Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Factor Graphs for Navigation Applications: A Tutorial

Clark Taylor and Jason Gross
NAVIGATION: Journal of the Institute of Navigation September 2024, 71 (3) navi.653; DOI: https://doi.org/10.33012/navi.653
Clark Taylor
1Autonomy & Navigation Technology Center, Air Force Institute of Technology, Wright–Patterson Air Force Base, OH, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason Gross
2Department of Mechanical, Materials and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Agarwal, S.,
    2. Mierle, K., &
    3. Team, T. C. S.
    (2023). Ceres Solver (Version 2.2). https://github.com/ceres-solver/ceres-solver
  2. ↵
    1. Barfoot, T. D.
    (2024). State estimation for robotics. Cambridge University Press. https://doi.org/10.1017/9781316671528
  3. ↵
    1. Barron, J. T.
    (2019). A general and adaptive robust loss function. Proc. of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 4331–4339. https://doi.org/10.1109/CVPR.2019.00446
  4. ↵
    1. Begelfor, E., &
    2. Werman, M.
    (2005). How to put probabilities on homographies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1666–1670. https://doi.org/10.1109/TPAMI.2005.200
    PubMed
  5. ↵
    1. Bierman, G. J.
    (1977). Factorization methods for discrete sequential estimation (Vol. 128) [Mathematics in Science and Engineering]. Academic Press. https://books.google.com/books?id=V3J6AQAACAAJ
  6. ↵
    1. Blanco-Claraco, J. L.
    (2021). A tutorial on SE(3) transformation parameterizations and on-manifold optimization. arXiv preprint. https://doi.org/10.48550/arXiv.2103.15980
  7. ↵
    1. Cadena, C.,
    2. Carlone, L.,
    3. Carrillo, H.,
    4. Latif, Y.,
    5. Scaramuzza, D.,
    6. Neira, J.,
    7. Reid, I., &
    8. Leonard, J. J.
    (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332. https://doi.org/10.1109/TRO.2016.2624754
  8. ↵
    1. Carlevaris-Bianco, N.,
    2. Kaess, M., &
    3. Eustice, R. M.
    (2014). Generic node removal for factorgraph slam. IEEE Transactions on Robotics, 30(6), 1371–1385. https://doi.org/10.1109/TRO.2014.2347571
  9. ↵
    1. Carlone, L.,
    2. Kira, Z.,
    3. Beall, C.,
    4. Indelman, V., &
    5. Dellaert, F.
    (2014). Eliminating conditionally independent sets in factor graphs: A unifying perspective based on smart factors. Proc. of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 4290–4297. https://doi.org/10.1109/ICRA.2014.6907483
  10. ↵
    1. Choudhary, S.,
    2. Carlone, L.,
    3. Christensen, H. I., &
    4. Dellaert, F.
    (2015). Exactly sparse memory efficient slam using the multi-block alternating direction method of multipliers. Proc. of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 1349–1356. https://doi.org/10.1109/IROS.2015.7353543
  11. ↵
    1. Choudhary, S.,
    2. Carlone, L.,
    3. Nieto, C.,
    4. Rogers, J.,
    5. Christensen, H. I., &
    6. Dellaert, F.
    (2016). Distributed trajectory estimation with privacy and communication constraints: A two-stage distributed gauss-seidel approach. Proc. of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 5261–5268. https://doi.org/10.1109/ICRA.2016.7487736
  12. ↵
    1. Crocoll, P.,
    2. Görcke, L.,
    3. Trommer, G. F., &
    4. Holzapfel, F.
    (2013). Unified model technique for inertial navigation aided by vehicle dynamics model. NAVIGATION, 60(3), 179–193. https://doi.org/10.1002/navi.39
  13. ↵
    1. Cunningham, A.,
    2. Indelman, V., &
    3. Dellaert, F.
    (2013). DDF-SAM 2.0: Consistent distributed smoothing and mapping. Proc. of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 5220–5227. https://doi.org/10.1109/ICRA.2013.6631323
  14. ↵
    1. Dagan, O., &
    2. Ahmed, N. R.
    (2021). Factor graphs for heterogeneous bayesian decentralized data fusion. Proc. of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–8. https://doi.org/10.23919/FUSION49465.2021.9626865
  15. ↵
    1. Das, S.,
    2. Watson, R., &
    3. Gross, J.
    (2021). Review of factor graphs for robust GNSS applications. arXiv preprint. https://doi.org/10.48550/arXiv.2112.07794
  16. ↵
    1. Dellaert, F.
    (2012). Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, Tech. Rep, 2, 4. http://hdl.handle.net/1853/45226
  17. ↵
    1. Dellaert, F.
    (2021). Factor graphs: Exploiting structure in robotics. Annual Review of Control, Robotics, and Autonomous Systems, 4, 141–166. https://doi.org/10.1146/annurev-control-061520-010504
  18. ↵
    1. Dellaert, F.,
    2. Carlson, J.,
    3. Ila, V.,
    4. Ni, K., &
    5. Thorpe, C. E.
    (2010). Subgraph-preconditioned conjugate gradients for large scale slam. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2566–2571. https://doi.org/10.1109/IROS.2010.5650422
  19. ↵
    1. Dellaert, F., &
    2. Kaess, M.
    (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 25(12), 1181–1203. https://doi.org/10.1177/0278364906072768
    CrossRefWeb of Science
  20. ↵
    1. Dellaert, F., &
    2. Kaess, M.
    (2017). Factor graphs for robot perception. Foundations and Trends® in Robotics, 6(1–2), 1–139. https://doi.org/10.1561/9781680833270
  21. ↵
    1. Doherty, K.,
    2. Fourie, D., &
    3. Leonard, J.
    (2019). Multimodal semantic slam with probabilistic data association. Proc. of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2419–2425. https://doi.org/10.1109/ICRA.2019.8794244
  22. ↵
    1. Doherty, K. J.,
    2. Lu, Z.,
    3. Singh, K., &
    4. Leonard, J. J.
    (2022). Discrete-continuous smoothing and mapping. IEEE Robotics and Automation Letters, 7(4), 12395–12402. https://doi.org/10.1109/LRA.2022.3216938
  23. ↵
    1. Dolloff, J.
    (2012). Kalman filter outputs for inclusion in video-stream metadata: Accounting for the temporal correlation of errors for optimal target extraction. Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications IX, 8360, 152–167. https://doi.org/10.1117/12.918630
  24. ↵
    1. Dolloff, J.
    (2013). The full multi-state vector error covariance matrix: Why needed and its practical representation. Geospatial InfoFusion III, 8747, 874702. https://doi.org/10.1117/12.2015121
  25. ↵
    1. Eckenhoff, K.,
    2. Geneva, P., &
    3. Huang, G.
    (2019). Closed-form preintegration methods for graph-based visual–inertial navigation. The International Journal of Robotics Research, 38(5), 563–586. https://doi.org/10.1177/0278364919835021
  26. ↵
    1. Eigen: A c++ template library for linear algebra
    . (2023). https://eigen.tuxfamily.org/index.php?title=Main_Page
  27. ↵
    1. Forster, C.,
    2. Carlone, L.,
    3. Dellaert, F., &
    4. Scaramuzza, D.
    (2016). On-manifold preintegration for real-time visual–inertial odometry. IEEE Transactions on Robotics, 33(1), 1–21. https://doi.org/10.1109/TRO.2016.2597321
  28. ↵
    1. Fourie, D.,
    2. Espinoza, A. T.,
    3. Kaess, M., &
    4. Leonard, J.
    (2021). Characterizing marginalization and incremental operations on the Bayes tree. Algorithmic Foundations of Robotics XIV: Proceedings of the Fourteenth Workshop on the Algorithmic Foundations of Robotics 14, 227–242. https://doi.org/10.1007/978-3-030-66723-8_14
  29. ↵
    1. Fourie, D.,
    2. Leonard, J., &
    3. Kaess, M.
    (2016). A nonparametric belief solution to the Bayes tree. Proc. of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2189–2196. https://doi.org/10.1109/IROS.2016.7759343
  30. ↵
    1. Frey, B. J.,
    2. Kschischang, F. R.,
    3. Loeliger, H.-A., &
    4. Wiberg, N.
    (1997). Factor graphs and algorithms. Proceedings of the Annual Allerton Conference on Communication Control and Computing, 35, 666–680. https://people.ee.ethz.ch/~loeliger/localpapers/FG_Allerton1997.pdf
  31. ↵
    1. Golub, G. H., &
    2. Van Loan, C. F.
    (2013). Matrix computations. JHU Press. https://www.press.jhu.edu/books/title/10678/matrix-computations
  32. ↵
    1. Grisetti, G.,
    2. Guadagnino, T.,
    3. Aloise, I.,
    4. Colosi, M.,
    5. Della Corte, B., &
    6. Schlegel, D.
    (2020). Least squares optimization: From theory to practice. Robotics, 9(3), 51. https://doi.org/10.3390/robotics9030051
  33. ↵
    1. Grisetti, G.,
    2. Kümmerle, R.,
    3. Stachniss, C., &
    4. Burgard, W.
    (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43. https://doi.org/10.1109/MITS.2010.939925
  34. ↵
    1. Hao, N.,
    2. Oghbaee, A.,
    3. Rostami, M.,
    4. Derbinsky, N., &
    5. Bento, J.
    (2016). Testing fine-grained parallelism for the ADMM on a factor-graph. Proc. of the 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL, 835–844. https://doi.org/10.1109/IPDPSW.2016.162
  35. ↵
    1. Hertzberg, C.,
    2. Wagner, R.,
    3. Frese, U., &
    4. Schröder, L.
    (2013). Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds. Information Fusion, 14 (1), 57–77. https://doi.org/10.1016/j.inffus.2011.08.003
  36. ↵
    1. Holmes, C., &
    2. Barfoot, T. D.
    (2023). An efficient global optimality certificate for landmark-based slam. IEEE Robotics and Automation Letters, 8(3), 1539–1546. https://doi.org/10.1109/LRA.2023.3238173
  37. ↵
    1. Kaess, M., &
    2. Dellaert, F.
    (2009). Covariance recovery from a square root information matrix for data association. Robotics and Autonomous Systems, 57(12), 1198–1210. https://doi.org/10.1016/j.robot.2009.06.008
    CrossRef
  38. ↵
    1. Kaess, M.,
    2. Johannsson, H.,
    3. Roberts, R.,
    4. Ila, V.,
    5. Leonard, J., &
    6. Dellaert, F.
    (2011). iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering. Proc. of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 3281–3288. https://doi.org/10.1109/ICRA.2011.5979641
  39. ↵
    1. Kaess, M.,
    2. Johannsson, H.,
    3. Roberts, R.,
    4. Ila, V.,
    5. Leonard, J. J., &
    6. Dellaert, F.
    (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31 (2), 216–235. https://doi.org/10.1177/0278364911430419
    CrossRefWeb of Science
  40. ↵
    1. Kaess, M.,
    2. Ranganathan, A., &
    3. Dellaert, F.
    (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378. https://doi.org/10.1109/TRO.2008.2006706
  41. ↵
    1. Klein, G., &
    2. Murray, D.
    (2007). Parallel tracking and mapping for small AR workspaces. Proc. of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 225–234. https://doi.org/10.1109/ISMAR.2007.4538852
  42. ↵
    1. Koller, D., &
    2. Friedman, N.
    (2009). Probabilistic graphical models: Principles and techniques. MIT Press. https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models/
  43. ↵
    1. Konolige, K., &
    2. Agrawal, M.
    (2008). FrameSLAM: From bundle adjustment to real-time visual mapping. IEEE Transactions on Robotics, 24(5), 1066–1077. https://doi.org/10.1109/TRO.2008.2004832
  44. ↵
    1. Konolige, K.,
    2. Grisetti, G.,
    3. Kümmerle, R.,
    4. Burgard, W.,
    5. Limketkai, B., &
    6. Vincent, R.
    (2010). Efficient sparse pose adjustment for 2D mapping. Proc. of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 22–29. https://doi.org/10.1109/IROS.2010.5649043
  45. ↵
    1. Kümmerle, R.,
    2. Grisetti, G.,
    3. Strasdat, H.,
    4. Konolige, K., &
    5. Burgard, W.
    (2011). G2o: A general framework for graph optimization. Proc. of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 3607–3613. https://doi.org/10.1109/ICRA.2011.5979949
  46. ↵
    1. Loeliger, H.-A.
    (2004). An introduction to factor graphs. IEEE Signal Processing Magazine, 21 (1), 28–41. https://doi.org/10.1109/MSP.2004.1267047
  47. ↵
    1. Lourakis, M. L., &
    2. Argyros, A. A.
    (2005). Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? Proc. of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 1526–1531. https://doi.org/10.1109/ICCV.2005.128
  48. ↵
    1. Lupton, T., &
    2. Sukkarieh, S.
    (2011). Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Transactions on Robotics, 28(1), 61–76. https://doi.org/10.1109/TRO.2011.2170332
  49. ↵
    1. Lv, J.,
    2. Lang, X.,
    3. Xu, J.,
    4. Wang, M.,
    5. Liu, Y., &
    6. Zuo, X.
    (2023). Continuous-time fixed-lag smoothing for lidar-inertial-camera SLAM. IEEE/ASME Transactions on Mechatronics, 28(4), 2259–2270. https://doi.org/10.1109/TMECH.2023.3241398
  50. ↵
    1. Lyu, P.,
    2. Wang, B.,
    3. Lai, J.,
    4. Bai, S.,
    5. Liu, M., &
    6. Yu, W.
    (2023). A factor graph optimization method for high-precision IMU-based navigation system. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2023.3291779
  51. ↵
    1. Markley, F. L.
    (2003). Attitude error representations for Kalman filtering. Journal of Guidance, Control, and Dynamics, 26(2), 311–317. https://doi.org/10.2514/2.5048
    CrossRef
  52. ↵
    1. Matsuka, K., &
    2. Chung, S.-J.
    (2023). Localized and incremental probabilistic inference for large-scale networked dynamical systems. IEEE Transactions on Robotics, 39(5), 3516–3535. https://doi.org/10.1109/TRO.2023.3297010
  53. ↵
    1. Maybeck, P. S.
    (1990). The Kalman filter: An introduction to concepts. In I. J. Cox & G. T. Wilfong (Eds). Autonomous robot vehicles, 194–204. Springer. https://doi.org/10.1007/978-1-4613-8997-2_15
  54. ↵
    1. Moré, J. J.
    (1977). The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson (Ed) Numerical analysis: Lecture notes in mathematics, vol 630, 105–116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0067700
  55. ↵
    1. Mueggler, E.,
    2. Gallego, G.,
    3. Rebecq, H., &
    4. Scaramuzza, D.
    (2018). Continuous-time visual-inertial odometry for event cameras. IEEE Transactions on Robotics, 34(6), 1425–1440. https://doi.org/10.1109/TRO.2018.2858287
  56. ↵
    1. Nocedal, J., &
    2. Wright, S. J.
    (2006). Trust-region methods. Numerical Optimization, 66–100. Springer. https://doi.org/10.1007/978-0-387-40065-5_4
  57. ↵
    1. Olson, E., &
    2. Agarwal, P.
    (2013). Inference on networks of mixtures for robust robot mapping. The International Journal of Robotics Research, 32(7), 826–840. https://doi.org/10.1177/0278364913479413
    CrossRef
  58. ↵
    1. Pfeifer, T.,
    2. Lange, S., &
    3. Protzel, P.
    (2021). Advancing mixture models for least squares optimization. IEEE Robotics and Automation Letters, 6(2), 3941–3948. https://doi.org/10.1109/LRA.2021.3067307
  59. ↵
    1. Psiaki, M. L.
    (2005). Backward-smoothing extended Kalman filter. Journal of Guidance, Control, and Dynamics, 28(5), 885–894. https://doi.org/10.2514/1.12108
    CrossRef
  60. ↵
    1. Qadri, M.,
    2. Sodhi, P.,
    3. Mangelson, J. G.,
    4. Dellaert, F., &
    5. Kaess, M.
    (2022). InCOpt: Incremental constrained optimization using the Bayes tree. Proc. of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 6381–6388. https://doi.org/10.1109/IROS47612.2022.9982178
  61. ↵
    1. Rosen, D. M.,
    2. Carlone, L.,
    3. Bandeira, A. S., &
    4. Leonard, J. J.
    (2020). A certifiably correct algorithm for synchronization over the special Euclidean group. In K. Goldberg, P. Abbeel, K. Bekris, & L. Miller (Eds) Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics, 64–79. https://doi.org/10.1007/978-3-030-43089-4_5
  62. ↵
    1. Rosen, D. M.,
    2. Kaess, M., &
    3. Leonard, J. J.
    (2012). An incremental trust-region method for robust online sparse least-squares estimation. Proc. of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, 1262–1269. https://doi.org/10.1109/ICRA.2012.6224646
  63. ↵
    1. Rosen, D. M.,
    2. Kaess, M., &
    3. Leonard, J. J.
    (2013). Robust incremental online inference over sparse factor graphs: Beyond the Gaussian case. Proc. of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 1025–1032. https://doi.org/10.1109/ICRA.2013.6630699
  64. ↵
    1. Rosinol, A.,
    2. Abate, M.,
    3. Chang, Y., &
    4. Carlone, L.
    (2020). Kimera: An open-source library for real-time metric-semantic localization and mapping. Proc. of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 1689–1696. https://doi.org/10.1109/ICRA40945.2020.9196885
  65. ↵
    1. Salmerón, A.,
    2. Rumí, R.,
    3. Langseth, H.,
    4. Nielsen, T. D., &
    5. Madsen, A. L.
    (2018). A review of inference algorithms for hybrid Bayesian networks. Journal of Artificial Intelligence Research, 62, 799–828. https://doi.org/10.1613/jair.1.11228
  66. ↵
    1. Shan, T.,
    2. Englot, B.,
    3. Meyers, D.,
    4. Wang, W.,
    5. Ratti, C., &
    6. Rus, D.
    (2020). LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping. Proc. of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, 5135–5142. https://doi.org/10.1109/IROS45743.2020.9341176
  67. ↵
    1. Suitesparse, a suite of sparse matrix packages
    . (2023). https://people.engr.tamu.edu/davis/suitesparse.html
  68. ↵
    1. Sünderhauf, N.,
    2. Obst, M.,
    3. Wanielik, G., &
    4. Protzel, P.
    (2012). Multipath mitigation in GNSS-based localization using robust optimization. Proc. of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 784–789. https://doi.org/10.1109/IVS.2012.6232299
  69. ↵
    1. Sünderhauf, N., &
    2. Protzel, P.
    (2012a). Switchable constraints for robust pose graph SLAM. Proc. of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 1879–1884.
  70. ↵
    1. Sünderhauf, N., &
    2. Protzel, P.
    (2012b). Towards a robust back-end for pose graph SLAM. 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, 1254–1261. https://doi.org/10.1109/ICRA.2012.6224709
  71. ↵
    1. Suzuki, T.
    (2021). First place award winner of the smartphone decimeter challenge: Global optimization of position and velocity by factor graph optimization. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 2974–2985. https://doi.org/10.33012/2021.18109
  72. ↵
    1. Suzuki, T.
    (2022). 1st place winner of the smartphone decimeter challenge: Two-step optimization of velocity and position using smartphone’s carrier phase observations. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 2276–2286. https://doi.org/10.33012/2022.18377
  73. ↵
    1. Taylor, C. N.
    (2012). An analysis of observability-constrained Kalman filtering for vision-aided navigation. Proc. of the 2012 IEEE/ION Position, Location and Navigation Symposium (PLANS), Myrtle Beach, SC, 1240–1246. https://doi.org/10.1109/PLANS.2012.6236980
  74. ↵
    1. Thrun, S., &
    2. Montemerlo, M.
    (2006). The graph SLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5–6), 403–429. https://doi.org/10.1177/0278364906065387
    CrossRefWeb of Science
  75. ↵
    1. Tian, Y.,
    2. Chang, Y.,
    3. Arias, F. H.,
    4. Nieto-Granda, C.,
    5. How, J. P., &
    6. Carlone, L.
    (2022). Kimera-multi: Robust, distributed, dense metric-semantic slam for multi-robot systems. IEEE Transactions on Robotics, 38 (4). https://doi.org/10.1109/TRO.2021.3137751
  76. ↵
    1. Vallvé, J.,
    2. Solà, J., &
    3. Andrade-Cetto, J.
    (2019). Pose-graph SLAM sparsification using factor descent. Robotics and Autonomous Systems, 119, 108–118. https://doi.org/10.1016/j.robot.2019.06.004
  77. ↵
    1. Vanli, O. A., &
    2. Taylor, C. N.
    (2022). Robust error estimation based on factor-graph models for non-line-of-sight localization. EURASIP Journal on Advances in Signal Processing, 2022(1), 3. https://doi.org/10.1186/s13634-022-00837-8
  78. ↵
    1. Virtanen, P.,
    2. Gommers, R.,
    3. Oliphant, T. E.,
    4. Haberland, M.,
    5. Reddy, T.,
    6. Cournapeau, D.,
    7. Burovski, E.,
    8. Peterson, P.,
    9. Weckesser, W.,
    10. Bright, J.,
    11. van der Walt, S. J.,
    12. Brett, M.,
    13. Wilson, J.,
    14. Millman, K. J.,
    15. Mayorov, N.,
    16. Nelson, A. R. J.,
    17. Jones, E.,
    18. Kern, R.,
    19. Larson, E., … SciPy 1.0 Contributors
    . (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2
  79. ↵
    1. Watson, R. M., &
    2. Gross, J. N.
    (2017). Robust navigation in GNSS degraded environment using graph optimization. Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 2906–2918. https://doi.org/10.33012/2017.15164
  80. ↵
    1. Watson, R. M., &
    2. Gross, J. N.
    (2018). Evaluation of kinematic precise point positioning convergence with an incremental graph optimizer. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 589–596. https://doi.org/10.1109/PLANS.2018.8373431
  81. ↵
    1. Watson, R. M.,
    2. Gross, J. N.,
    3. Taylor, C. N., &
    4. Leishman, R. C.
    (2019). Enabling robust state estimation through measurement error covariance adaptation. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2026–2040. https://doi.org/10.1109/TAES.2019.2941103
  82. ↵
    1. Watson, R. M.,
    2. Gross, J. N.,
    3. Taylor, C. N., &
    4. Leishman, R. C.
    (2020). Robust incremental state estimation through covariance adaptation. IEEE Robotics and Automation Letters, 5(2), 3737–3744. https://doi.org/10.1109/LRA.2020.2979655
  83. ↵
    1. Wen, W., &
    2. Hsu, L.-T.
    (2021). Towards robust GNSS positioning and real-time kinematic using factor graph optimization. Proc. of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 5884–5890. https://doi.org/10.1109/ICRA48506.2021.9562037
  84. ↵
    1. Wen, W.,
    2. Pfeifer, T.,
    3. Bai, X., &
    4. Hsu, L.-T.
    (2021). Factor graph optimization for GNSS/INS integration: A comparison with the extended Kalman filter. NAVIGATION, 68(2), 315–331. https://doi.org/10.1002/navi.421
  85. ↵
    1. Williams, S.,
    2. Indelman, V.,
    3. Kaess, M.,
    4. Roberts, R.,
    5. Leonard, J. J., &
    6. Dellaert, F.
    (2014). Concurrent filtering and smoothing: A parallel architecture for real-time navigation and full smoothing. The International Journal of Robotics Research, 33(12), 1544–1568. https://doi.org/10.1177/0278364914531056
    CrossRef
  86. ↵
    1. Xiwei, W.,
    2. Bing, X.,
    3. Cihang, W.,
    4. Yiming, G., &
    5. Lingwei, L.
    (2022). Factor graph based navigation and positioning for control system design: A review. Chinese Journal of Aeronautics, 35(5), 25–39. https://doi.org/10.1016/j.cja.2021.09.001
  87. ↵
    1. Yang, S.,
    2. Chen, G.,
    3. Zhang, Y.,
    4. Choset, H., &
    5. Dellaert, F.
    (2021). Equality constrained linear optimal control with factor graphs. Proc. of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 9717–9723. https://doi.org/10.1109/ICRA48506.2021.9562000
  88. ↵
    1. Zhang, L.,
    2. Wen, W.,
    3. Hsu, L.-T., &
    4. Zhang, T.
    (2023). An improved inertial preintegration model in factor graph optimization for high accuracy positioning of intelligent vehicles. IEEE Transactions on Intelligent Vehicles. https://doi.org/10.1109/TIV.2023.3282623
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 3
Fall 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Factor Graphs for Navigation Applications: A Tutorial
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Factor Graphs for Navigation Applications: A Tutorial
Clark Taylor, Jason Gross
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.653; DOI: 10.33012/navi.653

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Factor Graphs for Navigation Applications: A Tutorial
Clark Taylor, Jason Gross
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.653; DOI: 10.33012/navi.653
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 NOTATION AND DEFINITIONS
    • 3 BASIC FACTOR GRAPH OPTIMIZATION
    • 4 COMPUTATIONAL IMPROVEMENTS
    • 5 COMPARISON WITH KALMAN FILTER SENSOR FUSION
    • 6 FACTOR GRAPHS IN NAVIGATION
    • 7 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • APPENDIX A MARGINALIZATION DETAILS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Keywords

  • Bayesian estimation
  • factor graph
  • Kalman filter
  • sensor fusion

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire