Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Can Numerical Simulations of Equatorial Plasma Bubble Plume Structures be Simplified for Operational and Practical Usage?

Rezy Pradipta, Charles S. Carrano, Keith M. Groves, and Patricia H. Doherty
NAVIGATION: Journal of the Institute of Navigation June 2024, 71 (2) navi.645; DOI: https://doi.org/10.33012/navi.645
Rezy Pradipta
1Institute for Scientific Research, Boston College, Massachusetts, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles S. Carrano
1Institute for Scientific Research, Boston College, Massachusetts, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Keith M. Groves,
1Institute for Scientific Research, Boston College, Massachusetts, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia H. Doherty
1Institute for Scientific Research, Boston College, Massachusetts, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abadi, P.,
    2. Saito, S., &
    3. Srigutomo, W.
    (2014). Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia. Annales Geophysicae, 32(1), 7–17, https://doi.org/10.5194/angeo-32-7-2014
    1. Abdu, M. A.,
    2. Batista, I. S.,
    3. Sobral, J. H. A.,
    4. de Paula, E. R., &
    5. Kantor, I. J.
    (1985). Equatorial ionospheric plasma bubble irregularity occurrence and zonal velocities under quiet and disturbed conditions, from Polarimeter observations. Journal of Geophysical Research: Space Physics, 90(A10), 9921–9928. https://doi.org/10.1029/JA090iA10p09921
  2. ↵
    1. Affonso, B. J.,
    2. Moraes, A.,
    3. Sousasantos, J.,
    4. Marini-Pereira, L., &
    5. Pullen, S.
    (2022). Strong ionospheric spatial gradient events induced by signal propagation paths aligned with equatorial plasma bubbles. IEEE Transactions on Aerospace and Electronic Systems, 58(4), 2868–2879. https://doi.org/10.1109/TAES.2022.3144622
  3. ↵
    1. Alken, P.,
    2. Thebault, E.,
    3. Beggan, C. D.,
    4. Amit, H.,
    5. Aubert, J.,
    6. Baerenzung, J.,
    7. Bondar, T. N.,
    8. Brown, W. J.,
    9. Califf, S.,
    10. Chambodut, A.,
    11. Chulliat, A.,
    12. Cox, G. A.,
    13. Finlay, C.C.,
    14. Fournier, A.,
    15. Gillet, N.,
    16. Grayver, A.,
    17. Hammer, M. D.,
    18. Holschneider, M.,
    19. Huder, L., …
    20. Zhou, B.
    (2021). International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space, 73(49). https://doi.org/10.1186/s40623-020-01288-x
  4. ↵
    1. Anderson, P. C., &
    2. Straus, P. R.
    (2005). Magnetic field orientation control of GPS occultation observations of equatorial scintillation. Geophysical Research Letters, 32(21). https://doi.org/10.1029/2005GL023781
  5. ↵
    1. Arnold, C. P., &
    2. Dey, C. H.
    (1986). Observing-systems simulation experiments: Past, present, and future. Bulletin of the American Meteorological Society, 67(6), 687–695. https://doi.org/10.1175/1520-0477(1986)067<0687:0SSEPP>2.0.C0;2
  6. ↵
    1. Balan, N.,
    2. Liu, L. B., &
    3. Le, H. J.
    (2018). A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth and Planetary Physics, 2, 257–275. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.26464/epp2018025
  7. ↵
    1. Barros, D.,
    2. Takahashi, H.,
    3. Wrasse, C., &
    4. Figueiredo, C.
    (2018). Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America. Annales Geophysicae, 36, 91–100. http://doi.org/10.5194/angeo-36-91-2018
  8. ↵
    1. Basu, S.,
    2. Basu, S.,
    3. McClure, J. P.,
    4. Hanson, W. B., &
    5. Whitney, H. E.
    (1983). High resolution topside in situ data of electron densities and VHF/GHz scintillations in the equatorial region. Journal of Geophysical Research: Space Physics, 88(A1), 403–415. https://doi.org/10.1029/JA088iA01p00403
  9. ↵
    1. Beniguel, Y.
    (2002). Global ionospheric propagation model (GIM): A propagation model for scintillations of transmitted signals. Radio Science, 37(3), 4–13. http://doi.org/10.1029/2000RS002393
  10. ↵
    1. Beniguel, Y., &
    2. Hamel, P.
    (2011). A global ionosphere scintillation propagation model for equatorial regions. Journal of Space Weather and Space Climate, 1(A04). http://doi.org/10.1051/swsc/2011004
  11. ↵
    1. Bernhardt, P. A.
    (2007a). Quasi-analytic models for density bubbles and plasma clouds in the equatorial ionosphere: Closed form solutions for electric fields and potentials. Journal of Geophysical Research, 112(A01302). http://doi.org/10.1029/2006JA011606
  12. ↵
    1. Bernhardt, P. A.
    (2007b). Quasi-analytic models for density bubbles and plasma clouds in the equatorial ionosphere: 2. A simple Lagrangian transport model. Journal of Geophysical Research, 112(A11310). http://doi.org/10.1029/2007JA012287
  13. ↵
    1. Booker, H. G., &
    2. Wells, H. W.
    (1938). Scattering of radio waves by the F region of the ionosphere. Journal of Geophysical Research, 43, 249–256. https://doi.org/10.1029/TE043i003p00249
  14. ↵
    1. Budtho, J.,
    2. Supnithi, P., &
    3. Saito, S.
    (2018). Analysis of quiet time vertical ionospheric delay gradients around Suvarnabhumi Airport, Thailand. Radio Science, 53(9), 1067–1074. https://doi.org/10.1029/2018RS006606
  15. ↵
    1. Burke, W. J.,
    2. Huang, C. Y.,
    3. Gentile, L. C., &
    4. Bauer, L.
    (2004). Seasonal-longitudinal variability of equatorial plasma bubbles. Annales Geophysicae, 22, 3089–3098. http://doi.org/10.5194/angeo-22-3089-2004
  16. ↵
    1. Carrano, C. S.,
    2. Groves, K. M.,
    3. Caton, R. G.,
    4. Rino, C. L., &
    5. Straus, P. R.
    (2011). Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Science, 46(6). https://doi.org/10.1029/2010RS004591
  17. ↵
    1. Carrano, C. S., &
    2. Rino, C. L.
    (2016). A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results. Radio Science, 51(6), 789–813. https://doi.org/10.1002/2015RS005903
  18. ↵
    1. Carrasco, A. J.,
    2. Pimenta, A. A.,
    3. Wrasse, C. M.,
    4. Batista, I. S., &
    5. Takahashi, H.
    (2020). Why do equatorial plasma bubbles bifurcate? Journal of Geophysical Research: Space Physics, 125(11), e2020JA028609. https://doi.org/10.1029/2020JA028609
  19. ↵
    1. Carter, B. A.,
    2. Retterer, J. M.,
    3. Yizengaw, E.,
    4. Groves, K.,
    5. Caton, R.,
    6. McNamara, L.,
    7. Bridgwood, C.,
    8. Francis, M.,
    9. Terkildsen, M.,
    10. Norman, R.,
    11. Zhang, K.
    (2014). Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophysical Research Letters, 41, 5331–5339. http://doi.org/10.1002/2014GL060953
  20. ↵
    1. Cervera, M. A., &
    2. Thomas, R. M.
    (2006). Latitudinal and temporal variation of equatorial ionospheric irregularities determined from GPS scintillation observations. Annales Geophysicae, 24(12), 3329–3341. https://doi.org/10.5194/angeo-24-3329-2006
  21. ↵
    1. Chang, H.,
    2. Yoon, M.,
    3. Pullen, S.,
    4. Marini-Pereira, L., &
    5. Lee, J.
    (2021). Ionospheric spatial decorrelation assessment for GBAS daytime operations in Brazil. NAVIGATION, 68(2), 391–404. https://doi.org/10.1002/navi.418
  22. ↵
    1. Chaturvedi, P. K., &
    2. Ossakow, S. L.
    (1977). Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F. Geophysical Research Letters, 4, 558–560. http://doi.org/10.1029/GL004i012p00558
  23. ↵
    1. Comberiate, J., &
    2. Paxton, L. J.
    (2010). Global Ultraviolet Imager equatorial plasma bubble imaging and climatology, 2002–2007. Journal of Geophysical Research: Space Physics, 115(A4). https://doi.org/10.1029/2009JA014707
  24. ↵
    1. Daccord, G.,
    2. Nittmann, J., &
    3. Stanley, H. E.
    (1986). Radial viscous fingers and diffusion-limited aggregation: Fractal dimension and growth sites. Physical Review Letters, 56, 336. http://doi.org/10.1103/PhysRevLett.56.336
    CrossRefPubMedWeb of Science
  25. ↵
    1. Duarte-Neto, P.,
    2. Stošić, T.,
    3. Stošić, B.,
    4. Lessa, R., &
    5. Milošević, M. V.
    (2014). Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation. Physical Review E, 90, 012312. https://doi.org/10.1103/PhysRevE.90.012312
    1. Dungey, J. W.
    (1956). Convective diffusion in the equatorial F region. Journal of Atmosphereic and Terrestrial Physics, 9(5–6), 304, https://doi.org/10.1016/0021-9169(56)90148-9
  26. ↵
    1. Dupraz, C.,
    2. Pattisina, R., &
    3. Verrecchia, E. P.
    (2006). Translation of energy into morphology: Simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology, 185(3), 185–203. https://doi.org/10.1016/j.sedgeo.2005.12.012
    CrossRefGeoRefWeb of Science
  27. ↵
    1. Eather, R. H.,
    2. Mende, S. B., &
    3. Judge, R. J. R.
    (1976). Plasma injection at synchronous orbit and spatial and temporal auroral morphology. Journal of Geophysical Research, 81(16), 2805–2824. https://doi.org/10.1029/JA081i016p02805
  28. ↵
    1. Elmi, N.
    (2020). Here are 4 technology trends from emerging economies. https://www.weforum.org/agenda/2020/09/here-are-4-technology-trends-from-emerging-economies/
  29. ↵
    European Commission. (2016). European GNSS (Galileo) open service-ionospheric correction algorithm for Galileo single frequency users (Vol. Issue 1.2). https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf
  30. ↵
    1. Fujiwara, T., &
    2. Tsujii, T.
    (2016). GBAS availability assessment and modeling of ionospheric scintillation effects. NAVIGATION, 63, 405–413. http://doi.org/10.1002/navi.160
  31. ↵
    1. Gentile, L. C.,
    2. Burke, W. J., &
    3. Rich, F. J.
    (2006a). A global climatology for equatorial plasma bubbles in the topside ionosphere. Annales Geophysicae, 24, 163–172. http://doi.org/10.5194/angeo-24-163-2006
  32. ↵
    1. Gentile, L. C.,
    2. Burke, W. J., &
    3. Rich, F. J.
    (2006b). A climatology of equatorial plasma bubbles from DMSP 1989–2004. Radio Science, 41(RS5S21). http://doi.org/10.1029/2005RS003340
  33. ↵
    1. Groves, K. M., &
    2. Carrano, C. S.
    (2016). Space weather effects on communication and navigation. In G. V. Khazanov (Ed.), Space weather fundamentals. CRC Press. http://doi.org/10.1201/9781315368474
  34. ↵
    1. Halsey, T. C.
    (2000). Diffusion-limited aggregation: A model for pattern formation. Physics Today, 53(11), 36. http://doi.org/10.1063/1.1333284
  35. ↵
    1. Hapgood, M.,
    2. Angling, M. J.,
    3. Attrill, G.,
    4. Bisi, M.,
    5. Cannon, P. S.,
    6. Dyer, C.,
    7. Eastwood, J. P.,
    8. Elvidge, S.,
    9. Gibbs, M.,
    10. Harrison, R. A.,
    11. Hord, C.,
    12. Horne, R. B.,
    13. Jackson, D. R.,
    14. Jones, B.,
    15. Machin, S.,
    16. Mitchell, C. N.,
    17. Preston, J.,
    18. Rees, J.,
    19. Rogers, N. C., …
    20. Willis, M.
    (2021). Development of space weather reasonable worst-case scenarios for the UK national risk assessment. Space Weather, 19(4), e2020SW002593. https://doi.org/10.1029/2020SW002593
  36. ↵
    1. Harris, M.,
    2. Murphy, T., &
    3. Saito, S.
    (2011). Further validation of GAST D ionospheric anomaly mitigations. Proc. of the 2011 International Technical Meeting of the Institute of Navigation, San Diego, CA, 942–949. https://www.ion.org/publications/abstract.cfm?articleID=9540
  37. ↵
    1. Hoffman, R. N., &
    2. Atlas, R.
    (2016). Future observing system simulation experiments. Bulletin of the American Meteorological Society, 97(9), 1601–1616. https://doi.org/10.1175/BAMS-D-15-00200.1
  38. ↵
    1. Hosokawa, K.,
    2. Takami, K.,
    3. Saito, S.,
    4. Ogawa, Y.,
    5. Otsuka, Y.,
    6. Shiokawa, K.,
    7. Chen, C.-H., &
    8. Lin, C.-H.
    (2020). Observations of equatorial plasma bubbles using a low-cost 630.0-nm all-sky imager in Ishigaki Island, Japan. Earth Planets Space, 72, 56. http://doi.org/10.1186/s40623-020-01187-1
    1. Huang, C.-S.,
    2. de La Beaujardiere, O.,
    3. Pfaff, R. F.,
    4. Retterer, J. M.,
    5. Roddy, P. A.,
    6. Hunton, D. E.,
    7. Su, Y.-J.,
    8. Su, S.-Y., &
    9. Rich, F. J.
    (2010). Zonal drift of plasma particles inside equatorial plasma bubbles and its relation to the zonal drift of the bubble structure. Journal of Geophysical Research: Space Physics, 115(A7). https://doi.org/10.1029/2010JA015324
  39. ↵
    1. Huang, C.-S.,
    2. Retterer, J. M.,
    3. de La Beaujardiere, O.,
    4. Roddy, P. A.,
    5. Hunton, D. E.,
    6. Ballenthin, J. O., &
    7. Pfaff, R. F.
    (2012). Observations and simulations of formation of broad plasma depletions through merging process. Journal of Geophysical Research: Space Physics, 117(A2). https://doi.org/10.1029/2011JA017084
  40. ↵
    1. Huba, J. D.,
    2. Wu, T.-W., &
    3. Makela, J.
    (2015). Electrostatic reconnection in the ionosphere. Geophysical Research Letters, 42, 1626–1631. http://doi.org/10.1002/2015GL063187
  41. ↵
    1. Joshi, D. R.,
    2. Groves, K. M.,
    3. Retterer, J. M.,
    4. Carrano, C. S., &
    5. Roddy, P. A.
    (2022). Peak-height distribution of equatorial ionospheric plasma bubbles: Analysis and modeling of C/NOFS satellite observations. Journal of Geophysical Research: Space Physics, 127(9), e2022JA030525. https://doi.org/10.1029/2022JA030525
  42. ↵
    1. Joshi, L. M.,
    2. Tsai, L. C.,
    3. Su, S. Y.,
    4. Caton, R. G.,
    5. Groves, K. M., &
    6. Lu, C. H.
    (2019). On the nature of the intraseasonal variability of nighttime ionospheric irregularities over Taiwan. Journal of Geophysical Research: Space Physics, 124, 3609–3622. http://doi.org/10.1029/2018JA026419
  43. ↵
    1. Karan, D. K.,
    2. Daniell, R. E.,
    3. England, S. L.,
    4. Martinis, C. R.,
    5. Eastes, R. W.,
    6. Burns, A. G., &
    7. McClintock, W. E.
    (2020). First zonal drift velocity measurement of equatorial plasma bubbles (EPBs) from a geostationary orbit using GOLD data. Journal of Geophysical Research: Space Physics, 125(e2020JA028173). http://doi.org/10.1029/2020JA028173
  44. ↵
    1. Kelley, M. C., &
    2. Hysell, D. L.
    (1991). Equatorial spread-F and neutral atmospheric turbulence: A review and a comparative anatomy. Journal of Atmospheric and Terrestrial Physics, 53(8), 695–708. https://doi.org/10.1016/0021-9169(91)90122-N
  45. ↵
    1. Kelley, M. C.,
    2. Makela, J. J.,
    3. Paxton, L. J.,
    4. Kamalabadi, F.,
    5. Comberiate, J. M., &
    6. Kil, H.
    (2003). The first coordinated ground-and space-based optical observations of equatorial plasma bubbles. Geophysical Research Letters, 30(14). https://doi.org/10.1029/2003GL017301
  46. ↵
    1. Kil, H.
    (2015). The morphology of equatorial plasma bubbles—A review. Journal of Astronomy and Space Sciences, 32, 13–19. http://doi.org/10.5140/JASS.2015.32.1.13
  47. ↵
    1. Kil, H.,
    2. Heelis, R.,
    3. Paxton, L., &
    4. Oh, S.-J.
    (2009). Formation of a plasma depletion shell in the equatorial ionosphere. Journal of Geophysical Research, 114(A11302). http://doi.org/10.1029/2009JA014369
  48. ↵
    1. Kil, H., &
    2. Heelis, R. A.
    (1998). Equatorial density irregularity structures at intermediate scales and their temporal evolution. Journal of Geophysical Research: Space Physics, 103(A3), 3969–3981. https://doi.org/10.1029/97JA03344
  49. ↵
    1. Kondoh, H., &
    2. Matsushita, M.
    (1986). Diffusion-limited aggregation with anisotropic sticking probability: A tentative model for river networks. Journal of the Physical Society of Japan, 55(10), 3289–3292. https://doi.org/10.1143/JPSJ.55.3289
    1. Krall, J.,
    2. Huba, J. D.,
    3. Ossakow, S. L., &
    4. Joyce, G.
    (2010a). Equatorial spread F fossil plumes. Annales Geophysicae, 28(11), 2059–2069. https://doi.org/10.5194/angeo-28-2059-2010
    1. Krall, J.,
    2. Huba, J. D.,
    3. Ossakow, S. L., &
    4. Joyce, G.
    (2010b). Why do equatorial ionospheric bubbles stop rising? Geophysical Research Letters, 37(9). https://doi.org/10.1029/2010GL043128
  50. ↵
    1. Lee, Y. C.
    (2023). The World Bank crisis simulation exercise handbook. The World Bank Group. https://documents1.worldbank.org/curated/en/099125002162330340/pdf/P1776920e37f660f70b6640fe108468feb5.pdf
  51. ↵
    1. Li, G.,
    2. Ning, B., &
    3. Otsuka, Y.,
    4. Abdu, M. A.,
    5. Abadi, P.,
    6. Liu, Z.,
    7. Spogli, L., &
    8. Wan, W.
    (2021). Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in East and Southeast Asia. Surveys in Geophysics, 42, 201–238. http://doi.org/10.1007/s10712-020-09613-5
  52. ↵
    1. Livingston, R. C.,
    2. Rino, C. L.,
    3. McClure, J. P., &
    4. Hanson, W. B.
    (1981). Spectral characteristics of medium-scale equatorial F region irregularities. Journal of Geophysical Research: Space Physics, 86(A4), 2421–2428. https://doi.org/10.1029/JA086iA04p02421
  53. ↵
    1. Ludwig-Barbosa, V.,
    2. Rasch, J.,
    3. Sievert, T.,
    4. Carlstrom, A.,
    5. Pettersson, M. I.,
    6. Thuy Vu, V., &
    7. Christensen, J.
    (2023). Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path. Atmospheric Measurement Techniques, 16(7), 1849–1864. https://doi.org/10.5194/amt-16-1849-2023
  54. ↵
    1. Makela, J. J., &
    2. Kelley, M. C.
    (2003). Field-aligned 777.4-nm composite airglow images of equatorial plasma depletions. Geophysical Research Letters, 30, 1442. http://doi.org/10.1029/2003GL017106
  55. ↵
    1. Makela, J. J.,
    2. Kelley, M. C., &
    3. Nicolls, M. J.
    (2006). Optical observations of the development of secondary instabilities on the eastern wall of an equatorial plasma bubble. Journal of Geophysical Research, 111(A09311). http://doi.org/10.1029/2006JA011646
  56. ↵
    1. Meakin, P.,
    2. Chen, Z.-Y., &
    3. Evesque, P.
    (1987). Aggregation of anisotropic particles. The Journal of Chemical Physics, 87(1), 630–635. https://doi.org/10.1063/1.453557
  57. ↵
    1. Mendillo, M., &
    2. Baumgardner, J.
    (1982). Airglow characteristics of equatorial plasma depletions. Journal of Geophysical Research: Space Physics, 87(A9), 7641–7652. https://doi.org/10.1029/JA087iA09p07641
  58. ↵
    National Science and Technology Council. (2015). National space weather action plan. Executive Office of the President of the United States. https://www.sworm.gov/publications/2015/swap_final__20151028.pdf
  59. ↵
    1. Nava, B.,
    2. Coisson, P., &
    3. Radicella, S. M.
    (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 1856–1862. http://doi.org/10.1016/j.jastp.2008.01.015
  60. ↵
    1. Nickisch, L. J.
    (2004). A power law power spectral density model of total electron content structure in the polar region. Radio Science, 39(1). https://doi.org/10.1029/2002RS002818
  61. ↵
    OECD Space Forum. (2020). Space economy for people, planet and prosperity. https://web-archive.oecd.org/2021-09-17/598502-space-economy-for-people-planet-and-prosperity.pdf
  62. ↵
    1. Ogawa, T.,
    2. Miyoshi, Y.,
    3. Otsuka, Y.,
    4. Nakamura, T., &
    5. Shiokawa, K.
    (2009). Equatorial GPS ionospheric scintillations over Kototabang, Indonesia and their relation to atmospheric waves from below. Earth Planets Space, 61, 397–410. https://doi.org/10.1186/BF03353157
  63. ↵
    1. Ogawa, T.,
    2. Otsuka, Y.,
    3. Shiokawa, K.,
    4. Saito, A., &
    5. Nishioka, M.
    (2006). Ionospheric disturbances over Indonesia and their possible association with atmospheric gravity waves from the troposphere. Journal of the Meteorological Society of Japan, 84A, 327–342. https://doi.org/10.2151/jmsj.84A.327
  64. ↵
    1. Poushter, J.
    (2014). Emerging nations catching up to U.S. on technology adoption, especially mobile and social media use. Pew Research Center. https://www.pewresearch.org/fact-tank/2014/02/13/emerging-nations-catching-up-to-u-s-on-technology-adoption-especially-mobile-and-social-media-use/
  65. ↵
    1. Pradipta, R.,
    2. Carrano, C.,
    3. Groves, K., &
    4. Doherty, P.
    (2021). Development of a long-term climatology and geomagnetic storm response familiarization tool on low-latitude ionospheric scintillation occurrence for use in civil aviation applications. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 3859–3869. https://doi.org/10.33012/2021.18045
  66. ↵
    1. Pradipta, R., &
    2. Doherty, P. H.
    (2016). Assessing the occurrence pattern of large ionospheric TEC gradients over the Brazilian airspace. NAVIGATION, 63(3), 335–343. https://doi.org/10.1002/navi.141
  67. ↵
    1. Pradipta, R.,
    2. Valladares, C. E., &
    3. Doherty, P. H.
    (2015). An effective TEC data detrending method for the study of equatorial plasma bubbles and traveling ionospheric disturbances. Journal of Geophysical Research: Space Physics, 120, 11048–11055. http://doi.org/10.1002/2015JA021723
  68. ↵
    1. Qian, L.,
    2. Burns, A.,
    3. Emery, B.,
    4. Foster, B.,
    5. Lu, G.,
    6. Maute, A.,
    7. Richmond, A. D.,
    8. Roble, R. G.,
    9. Solomon, S. C., &
    10. Wang, W.
    (2014). The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system. In J. Huba, R. Schunk, & G. Khazanov (Eds.) Modeling the ionosphere-thermosphere system. Geophysical Monograph Series, 201, 73–83. https://doi.org/10.1002/9781118704417.ch7
  69. ↵
    1. Retterer, J.
    (2010). Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model. Journal of Geophysical Research, 115(A03306). http://doi.org/10.1029/2008JA013839
  70. ↵
    1. Richmond, A., &
    2. Maute, A.
    (2014). Ionospheric electrodynamics modeling. In J. Huba, R. Schunk, & G. Khazanov (Eds.) Modeling the ionosphere-thermosphere system. Geophysical Monograph Series, vol. 201 (417). Wiley. https://doi.org/10.1002/9781118704417.ch6
  71. ↵
    1. Rino, C.
    (2018). Dynamic spectral characteristics of high-resolution simulated equatorial plasma bubbles. Progress in Earth and Planetary Science, 5(83). https://doi.org/10.1186/s40645-018-0243-0
  72. ↵
    1. Rino, C.,
    2. Yokoyama, T., &
    3. Carrano, C. S.
    (2023). A three-dimensional stochastic structure model derived from high-resolution isolated equatorial plasma bubble simulations. Earth, Planets and Space, 75(64). https://doi.org/10.1186/s40623-023-01823-6
  73. ↵
    1. Rino, C. L.
    (1979a). A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Science, 14(6), 1135–1145. http://doi.org/10.1029/RS014i006p01135
  74. ↵
    1. Rino, C. L.
    (1979b). A power law phase screen model for ionospheric scintillation: 2. Strong scatter. Radio Science, 14(6), 1147–1155. http://doi.org/10.1029/RS014i006p01147
  75. ↵
    1. Rino, C. L., &
    2. Carrano, C. S.
    (2011). The application of numerical simulations in Beacon scintillation analysis and modeling. Radio Science, 46(3), RS0D02. http://doi.org/10.1029/2010RS004563
  76. ↵
    1. Rino, C. L.,
    2. Carrano, C. S.,
    3. Groves, K. M., &
    4. Roddy, P. A.
    (2016). A characterization of intermediate-scale spread F structure from four years of high-resolution C/NOFS satellite data. Radio Science, 51(6), 779–788. https://doi.org/10.1002/2015RS005841
  77. ↵
    1. Rino, C. L.,
    2. Tsunoda, R. T.,
    3. Petriceks, J.,
    4. Livingston, R. C.,
    5. Kelley, M. C., &
    6. Baker, K. D.
    (1981). Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F–Intermediate wavelength results. Journal of Geophysical Research: Space Physics, 86(A4), 2411–2420. https://doi.org/10.1029/JA086iA04p02411
  78. ↵
    1. Rodriguez-Zuluaga, J.,
    2. Stolle, C.,
    3. Yamazaki, Y.,
    4. Xiong, C., &
    5. England, S. L.
    (2021). A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly. Earth and Space Science, 8(2), e2020EA001529. http://doi.org/10.1029/2020EA001529
  79. ↵
    1. Rungraengwajiake, S.,
    2. Supnithi, P.,
    3. Saito, S.,
    4. Siansawasdi, N., &
    5. Saekow, A.
    (2015). Ionospheric delay gradient monitoring for GBAS by GPS stations near Suvarnabhumi airport, Thailand. Radio Science, 50(10), 1076–1085. https://doi.org/10.1002/2015RS005738
  80. ↵
    1. Saffman, P. G.
    (1986). Viscous fingering in Hele-Shaw cells. Journal of Fluid Mechanics, 173, 73–94. http://doi.org/10.1017/S0022112086001088
    CrossRef
  81. ↵
    1. Saito, S., &
    2. Fujii, N.
    (2010). Effects of external ionosphere anomaly monitors on GNSS augmentation systems studied with a three-dimensional ionospheric delay model—a study for GBAS. Proc. of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, 2611–2617. https://www.ion.org/publications/abstract.cfm?articleID=9369
  82. ↵
    1. Saito, S.,
    2. Sunda, S.,
    3. Lee, J.,
    4. Pullen, S.,
    5. Supriadi, S.,
    6. Yoshihara, T.,
    7. Terkildsen, M.,
    8. Lecat, F., & ICAO APANPIRG Ionospheric Studies Task Force.
    (2017). Ionospheric delay gradient model for GBAS in the Asia-Pacific region. GPS Solutions, 21, 1937–1947. http://doi.org/10.1007/s10291-017-0662-1
  83. ↵
    1. Saito, S., &
    2. Yoshihara, T.
    (2017). Evaluation of extreme ionospheric total electron content gradient associated with plasma bubbles for GNSS ground-based augmentation system. Radio Science, 52(8), 951–962. https://doi.org/10.1002/2017RS006291
  84. ↵
    1. Saito, S.,
    2. Yoshihara, T., &
    3. Fujii, N.
    (2009a). Development of an ionospheric delay model with plasma bubbles for GBAS. Proc. of the 2009 International Technical Meeting of the Institute of Navigation, Anaheim, CA, 947–953. https://www.ion.org/publications/abstract.cfm?articleID=8377
  85. ↵
    1. Saito, S.,
    2. Yoshihara, T., &
    3. Fujii, N.
    (2009b). Study of effects of the plasma bubble on GBAS by a three-dimensional ionospheric delay model. Proc. of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, 1141–1148. https://www.ion.org/publications/abstract.cfm?articleID=8522
  86. ↵
    1. Sheehan, R., &
    2. Valladares, C.
    (2004). Equatorial ionospheric zonal drift model and vertical drift statistics from UHF scintillation measurements in South America. Annales Geophysicae, 22, 3177–3193. http://doi.org/10.5194/angeo-22-3177-2004
  87. ↵
    1. Sultan, P. J.
    (1996). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101(A12), 26875–26891. http://doi.org/10.1029/96JA00682
  88. ↵
    1. Supriadi, S., &
    2. Saito, S.
    (2019). Simulation study of mitigation of plasma bubble effects on GBAS using a VHF radar. NAVIGATION, 66(4), 845–855. http://doi.org/10.1002/navi.330
  89. ↵
    1. Thebault, E.,
    2. Finlay, C. C.,
    3. Beggan, C. D.,
    4. Alken, P.,
    5. Aubert, J.,
    6. Barrois, O.,
    7. Bertrand, F.,
    8. Bondar, T.,
    9. Boness, A.,
    10. Brocco, L.,
    11. Canet, E.,
    12. Chambodut, A.,
    13. Chulliat, A.,
    14. Coisson, P.,
    15. Civet, F.,
    16. Du, A.,
    17. Fournier, A.,
    18. Fratter, I.,
    19. Gillet, N., …
    20. Zvereva, T.
    (2015). International Geomagnetic Reference Field: The 12th generation. Earth Planet Space, 67(79). https://doi.org/10.1186/s40623-015-0228-9
  90. ↵
    1. Tsunoda, R.
    (2015). Upwelling: A unit of disturbance in equatorial spread F. Progress in Earth and Planetary Science, 2, 9. https://doi.org/10.1186/s40645-015-0038-5
    1. Tsunoda, R. T.
    (1980). Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere. Journal of Atmospheric and Terrestrial Physics, 42(8), 743–752. https://doi.org/10.1016/0021-9169(80)90057-4
  91. ↵
    1. Tsunoda, R. T.
    (1981). Time evolution and dynamics of equatorial backscatter plumes 1. Growth phase. Journal of Geophysical Research: Space Physics, 86(A1), 139–149. https://doi.org/10.1029/JA086iA01p00139
  92. ↵
    1. Tsunoda, R. T.
    (1983). On the generation and growth of equatorial backscatter plumes: 2. Structuring of the west walls of upwellings. Journal of Geophysical Research: Space Physics, 88(A6), 4869–4874. https://doi.org/10.1029/JA088iA06p04869
  93. ↵
    1. Tsunoda, R. T.,
    2. Livingston, R. C.,
    3. McClure, J. P., &
    4. Hanson, W. B.
    (1982). Equatorial plasma bubbles: Vertically elongated wedges from the bottomside F layer. Journal of Geophysical Research: Space Physics, 87(A11), 9171–9180. https://doi.org/10.1029/JA087iA11p09171
  94. ↵
    1. Tsunoda, R. T., &
    2. White, B. R.
    (1981). On the generation and growth of equatorial backscatter plumes 1. Wave structure in the bottomside F layer. Journal of Geophysical Research: Space Physics, 86(A5), 3610–3616. https://doi.org/10.1029/JA086iA05p03610
  95. ↵
    1. van de Kamp, M. M. J. L., &
    2. Cannon, P. S.
    (2009). Spectra of equatorial total electron content derived from GPS signals. Annales Geophysicae, 7(5), 2205–2214. https://doi.org/10.5194/angeo-27-2205-2009
  96. ↵
    1. VanZandt, T. E.,
    2. Clark, W. L., &
    3. Warnock, J. M.
    (1972). Magnetic apex coordinates: A magnetic coordinate system for the ionospheric F2 layer. Journal of Geophysical Research, 77(13), 2406–2411. http://doi.org/10.1029/JA077i013p02406
    GeoRef
  97. ↵
    1. Vasylyev, D.,
    2. Béniguel, Y.,
    3. Volker, W.,
    4. Kriegel, M., &
    5. Berdermann, J.
    (2022). Modeling of ionospheric scintillation. Journal of Space Weather and Space Climate, 12, 22. http://doi.org/10.1051/swsc/2022016
  98. ↵
    1. Vijayakumar, P. N., &
    2. Pasricha, P. K.
    (1997). Parametrization of spectra of plasma bubble induced VHF satellite scintillations and its geophysical significance. Annales Geophysicae, 15(3), 345–354. https://doi.org/10.1007/s00585-997-0345-2
  99. ↵
    1. Wang, Z.,
    2. Li, T.,
    3. Li, Q., &
    4. Fang, K.
    (2021). Impact of anomalous ionospheric gradients on GBAS in the low-latitude region of China. GPS Solutions, 25(2). https://doi.org/10.1007/s10291-020-01038-2
  100. ↵
    1. Witten, J., T. A., &
    2. Sander, L. M.
    (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters, 47, 1400. http://doi.org/10.1103/PhysRevLett.47.1400
    CrossRefWeb of Science
  101. ↵
    1. Witten, T. A., &
    2. Sander, L. M.
    (1983). Diffusion-limited aggregation. Physical Review B, 27, 5686–5697. https://doi.org/10.1103/PhysRevB.27.5686
    CrossRef
  102. ↵
    1. Woodman, R. F., &
    2. La Hoz, C.
    (1976). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81(31), 5447–5466. http://doi.org/10.1029/JA081i031p05447
  103. ↵
    1. Yokoyama, T.
    (2017). A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting. Progress in Earth and Planetary Science, 4, 37. http://doi.org/10.1186/s40645-017-0153-6
  104. ↵
    1. Yokoyama, T.,
    2. Jin, H., &
    3. Shinagawa, H.
    (2015). West wall structuring of equatorial plasma bubbles simulated by three-dimensional HIRB model. Journal of Geophysical Research: Space Physics, 120(10), 8810–8816. https://doi.org/10.1002/2015JA021799
  105. ↵
    1. Yokoyama, T.,
    2. Jin, H.,
    3. Shinagawa, H., &
    4. Liu, H.
    (2019). Seeding of equatorial plasma bubbles by vertical neutral wind. Geophysical Research Letters, 46, 7088–7095. http://doi.org/10.1029/2019GL083629
  106. ↵
    1. Yokoyama, T.,
    2. Shinagawa, H., &
    3. Jin, H.
    (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. Journal of Geophysical Research: Space Physics, 119(12), 10,474–10,482. https://doi.org/10.1002/2014JA020708
  107. ↵
    1. Yoon, M.,
    2. Kim, D.,
    3. Pullen, S., &
    4. Lee, J.
    (2019). Assessment and mitigation of equatorial plasma bubble impacts on category I GBAS operations in the Brazilian region. NAVIGATION, 66(3), 643–659. https://doi.org/10.1002/navi.328
  108. ↵
    1. Yoon, M.,
    2. Lee, J.,
    3. Pullen, S.,
    4. Gillespie, J.,
    5. Mathur, N.,
    6. Cole, R.,
    7. de Souza, J. R.,
    8. Doherty, P., &
    9. Pradipta, R.
    (2017). Equatorial plasma bubble threat parameterization to support GBAS operations in the Brazilian region. NAVIGATION, 64(3), 309–321. http://doi.org/10.1002/navi.203
  109. ↵
    1. Zeng, X.,
    2. Atlas, R.,
    3. Birk, R. J.,
    4. Carr, F. H.,
    5. Carrier, M. J.,
    6. Cucurull, L.,
    7. Hooke, W. H.,
    8. Kalnay, E.,
    9. Murtugudde, R.,
    10. Posselt, D. J.,
    11. Russell, J. L.,
    12. Tyndall, D. P.,
    13. Weller, R. A., &
    14. Zhang, F.
    (2020). Use of observing system simulation experiments in the United States. Bulletin of the American Meteorological Society, 101(8), E1427–E1438. https://doi.org/10.1175/BAMS-D-19-0155.1
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 2
Summer 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Can Numerical Simulations of Equatorial Plasma Bubble Plume Structures be Simplified for Operational and Practical Usage?
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Can Numerical Simulations of Equatorial Plasma Bubble Plume Structures be Simplified for Operational and Practical Usage?
Rezy Pradipta, Charles S. Carrano, Keith M. Groves,, Patricia H. Doherty
NAVIGATION: Journal of the Institute of Navigation Jun 2024, 71 (2) navi.645; DOI: 10.33012/navi.645

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Can Numerical Simulations of Equatorial Plasma Bubble Plume Structures be Simplified for Operational and Practical Usage?
Rezy Pradipta, Charles S. Carrano, Keith M. Groves,, Patricia H. Doherty
NAVIGATION: Journal of the Institute of Navigation Jun 2024, 71 (2) navi.645; DOI: 10.33012/navi.645
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 BIFURCATING PLUME STRUCTURES OF EPBS
    • 3 A SIMPLIFIED OPTION FOR AN EPB PLUME STRUCTURE MODEL
    • 4 COMPARATIVE ANALYSIS AND CHARACTERIZATION
    • 5 BASIC COMPUTATIONAL PERFORMANCE ASSESSMENT
    • 6 POTENTIAL APPLICATIONS
    • 7 FURTHER IMPROVEMENTS AND OTHER POTENTIAL ROLES
    • 8 SUMMARY AND CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Keywords

  • equatorial plasma bubbles
  • fractal structure
  • GNSS
  • low-latitude ionosphere
  • numerical simulation
  • scintillations
  • total electron content

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire