Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

GPS Spoofing-Resilient Filtering Using Self-Contained Sensors and Chimera Signal Enhancement

Tara Mina, Ashwin Kanhere, Akshay Shetty, and Grace Gao
NAVIGATION: Journal of the Institute of Navigation June 2024, 71 (2) navi.636; DOI: https://doi.org/10.33012/navi.636
Tara Mina
Department of Aeronautics and Astronautics, Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashwin Kanhere
Department of Aeronautics and Astronautics, Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Akshay Shetty,
Department of Aeronautics and Astronautics, Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Gao
Department of Aeronautics and Astronautics, Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    AFRL Space Vehicles Directorate, Advanced GPS Technology. (2019). Chips message robust authentication (Chimera) enhancement for the L1C signal: Space segment/user segment interface. IS-AGT-100.
  2. ↵
    1. Akos, D. M.
    (2012). Who’s afraid of the spoofer? GPS/GNSS spoofing detection via automatic gain control (AGC). NAVIGATION, 59(4), 281–290. https://doi.org/10.1002/navi.19
  3. ↵
    1. Anderson, J. M.,
    2. Carroll, K. L.,
    3. DeVilbiss, N. P.,
    4. Gillis, J. T.,
    5. Hinks, J. C.,
    6. O’Hanlon, B.W.,
    7. Rushanan, J. J.,
    8. Scott, L., &
    9. Yazdi, R. A.
    (2017). Chips-message robust authentication (Chimera) for GPS civilian signals. Proc. of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 2388–2416. https://doi.org/10.33012/2017.15206
  4. ↵
    1. Bhamidipati, S.,
    2. Kim, K. J.,
    3. Sun, H., &
    4. Orlik, P. V.
    (2019). GPS spoofing detection and mitigation in PMUs using distributed multiple directional antennas. Proc. of the IEEE International Conference on Communications (ICC), Shanghai, China, 1–7. https://doi.org/10.1109/ICC.2019.8761208
  5. ↵
    1. Bitner, T.,
    2. Preston, S., &
    3. Bevly, D.
    (2015). Multipath and spoofing detection using angle of arrival in a multi-antenna system. Proc. of the 2015 International Technical Meeting of the Institute of Navigation, Dana Point, CA, 822–832. https://www.ion.org/publications/abstract.cfm?articleID=12651
  6. ↵
    1. Broumandan, A., &
    2. Lachapelle, G.
    (2018). Spoofing detection using GNSS/INS/odometer coupling for vehicular navigation. Sensors, 18(5), 1305. https://doi.org/10.3390/s18051305
  7. ↵
    C4ADS Think Tank. (2019). Above us only stars: Exposing GPS spoofing in Russia and Syria. https://c4ads.org/reports/above-us-only-stars/
  8. ↵
    1. Cheng, C.,
    2. Tourneret, J.-Y.,
    3. Pan, Q., &
    4. Calmettes, V.
    (2016). Detecting, estimating and correcting multipath biases affecting GNSS signals using a marginalized likelihood ratio-based method. Signal Processing, 118, 221–234. https://doi.org/10.1016/j.sigpro.2015.06.021
  9. ↵
    1. Cozzens, T.
    (2021). NTS-3 mission progresses toward launch in 2023. GPS World. https://www.gpsworld.com/nts-3-mission-progresses-toward-launch-in-2023/
  10. ↵
    1. Curran, J. T.,
    2. Lachapelle, G., &
    3. Murphy, C. C.
    (2012). Digital GNSS PLL design conditioned on thermal and oscillator phase noise. IEEE Transactions on Aerospace and Electronic Systems, 48(1), 180–196. https://doi.org/10.1109/TAES.2012.6129629
  11. ↵
    1. Esswein, M. C., &
    2. Psiaki, M. L.
    (2021). GPS spoofing resilience via NMA/watermarks authentication and IMU prediction. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 3591–3620. https://doi.org/10.33012/2021.17997
  12. ↵
    1. Farrell, J. A.,
    2. Silva, F. O.,
    3. Rahman, F., &
    4. Wendel, J.
    (2020). IMU error state modeling for state estimation and sensor calibration: A tutorial. https://escholarship.org/uc/item/1vf7j52p
  13. ↵
    1. Getz, R.
    (2021). ADALM-PLUTO overview. https://wiki.analog.com/university/tools/pluto
  14. ↵
    1. Goward, D.
    (2020). New GPS ‘circle spoofing’ moves ship locations thousands of miles. GPS World. https://www.gpsworld.com/new-gps-circle-spoofing-moves-ship-locations-thousands-of-miles/
  15. ↵
    1. Groves, P. D.
    (2013). Principles of GNSS, inertial, and multisensor integrated navigation systems (2nd edition). Artech House. https://ieeexplore.ieee.org/document/9101092
  16. ↵
    1. Hampel, F. R.
    (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393. https://doi.org/10.2307/2285666
    CrossRefWeb of Science
  17. ↵
    1. Huber, P. J.
    (1964). Robust estimation of a location parameter. Annals Mathematics Statistics, (1), 73–101. https://doi.org/10.1214/aoms/1177703732
  18. ↵
    1. Humphreys, T. E.
    (2013). Detection strategy for cryptographic GNSS anti-spoofing. IEEE Transactions on Aerospace and Electronic Systems, 49(2), 1073–1090. https://doi.org/10.1109/TAES.2013.6494400
  19. ↵
    Inside GNSS. (2021). AFRL moves forward on NTS-3 spacecraft development: Future GPS alternatives. https://insidegnss.com/afrl-moves-forward-on-nts-3-spacecraft-development-future-gps-alternatives/
  20. ↵
    1. Jafarnia-Jahromi, A.,
    2. Broumandan, A.,
    3. Nielsen, J., &
    4. Lachapelle, G.
    (2012). GPS vulnerability to spoofing threats and a review of antispoofing techniques. International Journal of Navigation and Observation, 2012. https://doi.org/10.1155/2012/127072
  21. ↵
    1. Khanafseh, S.,
    2. Roshan, N.,
    3. Langel, S.,
    4. Chan, F.-C.,
    5. Joerger, M., &
    6. Pervan, B.
    (2014). GPS spoofing detection using RAIM with INS coupling. Proc. of the IEEE/ION Position, Location and Navigation Symposium (PLANS 2014), Monterey, CA, 1232–1239. https://doi.org/10.1109/PLANS.2014.6851498
  22. ↵
    1. Lesouple, J.,
    2. Robert, T.,
    3. Sahmoudi, M.,
    4. Tourneret, J.-Y., &
    5. Vigneau, W.
    (2018). Multipath mitigation for GNSS positioning in an urban environment using sparse estimation. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1316–1328. https://doi.org/10.1109/TITS.2018.2848461
  23. ↵
    1. Lo, S.,
    2. Chen, Y. H.,
    3. Jain, H., &
    4. Enge, P.
    (2018). Robust GNSS spoof detection using direction of arrival: Methods and practice. Proc. of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), 2891–2906. https://doi.org/10.33012/2018.15900
  24. ↵
    1. Magiera, J., &
    2. Katulski, R.
    (2015). Detection and mitigation of GPS spoofing based on antenna array processing. Journal of Applied Research and Technology, 13(1), 45–57. https://doi.org/10.1016/S1665-6423(15)30004-3
  25. ↵
    1. Mina, T.,
    2. Kanhere, A.,
    3. Shetty, A., &
    4. Gao, G.
    (2022). GPS spoofing-resilient filtering with chimera and self-contained odometry. Proc. of the International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 3768–3782. https://doi.org/10.33012/2022.18565
  26. ↵
    1. Mohamed, S. A.,
    2. Haghbayan, M.-H.,
    3. Westerlund, T.,
    4. Heikkonen, J.,
    5. Tenhunen, H., &
    6. Plosila, J.
    (2019). A survey on odometry for autonomous navigation systems. IEEE Access, 7, 97466–97486. https://doi.org/10.1109/ACCESS.2019.2929133
  27. ↵
    1. Morton, Y. J.,
    2. van Diggelen, F.,
    3. Spilker Jr, J. J.,
    4. Parkinson, B. W.,
    5. Lo, S., &
    6. Gao, G.
    (2021). Position, navigation, and timing technologies in the 21st century: Integrated satellite navigation, sensor systems, and civil applications. John Wiley & Sons. http://doi.org/10.1002/9781119458449
  28. ↵
    Navstar GPS Joint Program Office. (2020). Report on positioning, navigation, and timing (PNT) backup and complementary capabilities to the Global Positioning System (GPS) (tech. rep.). https://www.cisa.gov/sites/default/files/publications/report-on-pnt-backup-complementary-capabilities-to-gps_508.pdf
  29. ↵
    1. Ossmann, M.
    (2022). HackRF. https://github.com/greatscottgadgets/hackrf
  30. ↵
    1. Psiaki, M. L., &
    2. Humphreys, T. E.
    (2016a). GNSS spoofing and detection. Proc. of the IEEE, 104(6), 1258–1270. https://doi.org/10.1109/JPROC.2016.2526658
  31. ↵
    1. Psiaki, M. L., &
    2. Humphreys, T. E.
    (2016b). Protecting GPS from spoofers is critical to the future of navigation. IEEE Spectrum, 10. https://spectrum.ieee.org/gps-spoofing
  32. ↵
    1. Rothmaier, F.,
    2. Chen, Y.-H.,
    3. Lo, S., &
    4. Walter, T.
    (2021). GNSS spoofing mitigation in the position domain. Proc. of the 2021 International Technical Meeting of the Institute of Navigation, 42–55. https://doi.org/10.33012/2021.17824
  33. ↵
    1. Scott, L.
    (2003). Anti-spoofing & authenticated signal architectures for civil navigation systems. Proc. of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, 1543–1552. https://www.ion.org/publications/abstract.cfm?articleID=5339
  34. ↵
    1. Shepard, D.,
    2. Bhatti, J. A., &
    3. Humphreys, T. E.
    (2012). Drone hack: Spoofing attack demonstration on a civilian unmanned aerial vehicle. GPS World. https://www.gpsworld.com/drone-hack/
  35. ↵
    1. Tanil, C.,
    2. Khanafseh, S.,
    3. Joerger, M., &
    4. Pervan, B.
    (2016). Kalman filter-based INS monitor to detect GNSS spoofers capable of tracking aircraft position. Proc. of the IEEE/ION Position, Location and Navigation Symposium (PLANS 2016), Savannah, GA, 1027–1034. https://doi.org/10.1109/PLANS.2016.7479805
  36. ↵
    1. Tanil, C.,
    2. Khanafseh, S.,
    3. Joerger, M., &
    4. Pervan, B.
    (2017). An INS monitor to detect GNSS spoofers capable of tracking vehicle position. IEEE Transactions on Aerospace and Electronic Systems, 54(1), 131–143. https://doi.org/10.1109/TAES.2017.2739924
  37. ↵
    1. Thrun, S.,
    2. Burgard, W., &
    3. Fox, D.
    (2005). Probabilistic robotics. The MIT Press. http://www.probabilistic-robotics.org/
  38. ↵
    1. Tukey, J. W.
    (1962). The future of data analysis. The Annals of Mathematical Statistics, 33(1), 1–67. https://doi.org/10.1214/aoms/1177704711
  39. ↵
    1. Wesson, K. D.,
    2. Gross, J. N.,
    3. Humphreys, T. E., &
    4. Evans, B. L.
    (2017). GNSS signal authentication via power and distortion monitoring. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 739–754. https://doi.org/10.1109/TAES.2017.2765258
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 2
Summer 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
GPS Spoofing-Resilient Filtering Using Self-Contained Sensors and Chimera Signal Enhancement
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
GPS Spoofing-Resilient Filtering Using Self-Contained Sensors and Chimera Signal Enhancement
Tara Mina, Ashwin Kanhere, Akshay Shetty,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Jun 2024, 71 (2) navi.636; DOI: 10.33012/navi.636

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
GPS Spoofing-Resilient Filtering Using Self-Contained Sensors and Chimera Signal Enhancement
Tara Mina, Ashwin Kanhere, Akshay Shetty,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Jun 2024, 71 (2) navi.636; DOI: 10.33012/navi.636
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PRELIMINARIES
    • 3 PROPOSED CHIMERA SPOOFING-RESILIENT FILTER FRAMEWORK
    • 4 TIGHTLY COUPLED GPS-IMU-WHEEL ENCODER FILTER FOR A GROUND VEHICLE MODEL
    • 5 EXPERIMENTAL RESULTS
    • 6 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • adaptive filter
  • Chimera
  • GPS
  • inertial measurement unit
  • Kalman filter
  • M-estimation weight function
  • spoofing mitigation
  • wheel encoder

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire