Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

ICET Online Accuracy Characterization for Geometry-Based Laser Scan Matching

Matthew McDermott and Jason Rife
NAVIGATION: Journal of the Institute of Navigation June 2024, 71 (2) navi.647; DOI: https://doi.org/10.33012/navi.647
Matthew McDermott
Department of Mechanical Engineering, Tufts University, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason Rife
Department of Mechanical Engineering, Tufts University, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Arnold, E.,
    2. Mozaffari, S., &
    3. Dianati, M.
    (2021). Fast and robust registration of partially overlapping point clouds. IEEE Robotics and Automation Letters, 1–8. https://doi.org/10.1109/LRA.2021.3137888
  2. ↵
    1. Besl, P. J., &
    2. McKay, N. D.
    (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. https://doi.org/10.1109/34.121791
    CrossRefWeb of Science
  3. ↵
    1. Bhamidipati, S., &
    2. Gao, G.
    (2022). Robust GPS-vision localization via integrity-driven landmark attention. NAVIGATION, 69 (1). https://doi.org/10.48550/arXiv.2101.04836
  4. ↵
    1. Bhandari, A.,
    2. Kadambi, A.,
    3. Whyte, R.,
    4. Barsi, C.,
    5. Feigin, M.,
    6. Dorrington, A., &
    7. Raskar, R.
    (2014). Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization. Optics Letters, 39(6), 1705–1708. https://doi.org/10.1364/OL.39.001705
  5. ↵
    1. Biber, P., &
    2. Straser, W.
    (2003). The normal distributions transform: A new approach to laser scan matching. Proc. of the IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, 2743–2748. https://doi.org/10.1109/IROS.2003.1249285
  6. ↵
    1. Brossard, M.,
    2. Bonnabel, S., &
    3. Barrau, A.
    (2020). A new approach to 3D ICP covariance estimation. IEEE Robotics and Automation Letters, 5(2), 744–751. https://doi.org/10.1109/LRA.2020.2965391
  7. ↵
    1. Censi, A.
    (2007). An accurate closed-form estimate of ICP’s covariance. Proc. of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 3167–3172. https://doi.org/10.1109/ROBOT.2007.363961
  8. ↵
    1. Chen, Y., &
    2. Medioni, G.
    (1991). Object modeling by registration of multiple range images. Proc. of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, 2724–2729 vol.3. https://doi.org/10.1109/ROBOT.1991.132043
  9. ↵
    1. Cho, Y.,
    2. Kim, G., &
    3. Kim, A.
    (2020). Unsupervised geometry-aware deep lidar odometry. Proc. of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2145–2152. https://doi.org/10.1109/ICRA40945.2020.9197366
  10. ↵
    1. Déziel, J.-L.,
    2. Merriaux, P.,
    3. Tremblay, F.,
    4. Lessard, D.,
    5. Plourde, D.,
    6. Stanguennec, J.,
    7. Goulet, P., &
    8. Olivier, P.
    (2021). Pixset: An opportunity for 3D computer vision to go beyond point clouds with a full-waveform lidar dataset. Proc. of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, 2987–2993. https://doi.org/10.1109/itsc48978.2021.9565047
  11. ↵
    1. Dosovitskiy, A.,
    2. Ros, G.,
    3. Codevilla, F.,
    4. Lopez, A., &
    5. Koltun, V.
    (2017). CARLA: An open urban driving simulator. Proc. of the 1st Annual Conference on Robot Learning (CoRL), Mountain View, CA, 1–16. https://doi.org/10.48550/arXiv.1711.03938
  12. ↵
    1. Einhorn, E., &
    2. Gross, H.-M.
    (2015). Generic NDT mapping in dynamic environments and its application for lifelong SLAM. Robotics and Autonomous Systems, 69, 28–39. https://doi.org/10.1016/j.robot.2014.08.008
  13. ↵
    1. Enge, P. K.
    (1994). The Global Positioning System: Signals, measurements, and performance. International Journal of Wireless Information Networks, 1 (2), 83–105. https://doi.org/10.1007/BF02106512
  14. ↵
    1. Glennie, C., &
    2. Lichti, D. D.
    (2010). Static calibration and analysis of the Velodyne HDL-64E S2 for high accuracy mobile scanning. Remote Sensing, 2(6), 1610–1624. https://doi.org/10.3390/rs2061610
  15. ↵
    1. Hassani, A., &
    2. Joerger, M.
    (2021). A new point-cloud-based lidar/IMU localization method with uncertainty evaluation. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 636–651. https://doi.org/10.33012/2021.17905
  16. ↵
    1. Hassani, A.,
    2. Joerger, M.,
    3. Arana, G. D., &
    4. Spenko, M.
    (2018). Lidar data association risk reduction, using tight integration with INS. Proc. of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, 2467–2483. https://doi.org/10.33012/2018.15976
  17. ↵
    1. Hong, H., &
    2. Lee, B. H.
    (2017). Probabilistic normal distributions transform representation for accurate 3D point cloud registration. Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 3333–3338. https://doi.org/10.1109/IROS.2017.8206170
  18. ↵
    1. Julier, S. J., &
    2. Uhlmann, J. K.
    (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422. https://doi.org/10.1109/JPROC.2003.823141
    CrossRefWeb of Science
  19. ↵
    1. Li, Q.,
    2. Shaoyang, C.,
    3. Wang, C.,
    4. Li, X.,
    5. Wen, C.,
    6. Cheng, M., &
    7. Li, J.
    (2019). LO-Net: Deep realtime lidar odometry. Proc. of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 8465–8474. https://doi.org/10.1109/CVPR.2019.00867
  20. ↵
    1. Li, Z., &
    2. Wang, N.
    (2020). DMLO: Deep matching lidar odometry. Proc. of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, 6010–6017. https://doi.org/10.1109/IROS45743.2020.9341206
  21. ↵
    1. McDermott, M., &
    2. Rife, J.
    (2022a). Enhanced laser-scan matching with online error estimation for highway and tunnel driving. Proc. of the 2022 International Technical Meeting of the Institute of Navigation, Long Beach, CA, 643–654. https://doi.org/10.33012/2022.18249
  22. ↵
    1. McDermott, M., &
    2. Rife, J.
    (2022b). Mitigating shadows in lidar scan matching using spherical voxels. IEEE Robotics and Automation Letters, 7(4), 12363–12370. https://doi.org/10.1109/LRA.2022.3216987
  23. ↵
    1. NIST
    . (2006). Sematech e-handbook of statistical methods. US Department of Commerce. https://www.itl.nist.gov/div898/handbook/
  24. ↵
    1. Park, Y. S.,
    2. Jang, H., &
    3. Kim, A.
    (2020). I-LOAM: Intensity enhanced lidar odometry and mapping. Proc. of the 2020 17th International Conference on Ubiquitous Robots (UR), Kyoto, Japan, 455–458. https://doi.org/10.1109/UR49135.2020.9144987
  25. ↵
    1. Roth, M.,
    2. Hendeby, G., &
    3. Gustafsson, F.
    (2016). Nonlinear Kalman filters explained: A tutorial on moment computations and sigma point methods. Journal of Advances in Information Fusion, 11 (1), 47–70. https://api.semanticscholar.org/CorpusID:125811483
  26. ↵
    1. Segal, A.,
    2. Haehnel, D., &
    3. Thrun, S.
    (2009). Generalized-ICP. Robotics: Science and Systems, 2(4), 435. https://doi.org/10.15607/RSS.2009.V.021
  27. ↵
    1. Shimojo, S.,
    2. Silverman, G. H., &
    3. Nakayama, K.
    (1989). Occlusion and the solution to the aperture problem for motion. Vision Research, 29(5), 619–626. https://doi.org/10.1016/0042-6989(89)90047-3
    CrossRefPubMedWeb of Science
  28. ↵
    1. Simon, D.
    (2006). Optimal state estimation: Kalman, h infinity, and nonlinear approaches. Wiley & Sons. https://doi.org/10.1002/0470045345
  29. ↵
    1. Stoyanov, T.,
    2. Magnusson, M.,
    3. Andreasson, H., &
    4. Lilienthal, A. J.
    (2012). Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations. The International Journal of Robotics Research, 31 (12), 1377–1393. https://doi.org/10.1177/0278364912460895
    CrossRefWeb of Science
  30. ↵
    1. Takeuchi, E., &
    2. Tsubouchi, T.
    (2006). A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping. Proc. of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 3068–3073. https://doi.org/10.1109/IROS.2006.282246
  31. ↵
    1. Tuna, T.,
    2. Nubert, J.,
    3. Nava, Y.,
    4. Khattak, S., &
    5. Hutter, M.
    (2022). X-ICP: Localizability-aware lidar registration for robust localization in extreme environments. arXiv preprint arXiv:2211.16335. https://doi.org/10.48550/arXiv.2211.16335
  32. ↵
    1. Velodyne LIDAR, I.
    (2019). VLP-16 user’s manual. https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf
  33. ↵
    1. Wen, W.,
    2. Hsu, L.-T., &
    3. Zhang, G.
    (2018). Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong. Sensors, 18(11), 3928. https://doi.org/10.3390/s18113928
  34. ↵
    1. Wu, B.,
    2. Wan, A.,
    3. Yue, X., &
    4. Keutzer, K.
    (2018). SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D lidar point cloud. Proc. of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 1887–1893. https://doi.org/10.1109/ICRA.2018.8462926
  35. ↵
    1. Yuan, R. H.,
    2. Taylor, C. N., &
    3. Nykl, S. L.
    (2023). Accurate covariance estimation for pose data from iterative closest point algorithm. NAVIGATION, 70 (2). https://doi.org/10.33012/navi.562
  36. ↵
    1. Zhang, J., &
    2. Singh, S.
    (2014). LOAM: Lidar odometry and mapping in real-time. Robotics: Science and Systems, 2(9). https://doi.org/10.15607/RSS.2014.X.007
  37. ↵
    1. Zhen, W., &
    2. Scherer, S.
    (2019). Estimating the localizability in tunnel-like environments using lidar and UWB. 2019 International Conference on Robotics and Automation (ICRA), 4903–4908. https://doi.org/10.1109/ICRA.2019.8794167
  38. ↵
    1. Zhu, C.,
    2. Meurer, M., &
    3. Günther, C.
    (2022). Integrity of visual navigation—Developments, challenges, and prospects. NAVIGATION, 69 (2). https://doi.org/10.33012/navi.518
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 2
Summer 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
ICET Online Accuracy Characterization for Geometry-Based Laser Scan Matching
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
ICET Online Accuracy Characterization for Geometry-Based Laser Scan Matching
Matthew McDermott, Jason Rife
NAVIGATION: Journal of the Institute of Navigation Jun 2024, 71 (2) navi.647; DOI: 10.33012/navi.647

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
ICET Online Accuracy Characterization for Geometry-Based Laser Scan Matching
Matthew McDermott, Jason Rife
NAVIGATION: Journal of the Institute of Navigation Jun 2024, 71 (2) navi.647; DOI: 10.33012/navi.647
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 DEFINING THE PROBLEM
    • 3 IMPLEMENTATION
    • 4 VERIFICATION TESTING: REAL LIDAR DATA SET
    • 5 VERIFICATION TESTING: HIGH-FIDELITY SIMULATED DATA SET
    • 6 VERIFICATION TESTING: ABSTRACTED GEOMETRIES
    • 7 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGMENTS
    • A APPENDIX: PARAMETRIC STUDY OF SPHERICAL VOXEL RESOLUTION
    • B APPENDIX: CONSTRUCTING THE VOXEL PROJECTION MATRIX
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ranging Performance Evaluation for Higher-Order Scalable Interplex
  • Combinatorial Watermarking Under Limited SCER Adversarial Models
  • Wide-Sense CDF Overbounding for GNSS Integrity
Show more Regular Papers

Similar Articles

Keywords

  • lidar
  • localization
  • scan registration
  • SLAM

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire