Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Array-Aided Precise Orbit and Attitude Determination of CubeSats using GNSS

Amir Allahvirdi-Zadeh and Ahmed El-Mowafy
NAVIGATION: Journal of the Institute of Navigation September 2024, 71 (3) navi.651; DOI: https://doi.org/10.33012/navi.651
Amir Allahvirdi-Zadeh
1School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ahmed El-Mowafy
1School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

    1. Allahvirdi-Zadeh, A.
    (2021). Phase centre variation of the GNSS antenna onboard the cubesats and its impact on precise orbit determination. Proc. of the GSA Earth Sciences Student Symposium, Western Australia (GESSS-WA), Perth, Western Australia. https://doi.org/10.13140/RG.2.2.10355.45607/1
    1. Allahverdi-Zadeh, A.,
    2. Asgari, J., &
    3. Amiri-Simkooei, A. R.
    (2016). Investigation of GPS draconitic year effect on GPS time series of eliminated eclipsing GPS satellite data. Journal of Geodetic Science, 6(1), 93–102. https://doi.org/10.1515/jogs-2016-0007
  1. ↵
    1. Allahvirdi-Zadeh, A.,
    2. Awange, J.,
    3. El-Mowafy, A.,
    4. Ding, T., &
    5. Wang, K.
    (2022). Stability of cubesat clocks and their impacts on GNSS radio occultation. Remote Sensing, 14(2), 1–26. https://doi.org/10.3390/rs14020362
  2. ↵
    1. Allahvirdi-Zadeh, A., &
    2. El-Mowafy, A.
    (2021). Precise orbit determination of cubesats using a proposed observations weighting model. Proc. of the Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China, 387–384. https://doi.org/10.13140/RG.2.2.20619.62244/1
  3. ↵
    1. Allahvirdi-Zadeh, A., &
    2. El-Mowafy, A.
    (2022a). CubeSat’s attitude determination using GNSS antenna array. Proc. of the International Global Navigation Satellite Systems Conference 2022 (IGNSS), UNSW, Sydney. https://doi.org/10.13140/RG.2.2.29925.68320
  4. ↵
    1. Allahvirdi-Zadeh, A., &
    2. El-Mowafy, A.
    (2022b). The impact of precise inter-satellite ranges on relative precise orbit determination in a smart cubesats constellation. Proc. of the EGU General Assembly Conference Abstracts, Vienna, Austria, EGU22–2215. https://doi.org/10.5194/egusphere-egu22-2215
  5. ↵
    1. Allahvirdi-Zadeh, A.,
    2. El-Mowafy, A.,
    3. Mcclusky, S.,
    4. Allgeyer, S., &
    5. Hammond, A.
    (2024). Ginan supporting future LEO-PNT. Proc. of the Proc. of the International Global Navigation Satellite Systems Conference 2024 (IGNSS), Sydney, NSW. https://doi.org/10.13140/RG.2.2.22771.30248
    1. Allahvirdi-Zadeh, A.,
    2. El-Mowafy, A., &
    3. Wang, K.
    (2022). Precise orbit determination of cubesats using proposed observations weighting model. In Freymueller, J.T., Sánchez, L. (Eds.), Geodesy for a sustainable earth. International Association of Geodesy Symposia (vol. 154, 377–384). Springer, Cham. https://doi.org/10.1007/1345_2022_160
  6. ↵
    1. Allahvirdi-Zadeh, A.,
    2. El-Mowafy, A., &
    3. Wang, K.
    (2024). Leveraging future LEO constellations for the precise orbit determination of lower small satellites. Proc. of the 2024 International Technical Meeting of the Institute of Navigation, Long Beach, CA, 756–769. https://doi.org/10.33012/2024.19485
  7. ↵
    1. Allahvirdi-Zadeh, A.,
    2. Wang, K., &
    3. El-Mowafy, A.
    (2021). POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections. GPS Solutions, 25(31), 1–14. https://doi.org/10.1007/s10291-020-01078-8
  8. ↵
    1. Allahvirdi-Zadeh, A.,
    2. Wang, K., &
    3. El-Mowafy, A.
    (2022). Precise orbit determination of LEO satellites based on undifferenced GNSS observations. Journal of Surveying Engineering, 148(1), 03121001. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000382
  9. ↵
    1. Allahvirdizadeh, A.
    (2022). Precise orbit determination of cubesats [Doctoral thesis, Curtin University]. Curtin Theses. http://hdl.handle.net/20.500.11937/89922
  10. ↵
    1. Arnold, D.,
    2. Peter, H.,
    3. Mao, X.,
    4. Miller, A., &
    5. Jäggi, A.
    (2023). Precise orbit determination of Spire nano satellites. Advances in Space Research, 72(11), 5030–5046. https://doi.org/10.1016/j.asr.2023.10.012
  11. ↵
    1. Cohen, C. E.,
    2. Lightsey, E. G.,
    3. Parkinson, B. W., &
    4. Feess, W. A.
    (1994). Space flight tests of attitude determination using GPS. International Journal of Satellite Communications, 12(5), 427–433. https://doi.org/10.1002/sat.4600120504
  12. ↵
    1. Cohen, C. E.,
    2. Parkinson, B. W., &
    3. McNally, B. D.
    (1994). Flight tests of attitude determination using GPS compared against an inertial navigation unit. NAVIGATION, 41(1), 83–97. https://doi.org/10.1002/j.2161-4296.1994.tb02323.x
  13. ↵
    1. Dach, R.,
    2. Lutz, S.,
    3. Walser, P., &
    4. Fridez, P.
    (2015). Bernese GNSS software version 5.2. Bern Open Publishing. https://doi.org/10.7892/boris.72297
  14. ↵
    1. El-Mowafy, A.,
    2. Wang, K., &
    3. Allahverdi-Zadeh, A.
    (2022). The potential of LEO mega-constellations in aiding GNSS to enable positioning in challenging environments. Proc. of the XXVII International Federation of Surveyors (FIG) Congress, Warsaw, Poland, 1–11. https://api.semanticscholar.org/CorpusID:264148693
  15. ↵
    1. Freesland, D.,
    2. Reiss, K.,
    3. Young, D.,
    4. Cooper, J., &
    5. Adams, C. A.
    (1996). GPS based attitude determination: The REX II flight experience. https://digitalcommons.usu.edu/smallsat/1996/all1996/5/
  16. ↵
    1. Giorgi, G.
    (2017). Attitude determination. In P. J. G. Teunissen & O. Montenbruck (Eds.), Springer handbook of global navigation satellite systems, 781–809. Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1_27
  17. ↵
    1. Giorgi, G.,
    2. Teunissen, P., &
    3. Buist, P.
    (2008). A search and shrink approach for the baseline constrained LAMBDA method: Experimental results. Proc. of the International GPS/GNSS Symposium, Tokyo, Japan. http://gnss.curtin.edu.au/wp-content/uploads/sites/21/2016/04/Giorgi2008search.pdf
  18. ↵
    1. Giorgi, G.,
    2. Teunissen, P. J. G., &
    3. Gourlay, T. P.
    (2012). Instantaneous global navigation satellite system (GNSS)-based attitude determination for maritime applications. IEEE Journal of Oceanic Engineering, 37(3), 348–362. https://doi.org/10.1109/JOE.2012.2191996
  19. ↵
    1. Giorgi, G.,
    2. Teunissen, P. J. G.,
    3. Verhagen, S., &
    4. Buist, P. J.
    (2012). Instantaneous ambiguity resolution in global-navigation-satellite-system-based attitude determination applications: A multivariate constrained approach. Journal of Guidance, Control, and Dynamics, 35(1), 51–67. https://doi.org/10.2514/1.54069
  20. ↵
    1. Giorgi, G.,
    2. Verhagen, S.,
    3. Buist, P. J., &
    4. Teunissen, P. J. G.
    (2011). GNSS-based attitude determination aerospace and formation flying. Inside GNSS, 6(4), 62–71. https://gnss.curtin.edu.au/wp-content/uploads/sites/21/2016/04/Giorgi2011GNSS-based.pdf
  21. ↵
    1. Gomez, S.
    (2005). Three years of Global Positioning System experience on International Space Station (NASA/TM-2005-213715). https://ntrs.nasa.gov/citations/20070018309
  22. ↵
    1. Hauschild, A., &
    2. Montenbruck, O.
    (2021). Precise real-time navigation of LEO satellites using GNSS broadcast ephemerides. NAVIGATION, 68(2), 419–432. https://doi.org/10.1002/navi.416
  23. ↵
    1. Hauschild, A.,
    2. Montenbruck, O., &
    3. Langley, R. B.
    (2020). Flight results of GPS-based attitude determination for the Canadian CASSIOPE satellite. NAVIGATION, 67(1), 83–91. https://doi.org/10.1002/navi.348
  24. ↵
    1. Jiang, M.,
    2. Qin, H.,
    3. Zhao, C., &
    4. Sun, G.
    (2021). LEO Doppler-aided GNSS position estimation. GPS Solutions, 26(1), 31. https://doi.org/10.1007/s10291-021-01210-2
  25. ↵
    1. Jin, B.,
    2. Chen, S.,
    3. Li, M.,
    4. Yue, F., &
    5. Zhao, L.
    (2022). Sentinel-6A attitude modeling with dual GNSS antennas and its impact on precise orbit determination. GPS Solutions, 27(7), 1–13. https://doi.org/10.1007/s10291-022-01346-9
  26. ↵
    1. Johnston, G.,
    2. Riddell, A., &
    3. Hausler, G.
    (2017). The International GNSS Service. Springer handbook of global navigation satellite systems. https://doi.org/10.1007/978-3-319-42928-1_33
  27. ↵
    1. Li, B., &
    2. Teunissen, P. J. G.
    (2014). GNSS antenna array-aided CORS ambiguity resolution. Journal of Geodesy, 88(4), 363–376. https://doi.org/10.1007/s00190-013-0688-2
  28. ↵
    1. Li, X.,
    2. Ma, F.,
    3. Li, X.,
    4. Lv, H.,
    5. Bian, L.,
    6. Jiang, Z., &
    7. Zhang, X.
    (2019). LEO constellation-augmented multi-GNSS for rapid PPP convergence. Journal of Geodesy, 93(5), 749–764. https://doi.org/10.1007/s00190-018-1195-2
    1. Lyard, F. H.,
    2. Allain, D. J.,
    3. Cancet, M.,
    4. Carrère, L., &
    5. Picot, N.
    (2021). FES2014 global ocean tide atlas: Design and performance. Ocean Science, 17(3), 615–649. https://doi.org/10.5194/os-17-615-2021
  29. ↵
    1. Montenbruck, O.
    (2017). Space applications. In P. J. G. Teunissen & O. Montenbruck (Eds.), Handbook of global navigation satellite systems, 933–964. Springer. https://doi.org/10.1007/978-3-319-42928-1_32
  30. ↵
    1. Nadarajah, N., &
    2. Teunissen, P. J. G.
    (2014). Instantaneous GPS/Galileo/QZSS/SBAS attitude determination: A single-frequency (L1/E1) robustness analysis under constrained environments. NAVIGATION, 61(1), 65–75. https://doi.org/10.1002/navi.51
  31. ↵
    1. Nadarajah, N.,
    2. Teunissen, P., &
    3. de Bakker, P.
    (2014). GNSS array-aided positioning and attitude determination: Real data analyses. Proc. of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, 2544–2554. https://www.ion.org/publications/abstract.cfm?articleID=12447
  32. ↵
    1. Nadarajah, N.,
    2. Teunissen, P. J. G.,
    3. Buist, P. J., &
    4. Steigenberger, P.
    (2012). First results of instantaneous GPS/Galileo/COMPASS attitude determination. Proc. of the 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands, 1–8. https://doi.org/10.1109/NAVITEC.2012.6423068
  33. ↵
    1. Nadarajah, N.,
    2. Teunissen, P. J. G., &
    3. Raziq, N.
    (2013). Instantaneous GPS–Galileo attitude determination: Single-frequency performance in satellite-deprived environments. IEEE Transactions on Vehicular Technology, 62(7), 2963–2976. https://doi.org/10.1109/TVT.2013.2256153
  34. ↵
    1. Nadarajah, N.,
    2. Teunissen, P. J. G., &
    3. Verhagen, S.
    (2016). Attitude determination and relative positioning for LEO satellites using arrays of GNSS sensors. In C. Rizos &, P. Willis (Eds.) IAG 150 Years. Springer, Cham. https://doi.org/10.1007/1345_2015_26
  35. ↵
    1. Palomo, J. M.,
    2. D’Angelo, P.,
    3. Silva, P. F.,
    4. Fernández, A. J.,
    5. Giordano, P.,
    6. Zoccarato, P.,
    7. Tegedor, J.,
    8. Oerpen, O.,
    9. Hansen, L. B.,
    10. Hill, C., &
    11. Moore, T.
    (2019). Space GNSS receiver performance results with precise real-time on-board orbit determination (P2OD) in LEO missions. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 1172–1186. https://doi.org/10.33012/2019.17082
    1. Pavlis, N.,
    2. Kenyon, S.,
    3. Factor, J., &
    4. Holmes, S.
    (2008). Earth gravitational model 2008. In SEG Technical Program Expanded Abstracts 2008 (pp. 761–763). Society of Exploration Geophysicists. https://doi.org/10.1190/1.3063757
    1. Petit, G., &
    2. Luzum, B.
    (2010). In G. Petit & B. Luzum (Eds.) International Earth Rotation and Reference Ststems Service (IERS) Conventions 2010, 179. https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html
    1. Schaer, S.,
    2. Villiger, A.,
    3. Arnold, D.,
    4. Dach, R.,
    5. Prange, L., &
    6. Jäggi, A.
    (2021). The CODE ambiguity-fixed clock and phase bias analysis products: Generation, properties, and performance. Journal of Geodesy, 95(7), 81 (1–25). https://doi.org/10.1007/s00190-021-01521-9
  36. ↵
    1. Schott, J. R.
    (2016). Matrix analysis for statistics. John Wiley & Sons. https://www.wiley.com/en-br/Matrix+Analysis+for+Statistics%2C+3rd+Edition-p-9781119092469
  37. ↵
    Spire. (2023). Attitude determination and control system (ADCS). https://spire.com/spirepedia/attitude-determination-and-control-system-adcs/
  38. ↵
    Spirent. (2022). SimGEN® software user manual for version v8.01.00. Software for the Spirent range of satellite navigation simulator products. Spirent Communications, PLC. https://www.spirent.com/assets/u/datasheet-simgen
    1. Standish, E.
    (1998). JPL planetary and lunar ephemerides, DE405/LE405. JPL IOM, 312, F-98_048. https://ssd.jpl.nasa.gov/planets/eph_export.html
  39. ↵
    1. Teunissen, P. J. G.
    (2006). Testing theory; an introduction (2nd ed.). Series on Mathematical Geodesy and Positioning. VSSD. https://research.tudelft.nl/en/publications/testing-theory-an-introduction-2nd-edition
  40. ↵
    1. Teunissen, P.
    (2007). The LAMBDA method for the GNSS compass. Artificial Satellites, 41(3), 89–103. https://doi.org/doi:10.2478/v10018-007-0009-1
  41. ↵
    1. Teunissen, P.
    (2008). A general multivariate formulation of the multi-antenna GNSS attitude determination problem. Artificial Satellites, 42(2), 97–111. https://doi.org/doi:10.2478/v10018-008-0002-3
  42. ↵
    1. Teunissen, P. J. G.
    (2010). Integer least-squares theory for the GNSS compass. Journal of Geodesy, 84(7), 433–447. https://doi.org/10.1007/s00190-010-0380-8
  43. ↵
    1. Teunissen, P. J. G.
    (2012a). The affine constrained GNSS attitude model and its multivariate integer least-squares solution. Journal of Geodesy, 86(7), 547–563. https://doi.org/10.1007/s00190-011-0538-z
  44. ↵
    1. Teunissen, P. J. G.
    (2012b). A-PPP: Array-aided precise point positioning with global navigation satellite systems. IEEE Transactions on Signal Processing, 60(6), 2870–2881. https://doi.org/10.1109/TSP.2012.2189854
  45. ↵
    1. Unwin, M.,
    2. Purivigraipong, P.,
    3. da Silva Curiel, A., &
    4. Sweeting, M.
    (2002). Stand-alone spacecraft attitude determination using real flight GPS data from UOSAT-12. Acta Astronautica, 51(1), 261–268. https://doi.org/10.1016/S0094-5765(02)00038-3
  46. ↵
    1. Wang, K.,
    2. Allahvirdi-Zadeh, A.,
    3. El-Mowafy, A., &
    4. Gross, J. N.
    (2020). A sensitivity study of POD using dual-frequency GPS for cubesats data limitation and resources. Remote Sensing, 12(13), 2107. https://doi.org/10.3390/rs12132107
  47. ↵
    1. Wu, S.,
    2. Zhao, X.,
    3. Pang, C.,
    4. Zhang, L.,
    5. Xu, Z., &
    6. Zou, K.
    (2020). Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints. GPS Solutions, 24(1), 31 (1–14). https://doi.org/10.1007/s10291-019-0943-y
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 3
Fall 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Array-Aided Precise Orbit and Attitude Determination of CubeSats using GNSS
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Array-Aided Precise Orbit and Attitude Determination of CubeSats using GNSS
Amir Allahvirdi-Zadeh, Ahmed El-Mowafy
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.651; DOI: 10.33012/navi.651

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Array-Aided Precise Orbit and Attitude Determination of CubeSats using GNSS
Amir Allahvirdi-Zadeh, Ahmed El-Mowafy
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.651; DOI: 10.33012/navi.651
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 COMBINED ARRAY-AIDED PRECISE ORBIT AND ATTITUDE DETERMINATION MODEL
    • 3 TESTING
    • 4 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • APPENDIX
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • array-aided positioning
  • CubeSats
  • LEO-PNT
  • MC-LAMBDA
  • precise attitude determination
  • precise orbit determination

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire