Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

Distributed Nonlinear Least-Squares Solver for Practical Network Determination

Josef Krška and Václav Navrátil
NAVIGATION: Journal of the Institute of Navigation September 2024, 71 (3) navi.658; DOI: https://doi.org/10.33012/navi.658
Josef Krška
1Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Václav Navrátil
1Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Armijo, L.
    (1966). Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1–3. https://doi.org/10.2140/pjm.1966.16.1
    CrossRefWeb of Science
  2. ↵
    1. Boyd, S.,
    2. Diaconis, P., &
    3. Xiao, L.
    (2004). Fastest mixing Markov chain on a graph. SIAM Review, 46(4), 667–689. https://doi.org/10.1137/s0036144503423264
  3. ↵
    1. Calafiore, G. C.,
    2. Carlone, L., &
    3. Wei, M.
    (2012). A distributed technique for localization of agent formations from relative range measurements. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(5), 1065–1076. https://doi.org/10.1109/tsmca.2012.2185045
  4. ↵
    1. Chan, F., &
    2. So, H.
    (2009). Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Transactions on Signal Processing, 57(10), 4100–4105. https://doi.org/10.1109/tsp.2009.2022354
  5. ↵
    1. Copa, E. I. P.,
    2. Quitin, F.,
    3. Vandendorpe, L.,
    4. Doncker, P. D., &
    5. Horlin, F.
    (2021). Self-synchronization based distributed localization of wireless transmitters. Proc. of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 1222–1227. https://doi.org/10.1109/pimrc50174.2021.9569697
  6. ↵
    1. Corbalán, P.,
    2. Picco, G. P., &
    3. Palipana, S.
    (2019). Chorus: UWB concurrent transmissions for GPS-like passive localization of countless targets. Proc. of the 18th International Conference on Information Processing in Sensor Networks, Montreal, Quebec, Canada, 133–144. https://doi.org/10.1145/3302506.3310395
  7. ↵
    1. Courtay, A.,
    2. Gentil, M. L.,
    3. Berder, O.,
    4. Scalart, P.,
    5. Fontaine, S., &
    6. Carer, A.
    (2019). Anchor selection algorithm for mobile indoor positioning using WSN with UWB radio. Proc. of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France. https://doi.org/10.1109/sas.2019.8706113
  8. ↵
    1. Djaja-Josko, V.
    (2017). A new anchor nodes position determination method supporting UWB localization system deployment. 2017 Signal Processing Symposium (SPSympo), Jachranka, Poland, 1–5. https://doi.org/10.1109/sps.2017.8053692
  9. ↵
    1. Erseghe, T.
    (2015). A distributed and maximum-likelihood sensor network localization algorithm based upon a nonconvex problem formulation. IEEE Transactions on Signal and Information Processing over Networks, 1(4), 247–258. https://doi.org/10.1109/tsipn.2015.2483321
  10. ↵
    1. Fletcher, R.
    (1971). A modified Marquardt subroutine for non-linear least squares (tech. rep.). Theoretical Physics Division, Atomic Energy Research Establishment. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/AERER6799.xhtml
  11. ↵
    1. Gao, F., &
    2. Han, L.
    (2010). Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, 51(1), 259–277. https://doi.org/10.1007/s10589-010-9329-3
    CrossRef
  12. ↵
    1. Großwindhager, B.,
    2. Stocker, M.,
    3. Rath, M.,
    4. Boano, C. A., &
    5. Römer, K.
    (2019). SnapLoc: An ultrafast UWB-based indoor localization system for an unlimited number of tags. Proc. of the 18th International Conference on Information Processing in Sensor Networks, Montreal, Quebec, Canada, 61–72. https://doi.org/10.1145/3302506.3310389
  13. ↵
    1. Hegarty, C. J, &
    2. Kaplan, E. D.
    (2005). Understanding GPS: Principles and applications, (2nd ed.). Artech House Inc. https://ieeexplore.ieee.org/document/9106073
  14. ↵
    1. IEEE Computer Society
    . (2020). IEEE standard for low-rate wireless networks. IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015), 1–800. https://doi.org/10.1109/IEEESTD.2020.9144691
  15. ↵
    1. Johansson, B.,
    2. Keviczky, T.,
    3. Johansson, M., &
    4. Johansson, K. H.
    (2008). Subgradient methods and consensus algorithms for solving convex optimization problems. Proc. of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 4185–4190. https://doi.org/10.1109/cdc.2008.4739339
  16. ↵
    1. Kohlbacher, A.,
    2. Eliasson, J.,
    3. Acres, K.,
    4. Chung, H., &
    5. Barca, J. C.
    (2018). A low cost omnidirectional relative localization sensor for swarm applications. Proc. of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). Singapore. https://doi.org/10.1109/wf-iot.2018.8355093
  17. ↵
    1. Koppanyi, Z.,
    2. Toth, C. K., &
    3. Brzezinska, D. G.
    (2018). Scalable ad-hoc UWB network adjustment. Proc. of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 1502–1508. https://doi.org/10.1109/plans.2018.8373544
  18. ↵
    1. Ledergerber, A.,
    2. Hamer, M., &
    3. D’Andrea, R.
    (2015). A robot self-localization system using oneway ultra-wideband communication. Proc. of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3131–3137, Hamburg, Germany. https://doi.org/10.1109/iros.2015.7353810
  19. ↵
    1. Levenberg, K.
    (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164–168. https://doi.org/10.1090/qam/10666
    CrossRef
  20. ↵
    1. Lv, Y.,
    2. Meng, S.,
    3. Zhang, D., &
    4. Huang, Y.
    (2016). A range-based distributed localization algorithm for wireless sensor networks. Proc. of the 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China. https://doi.org/10.1109/icisce.2016.264
  21. ↵
    1. Marquardt, D. W.
    (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030
    CrossRefWeb of Science
  22. ↵
    1. McElroy, C.,
    2. Neirynck, D., &
    3. McLaughlin, M.
    (2014). Comparison of wireless clock synchronization algorithms for indoor location systems. Proc. of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, Australia, 157–162. https://doi.org/10.1109/iccw.2014.6881189
  23. ↵
    1. Meyer, F.,
    2. Riegler, E.,
    3. Hlinka, O., &
    4. Hlawatsch, F.
    (2012). Simultaneous distributed sensor self-localization and target tracking using belief propagation and likelihood consensus. Proc. of the 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, 1212–1216. https://doi.org/10.1109/acssc.2012.6489214
  24. ↵
    1. Navratil, V.,
    2. Krska, J., &
    3. Vejrazka, F.
    (2022). Concurrent bi-directional TDoA positioning in UWB network with free-running clocks. IEEE Transactions on Aerospace and Electronic Systems, 58(5), 4434–4450. https://doi.org/10.1109/taes.2022.3161895
  25. ↵
    1. Navrátil, V., &
    2. Vejražka, F.
    (2019). Bias and variance of asymmetric double-sided two-way ranging. NAVIGATION, 66(3), 593–602. https://doi.org/10.1002/navi.321
  26. ↵
    1. Neirynck, D.,
    2. Luk, E., &
    3. McLaughlin, M.
    (2016). An alternative double-sided two-way ranging method. Proc. of the 2016 13th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 1–4. https://doi.org/10.1109/wpnc.2016.7822844
  27. ↵
    1. Rajan, R. T.,
    2. Leus, G., & van der
    3. Veen, A.-J.
    (2015). Joint relative position and velocity estimation for an anchorless network of mobile nodes. Signal Processing, 115, 66–78. https://doi.org/10.1016/j.sigpro.2015.02.023
  28. ↵
    1. Sahinoglu, Z.,
    2. Gezici, S., &
    3. Güvenc, I.
    (2008). Ultra-wideband positioning systems. Cambridge University Press. https://doi.org/10.1017/CBO9780511541056
  29. ↵
    1. Shen, K.,
    2. Jing, Z., &
    3. Dong, P.
    (2018). Simultaneous target tracking and sensor location refinement in distributed sensor networks. Signal Processing, 153, 123–131. https://doi.org/10.1016/j.sigpro.2018.07.014
  30. ↵
    1. Simonetto, A., &
    2. Leus, G.
    (2014). Distributed maximum likelihood sensor network localization. IEEE Transactions on Signal Processing, 62(6), 1424–1437. https://doi.org/10.1109/tsp.2014.2302746
  31. ↵
    1. Soatti, G.,
    2. Nicoli, M.,
    3. Matera, A.,
    4. Schiaroli, S., &
    5. Spagnolini, U.
    (2014). Weighted consensus algorithms for distributed localization in cooperative wireless networks. Proc. of the 2014 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 116–120. https://doi.org/10.1109/iswcs.2014.6933331
  32. ↵
    1. Truong, T. T., &
    2. Nguyen, H.-T.
    (2020). Backtracking gradient descent method and some applications in large scale optimisation. Part 2: Algorithms and experiments. Applied Mathematics & Optimization, 84(3), 2557–2586. https://doi.org/10.1007/s00245-020-09718-8
  33. ↵
    1. Xiao, L., &
    2. Boyd, S.
    (2004). Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1), 65–78. https://doi.org/10.1016/j.sysconle.2004.02.022
    CrossRef
  34. ↵
    1. Zhu, C., &
    2. Kuh, A.
    (2007). Ad hoc sensor network localization using distributed kernel regression algorithms. Proc. of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ‘07, Honolulu, HI, II-497-II–500. https://doi.org/10.1109/icassp.2007.366281
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 3
Fall 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Distributed Nonlinear Least-Squares Solver for Practical Network Determination
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Distributed Nonlinear Least-Squares Solver for Practical Network Determination
Josef Krška, Václav Navrátil
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.658; DOI: 10.33012/navi.658

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Distributed Nonlinear Least-Squares Solver for Practical Network Determination
Josef Krška, Václav Navrátil
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.658; DOI: 10.33012/navi.658
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PROBLEM STATEMENT
    • 3 ALGORITHMS
    • 4 EVALUATION
    • 5 RESULTS AND DISCUSSION
    • 6 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ranging Performance Evaluation for Higher-Order Scalable Interplex
  • Combinatorial Watermarking Under Limited SCER Adversarial Models
  • Wide-Sense CDF Overbounding for GNSS Integrity
Show more Regular Papers

Similar Articles

Keywords

  • localization
  • self-calibration
  • UWB

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire