carrier-phase measure-
ments between two time steps.

The terrestrial GPS TDCP measurement of any i-th satellite �T i�  using 
carrier-phase values at time steps k  and ( )k −1 ,  i.e., φki  and �ki �1,  respectively, is 
given by the following:
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where, eliminating subscripts k  and k −1  for the sake of simplicity, τ u  is the 
receiver’s clock bias and φi  is the carrier-phase measurement noise. For any terres-
trial GPS satellite i i, r  is the satellite position in the MCI frame, ( )eu i  is the unit 
line-of-sight vector from the lunar satellite to the terrestrial GPS satellite i, and 
τ i  is the satellite clock error. Additionally, ∆T  is sufficiently small such that the 
time difference in the tropospheric, ionospheric, and multipath-related terms in 
the standard carrier-phase equation (Kaplan & Hegarty, 2017) is considered neg-
ligible and is thus absorbed into the residual noise term �T i� .  Additionally, we 
utilize terrestrial GPS-based pseudorange and pseudorange rate measurements in 
our proposed filter, with standard equations taken from the work of Kaplan and 
Hegarty (2017). A detailed explanation regarding the terrestrial GPS measurement 
formulation can be found in our prior work (Iiyama et al., 2023b).

3  PROPOSED TDCP EXTENDED KALMAN FILTER

Figure 2 shows a high-level overview of our proposed framework, which is based 
on an extended Kalman filter. In this framework, we execute the time update step 
based on the orbital dynamics and the measurement update step via terrestrial 
GPS-based pseudorange, pseudorange rate, and TDCP measurements. We perform 
outlier detection in carrier-phase measurements during the measurement update 
step. We implement an ASNC algorithm to adjust the process noise to be used in the 
time update. The details of each process are provided in the following subsections.

3.1  Augmented State

Let Xk �
�R9 1  be the lunar satellite state vector defined in Equation (13):
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k
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 (13)

The lunar satellite state vector Xk  includes the position ru ,  velocity vu ,  solar 
radiation pressure reflection coefficient CR ,  clock bias τ u ,  and clock drift τ u .  The 
position ru  and velocity vu  are in the MCI frame, where the axes of the inertial 
frame are chosen to coincide with J2000.

In Equation (12), eku−1  and eku  are functions of Xk−1  and Xk ,  respectively. 
Therefore, the TDCP measurement zk T k

i� � �  is a function of two consecutive 

(from Kaplan and Hegarty (2017))
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lunar satellite states. This breaks one of the assumptions of the Kalman filter, 
which is the conditional independence of Xk−1  and zk ,  given Xk ,  as follows:

 COV COV

 



z X X z Xk k k k k� ��� � � � �1,  (14)

Previous works have addressed this issue by modifying the extended Kalman 
filter update equations to account for the conditional dependance (Guillard et al., 
2022; Kim et al., 2019). However, the framework in those previous works processes 
the TDCP measurement separately from the other measurements (e.g., pseudor-
ange), which ignores the effect of future measurements on the past state estimate. 
Note that when TDCP measurements are present, future measurements will also 
provide information on the past states because the TDCP measurements will cor-
relate the states at two different time steps.

In this paper, we propose an alternative approach, where we construct an 
augmented state:
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by concatenating the two states at consecutive time steps at which the two 
carrier-phase measurements that construct the TDCP measurement are taken. By 
introducing this new state, the TDCP measurement becomes a function of Xk  only; 
thus, conditional independence can be secured. One advantage of the augmented 
state approach is that it accounts for the aforementioned effect in the measure-
ment update by processing other measurements together with the TDCP measure-
ments. Another advantage of the augmented state approach is that it can handle 
an arbitrary number of intermediate measurements (e.g., inertial measurement 

FIGURE 2 Flowchart of our proposed framework, wherein the time update is performed via 
an orbital filter and the measurement update is executed via terrestrial GPS-based measurements 
when at least one terrestrial GPS satellite is visible
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unit [IMU] data, inter-satellite range) between two TDCP measurements. While 
intermediate measurements are not considered in this paper, we have presented a 
framework to jointly process IMU and TDCP measurements with the augmented 
state approach in our previous work (Iiyama et al., 2023b).

3.2  Time Update Step

We first define the linearized state vector x  around the reference lunar satellite 
state (i.e., current estimate of the state in the extended Kalman filter) vector X ∗  
as follows:

 

 x X X� � �  (16)

Based on Equations (16), (8), and (11), the linearized dynamics of the lunar sat-
ellite state vector xk  at any k  time step are given by the following:
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where k  denotes zero-mean Gaussian process noise, whose covariance Qk  
depends on the noise covariance in the lunar satellite position and velocity, which 
is given by Qk

rv ,  and that in the lunar satellite clock, which is given by Qclk .  Note 
that the state transition matrices �rvc

k kt t( ), �1  and �clk
k kt t( ), �1  were defined in 

Equations (9) and (11), respectively. We set the process noise of the solar ballistic 
coefficient γ  to 0 because its variation will most likely be slow enough to justify the 
assumption of zero process noise.

In Equation (19), the process noise covariance Qclk  is modeled as 
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components of the clock phase deviation and clock frequency deviation.
The process noise covariance Qk

rv  is formulated as follows (Tapley et al., 2004):
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where Qa � �R3 3  is defined as the unmodeled acceleration, �rv
kt( ),� � �R6 6  is the 

position and velocity component of the state transition matrix, and κ  is the vari-
able of integration, which represents time. With the assumption that the process 
noise does not perturb the state enough to change the accelerations over the update 
interval, Equation (20) can be approximated as follows (Myers, 1974):
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Next, we formulate the linearized augmented state vector xk  given by 

x
x
xk

k

k
�
�

�
�
�

�

�
�
��



 1
,  where xk  was introduced in Equation (16). In the time update of 

our proposed framework, we propagate the linearized augmented state xk  and its 
covariance Pk  as follows:

 1 1ˆ  ( , )k k k kx t t x− −= Φ  (23)

 
1 1 1

ˆ  ( , ) ( , )k k k k k k kP t t P t t Q− − −= Φ Φ +
 (24)

where xk  and Pk  are the predicted augmented state vector and its covariance at time 
step k, respectively. Similarly, 1ˆkx −  and 1k̂P −  are the estimated augmented state vec-
tor and its covariance at time step ( )k −1 ,  respectively. The state transition matrix 

of the augmented state �( , )t tk k�1  is given by �
�

( , )
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t t
t t
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with the state transition matrix �( , )t tk k�1  defined in Equation (18). In addition, 

the process noise covariance Qk  is given by Q
Q

k
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�

�
�
�

�

�
�
�

�

� �

 0
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9 9

9 9 9 9
,  where the pro-

cess noise covariance matrix Qk  of the linearized state vector x  was defined in 
Equation (19). Note that the state transition matrix and process noise covariance 
matrix corresponding to the second part of the state are identity and zero matrices, 
respectively, because the second half of the state represents the fixed past state tk−1  
and thus remains unchanged.

3.3  Measurement Update Step: Modified for 
Computational Efficiency

Compared with simply applying the measurement update step equations per-
formed in the extended Kalman filter to the full augmented state, we can reduce 
the computational cost by only calculating half of the Kalman gain matrix. This 
approach is possible because the second half of the updated linearized augmented 
state vector ˆkx  (i.e., after the measurement update step) will be the estimate of the 
lunar satellite state vector at time tk−1  based on the measurements up to tk  (i.e., 
ˆ( 1 )).x k k− |  The full estimate ˆkx  and its covariance k̂P  need not be calculated 

unless we want to refine our past state estimate at which the last terrestrial GPS 
measurement was received. Because the augmented state will be re-initialized after 
the measurement update, as shown in Section 3.4, and will not be used in the later 
time steps, the Kalman gain only has to be calculated for the first half of the states 
(as shown later in Equation (26)).

In the measurement update step, our proposed filter processes a stacked mea-
surement vector that combines three types of terrestrial GPS measurements, i.e., 
pseudorange ρ,  pseudorange rate ρ,  and TDCP �T�.  Let zk  be the stacked mea-
surements obtained at time step k  as follows:

 zk k k
m

k k
m

T k T k
m� �� ��
�� � � � � �1 1 1, , , , , , , ,� � �� � � �


 (25)

where m  and ′m  are the number of available terrestrial GPS signals and TDCP 
signals, respectively. The total number of measurements will be M m m� � �2 .  We 
additionally model the measurement covariance matrix Rk  as a time-dependent 
diagonal matrix. We modeled the pseudorange error based on the thermal noise 



IIYAMA et al.    

of the receiver delay lock loop (DLL), carrier tracking errors with phase lock 
loop  (PLL) thermal noise, and pseudorange rate errors with frequency lock 
loop  (FLL) tracking loop jitter. More details regarding this covariance modeling 
can be found in the work by Kaplan and Hegarty (2017). We also added a Gaussian 
noise term of 10 2�m ( )σ  to the pseudorange and 0 01 2. / ( )�m s σ  to the pseudo-
range rate as a SISE. This value is based on the SISE values ( �m %≤ 7 0 95.  user 
range error and ≤ 0 006 95. /�m s %  user range rate error) specified in the GPS per-
formance standard (Department of Defense, 2020). We added some margins to the 
specified values to account for additional errors, such as group delays in the side-
lobe signal and ionospheric delays. Time correlations in the SISE are not modeled 
in this work, but will be addressed in future work. For the TDCP measurements, 
we assumed that SISEs and propagation errors were completely removed via time 
differentiation.

As explained earlier, to improve computational efficiency, we compute the 
Kalman gain for only the first half of the states. To do so, we first divide the predicted 
state covariance (the covariance matrix after the time update in Equation (24)) into 
four sub-matrices of size R9 9× ,  as follows:

 P
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P Pk
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We then calculate the Kalman gain Kk
M� �R9  as follows:

 K P P H Sk k k k k k k� �� ���
�

, , 1
1  (27)
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 (28)

 S H P H Rk k k k k� �  (29)

Here, Hk  denotes the linearized measurement model (defined in Equation (28)) 
that stacks the linearized measurement models associated with the pseudorange 
H kρ , ,  pseudorange rate H kρ , ,  and TDCP H

T k� � , .  The augmented state and its 
covariance will be reconstructed from these values following the procedure shown 
in Section  3.4. For any i-th satellite, the linearized measurement models of the 
pseudorange H k

i
ρ , ,  pseudorange rate H k

i
ρ , ,  and TDCP H

T k
i
� � ,  are defined in 

Equations (30), (31), and (32), respectively:
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With our measurement vector zk  from Equation (25), the modeled measure-
ment covariance Rk ,  and the updated Kalman gain Kk  from Equation (27), the 
state estimate 9 1ˆ

kX ×∈   and the covariance estimate 9 9
,k̂ kP ×∈  are updated via 
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the sub-component of the Joseph form equation for the extended Kalman filter 
(Bucy & Joseph, 1987) as follows:

 ˆ ˆk k k kX X K y= +  (33)

 ,
ˆ  k k k k k k k kP J P J K R K= +   (34)

 J K Hk k k�
�

�
�
�

�

�
�
�

� ��

�

�
I9 9

9 9

9 18
0



R  (35)

where 1ˆ M
ky ×∈  denotes the measurement residual, i.e., the difference between 

the received measurements zk  and the expected measurement for the predicted 
augmented state vector Xk  (defined as a stack of the measurement equations 
related to pseudorange, pseudorange rate, and TDCP). The Joseph form is mathe-
matically equivalent to the standard Kalman filter measurement update equations, 
but has better numerical robustness and prevents the covariance matrix from 
becoming non-positive definite (Tapley et al., 2004).

3.4  Augmented State Vector Reconstruction

We reconstruct the augmented state vector and covariance after the measure-
ment update to process the next TDCP measurements. The reconstructed aug-
mented state for processing the next TDCP measurement between time steps k  
and ( )k +1  is as follows:

 , ,

, ,

ˆ ˆ ˆ
ˆˆ  and  ˆ ˆ ˆ

k k k k k
k k

k k k kk

X P P
x P

P PX

   
 = =  
     





 (36)

where ,k̂ kP  is the obtained covariance in Equation (34). Note that the covariance 
matrix of the augmented state given by Equation (36) is positive semi-definite and 
therefore valid. See Appendix A for a corresponding proof. The augmented state 
ˆkx  and its covariance k̂P  are propagated via time update steps until the next ter-

restrial GPS measurement at time step k +1.  As noted by Gopalakrishnan et al. 
(2011), this procedure can be viewed as a fixed-point smoothing of the lagged state 
xk  based on future predictions from the orbital filter and the terrestrial GPS mea-
surements at time step k +1.

Note that the time update of the augmented state covariance matrix of size 
18 18×  shown in Equation (24) can be executed with the same computational cost 
as updating the 9 9×  covariance matrix, as shown below in Equation (37):

We expand Equation (24) using 1, 1 1, 1
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which has the same computational cost as calculating ,k kP =

1 1, 1 1 ,ˆ( , ) ( , )k k k k k kt t P t t Q− − − −Φ Φ +  

  because the other three sub-matrices of Pk ,  i.e., 

1 1, 1 1, 1 1
ˆ ˆ) ,( , , ( , )k k k k k k k kt t P P t t− − − − − −Φ Φ 

  and 1, 1
ˆ ,k kP − −  can be obtained during the 

computation of Pk k, .

3.5  Adaptive State Noise Compensation

As explained in Section  1, the dynamic environment changes significantly 
between the periapsis and apoapsis for elliptical lunar orbits such as ELFOs and 
NRHOs. Therefore, it would be beneficial to estimate the process noise covariance 
online through adaptive filtering techniques to automatically tune the process 
noise covariance to improve performance and robustness.

In ASNC, the empirical process covariance of the position and velocity is calcu-
lated as an average over the sliding window of the past N  time steps as follows:

 ( )
1

1 1 1
1ˆ ˆ ˆ (( , ) )( , )

k
rv T x x
k p p p p p p p p

p k N

Q P t t P t t
N

−

− − −
= −

= −Φ Φ + ∆ ∆∑   (38)

Here, the state update ∆kx  is defined as ˆ ,x
k k kK y∆ =  where ˆky  denotes the mea-

surement residual defined in Equation (33) and Kk  denotes the Kalman gain 
defined in Equation (27). Correspondingly, note that the theoretical process noise 
covariance matrix and its approximation were defined in Section 3.2.

The objective of this ASNC step is to calculate the covariance of the unmod-
eled acceleration Qa � �R3 3  that minimizes the difference between Equation (38) 
and Equation (22), assuming that Qa  is a diagonal matrix. This is a weighted 
least-squares problem, and the solution can be obtained analytically as follows 
(Stacey & D’Amico, 2021):
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Here, �prv � �R6 6  is the first six rows and columns of the covariance of the state 
update �p p p p pK S K S� � � R9 9 (  is defined in Equation (29)), and ( )  denotes 
Hadamard (element-wise) multiplication.
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After Qa  is computed from Equations (39)–(42), it is inserted into Equation (22) 
to perform the time update.

3.6  Outlier Detection

To correctly process TDCP measurements, outliers caused by different factors, 
such as increased measurement noise or cycle slips, should be detected and dis-
carded. For each TDCP measurement i m� � �1, ,  as discussed for Equation (43), 
we perform outlier detection by comparing the normalized residual metric, which 
is formulated as the ratio of the squared measurement residual ( )2,

ˆ
T

i
ky φ∆  and its 

expected covariance ( ), ,S
T k i i

m m
� � � � ��R .  We discard measurement i  if the normal-

ized residual metric is greater than the pre-defined threshold γ cs2  or if the ratio of 
the carrier wavelength λc  and the expected covariance of the residual is below 
a predefined threshold γ cs2 .  The first criterion discards outliers, whereas the sec-
ond criterion discards all TDCP measurements whenever we have large residual 
expectations and it is difficult to distinguish whether the residuals are due to cycle 
slips or measurement noise. The selection of γ cs  depends on the desired balance 
between sensitivity and false alarm rate as follows:
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4  EXPERIMENTAL SETUP AND RESULTS

We validate our proposed framework using a MATLAB simulation of lunar satel-
lites equipped with a terrestrial GPS receiver and an onboard clock.

4.1  Experimental Setup

To verify the proposed algorithm, we simulate the PNT performance of a satellite 
operating in an ELFO. The starting epoch of the simulation is set to 2022 August 
01, 01:00:00, and the simulation time duration is set to four orbits for the ELFO. 
The orbit is shown in Figure 3(a). The initial orbital elements and the orbital peri-
ods are shown in Table 1.

To model the transmit antenna onboard the terrestrial GPS satellites in our 
simulation setup, we utilize the transmit power and antenna gain patterns of the 
L1 coarse acquisition signals from the NASA antenna characterization experi-
ment (Donaldson et al., 2020) for Block II-F and the original data from Lockheed 
Martin for Block IIR and IIR-M satellites (Marquis & Reigh, 2015). Because of a 
lack of data for Block III satellites, we assumed they have the same antenna pat-
terns as Block II-F satellites. For the GPS receiver, we consider a high-gain steer-
ing antenna with 14 dBi at an off-boresight angle of 0° and a 3-dB beamwidth of 
12.2°, representative of the current design of the Pretty CubeSat mission (Fragner 
et al., 2020).
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The terrestrial GPS signal from each GPS satellite is considered to be visible 
when it is not blocked by the Earth and Moon and the C/N0 continuously exceeds 
the acquisition and tracking threshold of 15 dB-Hz. All terrestrial GPS signals that 

TABLE 1
Initial Orbit Elements and Orbital Period of the ELFO
The orbital elements are given in the J2000 frame.

Orbit Semi-major 
axis [km]

Eccentricity Inclination 
[deg]

Right 
ascension 
of the 
ascending 
node [deg]

Argument 
of perigee 
[deg]

Mean 
anomaly 
[deg]

Orbital 
period 
[h]

ELFO 6539.1 0.60 74.54 4.20 92.12 180 13.2

FIGURE 3 The lunar satellite’s trajectory and skyplot and the statistics of terrestrial GPS 
signals tracked from an ELFO (a) ELFO shown in the Moon-centered J2000 (b) Skyplot at a 
chosen time epoch where 11 terrestrial GPS signals are tracked. The GPS satellites are clustered 
in the satellite’s boresight direction. (c) Number of terrestrial GPS satellites tracked in the ELFO. 
The gray-shaded region in (c) illustrates the terrestrial GPS outage period (48 min per orbit, which 
corresponds to 6.1% of the orbital period). (d) DOP value of the terrestrial GPS signals. The DOP 
values are defined in the satellite body frame, where the z axis is the antenna boresight direction. 
The VDOP and GDOP values are over 100 times larger than the HDOP values.
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pass through a region within an altitude of 1000 km from the Earth’s surface are 
also discarded to remove signals subject to tropospheric or ionospheric delay. It is 
assumed that the demodulation of the almanac and ephemeris is not performed 
onboard but is provided from ground stations or other satellites, as the modula-
tion requires a higher C/N0 threshold of 26.5 dB-Hz for legacy navigation (LNAV) 
(Delépaut et al., 2020). Based on the simulation results reported by Delépaut et al. 
(2020), the mean number of GPS satellites whose ephemeris can be demodulated is 
3.08 for an NRHO. Computing the number of GPS satellites whose ephemeris can 
be demodulated onboard will be addressed as future work.

Figure 3(c) shows the number of terrestrial GPS signals that can be tracked. At 
some time points, a lunar receiver can track a maximum of 11 terrestrial GPS sat-
ellites. However, near the perilune, there exist complete GPS outages, lasting for an 
average of 48 min per orbit, which corresponds to 6.1% of the orbital period.

Figure 3(d) shows the geometric DOP (GDOP), time DOP (TDOP), horizontal 
DOP (HDOP), and vertical DOP (VDOP). Here, the HDOP and VDOP were calcu-
lated with respect to the body frame of the lunar satellite, where the +z axis points 
toward the center of the Earth. The VDOP and TDOP values are over 100 times 
larger than the HDOP values, which implies that we incur larger positioning errors 
in the line-of-sight direction of the signal. This result occurs because the lines of 
sight to the terrestrial GPS satellites are all clustered around the boresight direction 
and lack variation in elevation, as shown in Figure 3(b), because of the large dis-
tance between the lunar orbit and Earth compared with the size of the terrestrial 
GPS orbit.

We sample the position and velocity of the terrestrial GPS satellites at a rate of 
1 Hz. Correspondingly, we design our filter with an update interval of �t � 1 0. �s.  
To simulate the frequency random-walk noise and white frequency noise of the 
clock in Equation (10), parameters of the mini-rubidium atomic frequency stan-
dard (RAFS) (Orolia, 2021) ( .�1

111 0 10� � � ,  �2
151 1 10� � �. )  are used in modeling 

the on-board clock. The tracking loop parameters used to compute the thermal 
noise in the DLL, PLL, and FLL are summarized in Table 3.

The parameters shown in Table 2 are used for the truth dynamics model (used 
to generate measurement data) and the filter dynamics model (used for time 
updates). We assume that the filter model is only able to calculate the high-order 

TABLE 2
Dynamics Model Used in the Simulation

Truth dynamics model Filter propagation model

Point mass Sun, Earth, Jupiter Sun, Earth

High-order gravity Moon: 50 x 50 Moon: 20 x 20

Solar radiation pressure Spherical 50 kg, Area: 1 m2, 
CR = 1.5

Spherical 50 kg, Area: 1 m2, 
CR = 1.5 + 0.2 σ

Unmodeled acceleration - Estimated using ASNC

Note: CR stands for the solar radiation pressure constant

TABLE 3
Tracking Loop Parameters Used in the Simulation

Parameters Code loop 
noise 
bandwidth

Early-late 
correlator 
spacing 

Prediction 
integration 
time 

Double-sided 
front-end 
bandwidth 

Carrier loop 
noise bandwidth

Value 0.2 Hz 0.3 chips 20 ms 26 MHz 5.0 Hz
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gravity terms of the Moon up to a lower order and degree compared with the truth 
model because of the limited computation available onboard.

To evaluate the navigation performance of the filter and compare this perfor-
mance with the LunaNet SRD specifications, we calculate the root mean square 
(RMS) and the 68, 95, and 99.7 percentile values of the two values shown below:

2 2 2ˆ ˆ ˆ ˆPosition and Clock Bias Error (PCBE) ( ) ( ) ( ) | |x x y y z z c τ τ= − + − + − + −
 (44)

2 2 2ˆ ˆ ˆ ˆVelocity and Clock Drift Error (VCDE) ( ) ( ) ( ) | |x x y y z z c τ τ= − + − + − + −       

 (45)

where ( , , , , , )x y z x y z    are the true positions and velocities (in the MCI frame), 
ˆ ˆ ˆˆ ˆ ˆ( , , , , , )x y z x y z    are the estimated positions and velocities, ( , )τ τ  are the true clock 

bias and clock drifts, and ˆˆ( , )τ τ  are the estimated clock bias and clock drifts. We 
assess the mean performance over 24 Monte-Carlo simulations with different clock 
motions and state estimate initializations. However, in this work, we do not con-
sider other sources of SISE, such as orbit and clock fitting errors in broadcasted 
ephemeris parameters (Cortinovis & Iiyama, 2023) or uncalibrated or unknown 
group delays. Therefore, the position SISE and velocity SISE will be larger than the 
PCBE and VCDE values, respectively.

Assuming navigation aids from the ground station are provided for initial orbit 
determination, the initial state estimation error ( )1σ  was set to 100 m for each 
position axis in the MCI frame, 1.0 m/s for each velocity axis in the MCI frame, 
100 m for the clock bias (converted to meters by multiplication with the speed of 
light), and 0.1 m/s for the clock drift. Each performance metric was calculated by 
using the last orbital period of all of the Monte-Carlo runs to evaluate the PNT 
performance after convergence.

4.2  PNT Performance

The PNT performance was simulated for the cases in which all three types of 
measurements (psueduorange, pseudorange rate, and TDCP) were processed with 
or without ASNC. For the case without ASNC, the unmodeled acceleration was 
fixed to Qa � � � �� � �diag .([ . . . ])1 0 10 1 0 10 1 0 1014 14 14  When ASNC is used, the Qa  
matrix is adaptively updated; its trace value is shown in Figure 4. We can see that 
the unmodeled acceleration noise grows near the perilune. This increase occurs 
because the effects of unmodeled high-order gravity terms become more signifi-
cant near the perilune; moreover, the linearization errors between fixed time steps 
become larger because of the faster motion of the satellite.

The obtained estimation error is summarized in Table 4. Both PCBE and VCDE 
estimates are improved by adding the ASNC compared with using a fixed unmod-
eled acceleration value. However, despite the improved performance obtained with 
ASNC, the filter was not able to meet both SISE requirements of NASA, as shown 
by the cumulative distribution function (CDF) histogram in Figure 6. Potential 
ways to further reduce the estimation error include incorporating additional sen-
sor measurements, receiving signals from other GNSS constellations (e.g., Galileo), 
and tuning the ASNC window length, which is currently set to N = 10.

The time history of the estimation error and covariance of the lunar satellite 
states for the ASNC case is shown in Figure 5. From Figure 5, we observe that the 
position, velocity, and clock bias estimations converge after roughly two orbital 
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periods. This result occurs because the satellite is able to receive terrestrial GPS 
measurements from various directions while circulating around the orbit. Recall 
that it is challenging to estimate a lunar satellite’s position using single or limited 
terrestrial GPS measurements because of the high DOP values in the line-of-sight 
directions, as explained in Section 4.1. The ballistic solar radiation pressure coeffi-
cient γ  takes a longer time to converge than the other parameters, as it cannot be 
directly observed from the measurements, and the perturbations created by solar 
radiation pressure are relatively small compared with gravitational forces.

4.3  Outlier Detection

Our outlier detector (as explained in Section 3.6) was tested by randomly adding 
cycle slips to 30% of the simulated carrier-phase signals. The detection threshold 
was set to a constant value of � cs � 3.  Each cycle slip was simulated as an instan-
taneous change in the integer ambiguity term from the previous time step. The 
number of cycles that change from the previous time step when a cycle slip occurs 
was limited to integers between –5 and +5.

The navigation performance for the scenario with simulated cycle slips is shown 
in Table 5. When our outlier detector was not incorporated into the filter, the state 
estimation diverged by unknowingly processing biased estimates. In contrast, our 

TABLE 4
PNT Performance Obtained with Our Proposed Framework in an ELFO with an Onboard 
Mini-RAFS
“Below Req.” denotes the time ratio at which the PCBE/VCDE ratio falls below the SISE 
requirements of the LunaNet SRD (13.43 m for SISE of position and 1.2 mm/s for SISE of velocity).

Orbit Process 
Noise

Position and Clock Bias Error 
(PCBE) [m]

Velocity and Clock Drift Error 
(VCDE) [mm/s]

68% 95% 99.7% Below Req. 68% 95% 99.7% Below Req.

ELFO ASNC 5.81 10.06 14.0 99.5% 1.60 3.17 5.37 50.0%

ELFO Fixed 10.5 18.3 23.7 83.3% 3.52 5.69 9.32 12.9%

FIGURE 4 Trace of the unmodeled acceleration matrix ( )Qa  computed by the ASNC 
algorithm 
The unmodeled acceleration noise grows near the perilune, where the effects of unmodeled high-
order gravity terms become more significant and a larger linearization error occurs because of the 
fast motion of the lunar satellite.
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FIGURE 5 Estimation error (red line) and 3σ  covariance (red shaded area) of the lunar 
satellite states for a Monte-Carlo simulation in an ELFO
The position and velocity state errors are represented in the radial-tangential-normal (RTN) frame 
with respect to the true orbit. The estimation errors in the normal direction are larger compared 
with the radial and tangential directions, as they are more aligned with the GPS line-of-sight 
direction, where pseudorange error exists. The gray shaded area shows the terrestrial GPS outage 
period near the perilune. The duration corresponds to four orbital periods, and the simulation 
begins at the apolune. The state estimates other than the solar radiation pressure (SRP) coefficient 
γ  converge after approximately one orbital period. Spikes in the state covariance estimate occur 
during the terrestrial GPS outage.

FIGURE 6 CDF of the PCBE and VCDE for an ELFO, obtained with ASNC
The red line shows the value of the corresponding 3σ  SISE requirement from LuneNet SRD, and 
the green line shows the obtained 3σ  estimation error of the PCBE and VCDE.
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proposed outlier detector was able to avoid degradation by successfully removing 
outliers, as shown in Figure 7. When cycle slips were present, the implemented 
detector was able to detect and discard 100% of corrupted measurements. When 
cycle slips were not present, the detector identified 99.7% as non-corrupted. In sim-
ple terms, our detector had a misdetection rate of 0% and a false alarm rate of 0.3%.

4.4  Different Terrestrial GPS Measurement Combinations

Different measurement combinations were tested to investigate the contribution 
of each measurement to the navigation accuracy, as follows: 1) pseudorange only; 
2) pseudorange + pseudorange rate; and 3) pseudorange + pseudorange rate + 
TDCP. The results are summarized in Table 6. As expected, adding the pseudor-
ange rate and/or TDCP measurements to the pseudorange measurement reduces 
the state estimation errors. In particular, compared with the pseudorange + pseu-
dorange rate solution, which has a 99.7% value of 25.4 m in PCBE and 8.76 mm/s in 

TABLE 5
Navigation Results (24 Monte-Carlo Runs) When Cycle Slips are Added to the Simulator
The filter crashed because of the ill-matrix condition when our outlier detector was not 
incorporated in the filter. In contrast, our proposed cycle slip detector avoided this degradation by 
successfully removing outliers. The percentage of corrupted measurements in any Monte-Carlo 
run denotes the percentage of measurements among the total that are induced with cycle slips.

% of Corrupted 
Measurements 

Outlier 
Detection 

Position and Clock 
Bias Error (m)

Velocity and Clock Drift 
Error [mm/s]

68% 95% 99.7% Below Req. 68% 95% 99.7% Below Req.

0% not used 5.81 10.06 14.0 99.5% 1.60 3.17 5.37 50.0%

30% not used Diverged Diverged

30% used 7.09 12.35 18.47 96.2% 2.50 5.00 9.09 25.6%

FIGURE 7 Residuals of the TDCP measurements, shown in meters
The residuals from a single run are split into two figures: the left figure shows the residuals of the 
cycle-slip-corrupted measurements, and the right figure shows the residuals of the non-corrupted 
TDCP measurements. The black dashed horizontal lines show multiples of the carrier-phase 
wavelength. The outlier detector discards 100% of the cycle-slip-corrupted measurements and 
accepts 99.7% of the non-corrupted measurements.
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VCDE, the addition of the TDCP measurement reduces the 99.7% value to 14.0 m 
in PCBE (a 44.0% improvement) and 5.37 mm/s in VCDE (a 38.6% improvement). 
These improvements can be attributed to the precise position difference informa-
tion provided by the TDCP measurement.

4.5  Performance in a QFLLO

The PNT performance that can be achieved by using terrestrial GPS signals 
depends on the geometrical features and dynamic environment of the lunar orbit. 
To investigate the achievable PNT performance of the proposed algorithm in a 
more challenging scenario, we also conducted a PNT simulation in a QFLLO. The 
initial orbital elements of the QFLLO were obtained via the method introduced 
by Singh et al. (2020), with values shown in Table 7. The generated orbit is shown 
in Figure 8(a), and the number of GPS signals that could be tracked is shown in 
Figure 8(b). 

It is challenging to performed GPS-based PNT in a QFLLO for two main reasons. 
First, a satellite at a low lunar orbit experiences a proportionally longer GPS outage 
period compared with an ELFO, with an average GPS outage period of 32 min per 
orbit, which corresponds to 25% of the orbital period. Second, there exists a larger 
discrepancy between acceleration modeled by the truth and filter model, because 
the effects of unmodeled high-order gravity terms become more significant in low 
lunar orbits.

A simulation was conducted for eight orbital periods for a QFLLO, with the 
results summarized in Table 8. Compared with an ELFO, a satellite in an QFLLO 
experiences larger state estimation errors because of the higher ratio of the GPS 

TABLE 7
Initial Orbit Elements and Orbital Period of a QFLLO
The orbital elements are given in the J2000 frame.

Orbit Semi-
major axis 
[km]

Eccentricity Inclination 
[deg]

Right 
ascension 
of the 
ascending 
node [deg]

Argument 
of perigee 
[deg]

Mean 
anomaly 
[deg]

Orbital 
period 
[h]

QFLLO 1937.4 0.0005 96.8 84.8 116.2 180 2.12

TABLE 6
Navigation Results (24 Monte-Carlo Runs) for Different Measurement 
Combinations Compared with the pseudorange + pseudorange rate solution, the addition of the 
TDCP measurement reduces both the PCBE and VCDE.

Measurement 
Combination

Position and Clock  
Bias Error [m]

Velocity and Clock Drift  
Error [mm/s]

68% 95% 99.7% Below Req. 68% 95% 99.7% Below Req.

Pseudorange 
only

19.1 40.8 50.4 41.3% 9.67 18.2 37.5 1.4%

Pseudorange + 
Pseudorange rate

13.1 20.2 25.4 69.6% 3.67 5.77 8.76 7.0%

Pseudorange + 
Pseudorange rate 
+ TDCP

5.81 10.06 14.0 99.5% 1.60 3.17 5.37 50.0%
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outage period to the orbital period. As seen for the ELFO case, the positioning 
error increases during the outage period, as shown in Figure 9, but the error is still 
bounded and soon decreases again after the outage period has passed.

TABLE 8
Navigation Performance for a Satellite in a QFLLO Equipped with a Mini-RAFS (24 Monte-Carlo 
Runs) 
Each performance metric is calculated from the last two orbital periods of all of the Monte-
Carlo runs for eight orbital periods each. “PR” and “PRR” in the measurement column denote 
pseudorange and pseudorange rate measurements, respectively.

Orbit Measurement 
Combination 

Position and Clock Bias 
Error [m]

Velocity and Clock Drift 
Error [mm/s]

68% 95% 99.7% Below 
Req.

68% 95% 99.7% Below 
Req.

QFLLO PR 39.5 141.8 264.1 1.2% 37.8 85.9 169.5 0.0%

QFLLO PR + PRR 37.4 95.6 121.2 6.7% 34.6 63.9 115.2 0.0%

QFLLO PR + PRR + TDCP 20.4 38.6 48.5 12.8% 16.5 24.7 27.7 0.3%

FIGURE 8 Trajectory of the lunar satellite and the number of GPS satellites tracked in the 
QFLLO (a) QFLLO shown in the MCI J2000 frame (b) Number of terrestrial GPS satellites tracked 
in the QFLLO

FIGURE 9 Position estimation error (red line) and 3σ  covariance (red shaded area) of the 
satellite position in a Monte-Carlo simulation for a QFLLO
The position errors are represented in the RTN frame with respect to the true orbit. The gray 
shaded area shows the terrestrial GPS outage period near the perilune. The duration corresponds 
to eight orbital periods, and the simulation begins at the apolune.
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Similar to the ELFO, compared with the pseudorange + pseudorange rate solu-
tion, which shows a 99.7% PCBE of 121.2 m and VCDE of 115.2 mm/s, the addition 
of the TDCP measurement reduces the 99.7% PCBE to 48.5 m (a 75.9% improve-
ment) and 3σ  VCDE to 27.7 mm/s (a 77.1% improvement). The improvement 
in the PCBE is larger than that of the ELFO case because a satellite in a QFLLO 
experiences faster motion compared with an ELFO, and therefore, obtaining a 
precise time-differential position estimate via TDCP measurements more strongly 
improves the position estimate accuracy.

5  CONCLUSIONS

We designed an augmented state Kalman filter framework for lunar satellite 
PNT that utilizes terrestrial GPS pseudorange, pseudorange rate, and TDCP mea-
surements with the orbital dynamics predicted by the filter. The developed filter 
accounts for the issue of conditional dependence that occurs in the processing of 
TDCP measurements by introducing an augmented state vector that incorporates 
consecutive satellite states. Our proposed framework discards corrupted TDCP 
measurements (outliers such as cycle slips) by comparing the post-measurement 
residuals and their estimated covariance. Additionally, our framework adaptively 
adjusts the process noise covariance by minimizing the difference between the the-
oretical and empirical unmodeled acceleration covariance.

The performance of the proposed filter was validated through Monte-Carlo sim-
ulations of a lunar satellite in an ELFO, equipped with a mini-RAFS. Our work 
successfully isolated the TDCP measurements suffering from cycle slips and 
demonstrated 99.7% PCBE and VCDE values below 20 m and 10 mm/s, respectively. 
The results of the navigation simulation with different measurement combinations 
indicate that we can reduce the 99.7% PCBE by 44.0% and 3σ  VCDE by 38.6% by 
using the precise TDCP measurements, compared with using only pseudorange 
and pseudorange rate measurements. In addition, we conducted navigation sim-
ulations for a QFLLO and demonstrated the applicability of the proposed frame-
work over different lunar orbit regimes. Overall, although the simulation results 
of our proposed TDCP-based extended Kalman filter framework did not meet the 
target set by NASA’s SRD, our findings show a promising improvement in posi-
tion, velocity, and clock bias estimate when compared with the use of an extended 
Kalman filter with only pseudorange and pseudorange rate measurements.

Future research areas include higher-fidelity modeling of the carrier-phase 
tracking process to investigate the feasibility of carrier-phase tracking of low C/N0 
signals, simulating the onboard ephemeris and almanac availability in ELFOs 
and QFLLOs, investigating the required uplink intervals from ground stations, 
and computing achievable performance when other GNSS signals (e.g., Galileo) 
are available. Moreover, we may consider simulating the achievable performance 
for lower-grade clocks, although a higher C/N0 threshold will likely be required to 
track the carrier with lower-grade clocks. Finally, we may assess the integration of 
other sensor measurements and/or satellite crosslinks to reduce positioning and 
timing errors and to meet the LunaNet SISE requirements.
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A  PROOF THAT THE RECONSTRUCTED AUGMENTED 
STATE COVARIANCE MATRIX IS POSITIVE SEMI-DEFINITE

Here, we prove that the reconstructed augmented state covariance matrix given 

by , ,

, ,

ˆ ˆ
ˆ

ˆ ˆ
k k k k

k
k k k k

P P
P

P P

 
=  
  

 (from Equation (36)) is positive semi-definite (p.s.d.) for an 

arbitrary time step k  when the covariance estimate at the initial time step 0,0P̂  is 
p.s.d. We prove this by mathematical induction.

1. If 0,0P̂  is p.s.d., 0̂P  is p.s.d.
 Proof: From the assumption, 0,0P̂  is p.s.d. Here, let u u u� � �[ ]1 2

18 1   R ,  
where u u1 2

9 1, � �R .  Then, we have the following:
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 Therefore, the augmented state covariance matrix 0̂P  is p.s.d.
2. If 1 (ˆ 1)kP k− ≥  is p.s.d., k̂P  is also p.s.d.
 Proof: In the time update (as per Section 3.2) and the measurement update (as 

per Section 3.3), the state covariance matrix is updated via the Joseph form of 
the Kalman filter equation (Bucy & Joseph, 1987): Equations (24) and (34). In 
these two equations, 1k̂P −  is p.s.d. from the assumption, and to satisfy the setup 
conditions for an extended Kalman filter, the process noise and measurement 
noise matrices, Qk  and Rk ,  are p.s.d.

 For any p.s.d. matrix A n n� �R  and an arbitrary matrix T TATm n� �R ,   is 
also p.s.d. because of the following:

 u TAT u u T A u T A    ( ) ( ) ( ) ( )� � 0� �is�p.s.d.�  (47)

 Moreover, the sum of two p.s.d. matrices is also p.s.d. Therefore, from 
Equation (24), Pk  is p.s.d.; based on this finding and Equation (34), ,k̂ kP  is 
p.s.d.

 Finally, we can prove that the following matrix is also p.s.d.:

 , , 18 18

, ,

ˆ ˆ
ˆ

ˆ ˆ
k k k k

k
k k k k

P P
P

P P
×

 
= ∈ 
  

  (48)

 by performing operations analogous to those in Equation (46).
From mathematical induction, k̂P  is p.s.d. for arbitrary k, if the covariance esti-

mate at the initial time step 0,0P̂  is p.s.d.
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