Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

High-Precision Time Transfer and Relative Orbital Determination Among LEO Satellites in Real Time

Kan Wang, Baoqi Sun, Ahmed El-Mowafy, and Xuhai Yang
NAVIGATION: Journal of the Institute of Navigation September 2024, 71 (3) navi.659; DOI: https://doi.org/10.33012/navi.659
Kan Wang
1National Time Service Center, Chinese Academy of Sciences, Xi’an, China
2University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Xi’an, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Baoqi Sun
1National Time Service Center, Chinese Academy of Sciences, Xi’an, China
2University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Xi’an, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ahmed El-Mowafy,
4School of Earth and Planetary Sciences, Curtin University, Perth, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xuhai Yang
1National Time Service Center, Chinese Academy of Sciences, Xi’an, China
2University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Xi’an, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allahvirdi-Zadeh, A.,
    2. Wang, K., &
    3. El-Mowafy, A.
    (2021). POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections. GPS Solutions, 25(2), 31. https://doi.org/10.1007/s10291-020-01078-8
  2. ↵
    1. Allan, D. W., &
    2. Barnes, J. A.
    (1981). A modified “Allan Variance” with increased oscillator characterization ability. Proc. of the 35th Annual Frequency Control Symposium, Ft. Monmouth, NJ, 470–475. https://doi.org/10.1109/FREQ.1981.200514
  3. ↵
    1. Cakaj, S.,
    2. Kamo, B.,
    3. Lala, A., &
    4. Rakipi, A.
    (2014). The coverage analysis for low Earth orbiting satellites at low elevation. International Journal of Advanced Computer Science and Applications, 5(6), 050602. https://doi.org/10.14569/IJACSA.2014.050602
  4. ↵
    1. Chen, L.,
    2. Jiao, W.,
    3. Huang, X.,
    4. Geng, C.,
    5. Ai, L.,
    6. Lu, L., &
    7. Hu, Z.
    (2013). Study on signal-in-space errors calculation method and statistical characterization of BeiDou Navigation Satellite System. In Proceedings of the China Satellite Navigation Conference (CSNC) 2013. In J. Sun, W. Jiao, H. Wu, & C. Shi (Eds.). Lecture notes in electrical engineering (Vol. 243). Springer: Berlin, Heidelberg, Germany. http://doi.org/10.1007/978-3-642-37398-5_39
  5. ↵
    1. Dach, R.,
    2. Brockmann, E.,
    3. Schaer, S.,
    4. Beutler, G.,
    5. Meindl, M.,
    6. Prange, L.,
    7. Bock, H.,
    8. Jäggi, A., &
    9. Ostini, L.
    (2009). GNSS processing at CODE: Status report. Journal of Geodesy, 83(3), 353–365. https://doi.org/10.1007/s00190-008-0281-2
  6. ↵
    1. Feng, Y., &
    2. Li, B.
    (2010). Four dimensional real time kinematic state estimation and analysis of relative clock solutions. Proc of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA, 2092–2099. https://www.ion.org/publications/abstract.cfm?articleID=9323
  7. ↵
    1. Flechtner, F.,
    2. Morton, P.,
    3. Watkins, M., &
    4. Webb, F.
    (2014). Status of the GRACE follow-on mission. In In U. Marti (Ed.). Gravity, geoid and height systems. Part of the International Association of Geodesy Symposia book series (Vol. 141) 117–121). Springer: Cham, Switzerland. https://doi.org/10.1007/978-3-319-10837-7_15
  8. ↵
    1. Ge, H.,
    2. Li, B.,
    3. Ge, M.,
    4. Zang, N.,
    5. Nie, L.,
    6. Shen, Y., &
    7. Schuh, H.
    (2018). Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS). Remote Sensing, 10(7), 984. https://doi.org/10.3390/rs10070984
  9. ↵
    1. Ge, H.,
    2. Wu, T., &
    3. Li, B.
    (2023). Characteristics analysis and prediction of low Earth orbit (LEO) satellite clock corrections by using least-squares harmonic estimation. GPS Solutions, 27(1), 38. https://doi.org/10.1007/s10291-022-01377-2
  10. ↵
    1. Gong, X.,
    2. Zhang, W.,
    3. Wang, Q.,
    4. Wang, F.,
    5. Li, X.,
    6. Sang, J., &
    7. Liu, W.
    (2022). Precise real-time navigation of the small TJU-1 satellite using GPS, GLONASS and BDS. Measurement, 204, 112090. https://doi.org/10.1016/j.measurement.2022.112090
  11. ↵
    1. GPS World Staff
    . (2017). PNT Roundup: Iridium constellation provides low-Earth orbit satnav service. https://www.gpsworld.com/iridium-constellation-provides-low-earth-orbit-satnav-service/#:~:text=Based%20on%20the%20low%2DEarth,buildings%20and%20other%20difficult%20locations
  12. ↵
    1. Hauschild, A.,
    2. Montenbruck, O.,
    3. Steigenberger, P.,
    4. Martini, I., &
    5. Fernandez-Hernandez, I.
    (2022). Orbit determination of Sentinel-6A using the Galileo high accuracy service test signal. GPS Solutions, 26(4), 120. https://doi.org/10.1007/s10291-022-01312-5
  13. ↵
    1. Hauschild, A.,
    2. Tegedor, J.,
    3. Montenbruck, O.,
    4. Visser, H., &
    5. Markgraf, M.
    (2016). Precise onboard orbit determination for LEO satellites with real-time orbit and clock corrections. Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, 3715–3723. https://doi.org/10.33012/2016.14717
  14. ↵
    1. He, L.,
    2. He, X., &
    3. Huang, Y.
    (2022). Enhanced precise orbit determination of BDS-3 MEO satellites based on ambiguity resolution with B1C/B2a dual-frequency combination. Measurement, 205, 112197. https://doi.org/10.1016/j.measurement.2022.112197
  15. ↵
    1. IGS Products
    . (2023). GNSS satellite ephemeris /satellite & station clocks. https://igs.org/products/
  16. ↵
    1. Johnston, G.,
    2. Riddell, A., &
    3. Hausler, G.
    (2017). The International GNSS Service. In P. J. G. Teunissen & O. Montenbruck (Eds.). Springer handbook of global navigation satellite systems, 967–982. Springer. https://doi.org/10.1007/978-3-319-42928-1_33
  17. ↵
    1. Kazmierski, K.,
    2. Sośnica, K., &
    3. Hadas, T.
    (2018). Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning. GPS Solutions, 22(1), 11. https://doi.org/10.1007/s10291-017-0678-6
  18. ↵
    1. Li, X.,
    2. Ma, F.,
    3. Li, X.,
    4. Lv, H.,
    5. Bian, L.,
    6. Jiang, Z., &
    7. Zhang, X.
    (2018). LEO constellation-augmented multi-GNSS for rapid PPP convergence. Journal of Geodesy, 93(5), 749–764. https://doi.org/10.1007/s00190-018-1195-2
  19. ↵
    1. Mao, X.,
    2. Arnold, D.,
    3. Girardin, V.,
    4. Villiger, A., &
    5. Jäggi, A.
    (2021). Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS software. Advances in Space Research, 67(2), 788–805. https://doi.org/10.1016/j.asr.2020.10.012
  20. ↵
    1. Montenbruck, O.,
    2. Gill, E.,
    3. Montenbruck, O., &
    4. Gill, E.
    (2000). Around the world in a hundred minutes. In Satellite Orbits: Models, Methods and Applications, 1–13. Springer. https://doi.org/10.1007/978-3-642-58351-3_1
  21. ↵
    1. Nadarajah, N.,
    2. Teunissen, P. J. G., &
    3. Raziq, N.
    (2013). BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors, 13(7), 9435–9463. https://doi.org/10.3390/s130709435
  22. ↵
    1. Nie, G.,
    2. Wu, F.,
    3. Zhang, K., &
    4. Zhu, B.
    (2007). Research on LEO satellites time synchronization with GPS receivers onboard. Proc of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum Geneva, Switzerland, 896–900. https://doi.org/10.1109/FREQ.2007.4319208
  23. ↵
    1. Noll, C. E.
    (2010). The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Advances in Space Research, 45(12), 1421–1440. https://doi.org/10.1016/j.asr.2010.01.018
    GeoRef
  24. ↵
    1. Peng, Y.,
    2. Dai, X.,
    3. Lou, Y.,
    4. Gong, X., &
    5. Zheng, F.
    (2022). BDS-2 and BDS-3 combined precise orbit determination with hybrid ambiguity resolution. Measurement, 188, 110593. https://doi.org/10.1016/j.measurement.2021.110593
  25. ↵
    1. Reid, T.,
    2. Banville, S.,
    3. Chan, B.,
    4. Gunning, K.,
    5. Manning, B.,
    6. Marathe, T.,
    7. Neish, A.,
    8. Perkins, A., &
    9. Sibois, A.
    (2022). PULSAR: A new generation of commercial satellite navigation. ION GNSS+ 2022, Denver, CO. https://www.ion.org/gnss/upload/GNSS22Program.pdf
  26. ↵
    1. Reid, T. G. R.,
    2. Neish, A. M.,
    3. Walter, T., &
    4. Enge, P. K.
    (2018). Broadband LEO constellations for navigation. NAVIGATION, 65(2), 205–220. https://doi.org/10.1002/navi.234
  27. ↵
    1. Sun, B.,
    2. Han, R.,
    3. Liu, J.,
    4. Zhang, Z.,
    5. Wang, G.,
    6. Chen, L.,
    7. Liu, Y., &
    8. Yang, X.
    (2021). A multi-region real-time kinematic time service system based on BeiDou-3. Navigation Position & Timing, 8(4), 45–52. https://doi.org/10.19306/j.cnki.2095-8110.2021.04.006
  28. ↵
    1. Tu, R.,
    2. Zhang, P.,
    3. Zhang, R.,
    4. Fan, L.,
    5. Han, J.,
    6. Hong, J.,
    7. Liu, J., &
    8. Lu, X.
    (2021). Real-time and dynamic time transfer method based on double-differenced real-time kinematic mode. IET Radar, Sonar & Navigation, 15(2), 143–153. https://doi.org/10.1049/rsn2.12027
  29. ↵
    1. Verhagen, S., &
    2. Teunissen, P. J. G.
    (2017). Least-squares estimation and Kalman filtering. In P. J. G. Teunissen & O. Montenbruck (Eds.). Springer handbook of global navigation satellite systems, 639–660. Springer. https://doi.org/10.1007/978-3-319-42928-1_22
  30. ↵
    1. Wang, K., &
    2. El-Mowafy, A.
    (2020). Proposed orbital products for positioning using mega-constellation LEO satellites. Sensors, 20(20), 5806. https://doi.org/10.3390/s20205806
  31. ↵
    1. Wang, K., &
    2. El-Mowafy, A.
    (2021). LEO satellite clock analysis and prediction for positioning applications. Geo-spatial Information Science, 25(1), 14–33. https://doi.org/10.1080/10095020.2021.1917310
  32. ↵
    1. Wang, K.,
    2. El-Mowafy, A., &
    3. Yang, X.
    (2023). Integer ambiguity resolution in multi-constellation GNSS for LEO satellite POD. In Proceedings of the 36th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2023) Denver, CO, USA, 2319–2329. https://doi.org/10.33012/2023.19462
  33. ↵
    1. Wang, K.,
    2. El-Mowafy, A.,
    3. Wang, W.,
    4. Yang, L., &
    5. Yang, X.
    (2022). Integrity monitoring of PPP-RTK positioning; Part II: LEO augmentation. Remote Sensing, 14(7), 1599. https://doi.org/10.3390/rs14071599
  34. ↵
    1. Wang, K.,
    2. Liu, J.,
    3. Su, H.,
    4. El-Mowafy, A., &
    5. Yang, X.
    (2023). Real-time LEO satellite orbits based on batch least-squares orbit determination with short-term orbit prediction. Remote Sensing, 15(1), 133. https://doi.org/10.3390/rs15010133
  35. ↵
    1. Wang, K.,
    2. Sun, B.,
    3. Qin, W.,
    4. Mi, X.,
    5. El-Mowafy, A., &
    6. Yang, X.
    (2022). A method of real-time long-baseline time transfer based on the PPP-RTK. Advances in Space Research, 71(3), 1363–1376. https://doi.org/10.1016/j.asr.2022.10.062
  36. ↵
    1. Wen, H. Y.,
    2. Kruizinga, G.,
    3. Paik, M.,
    4. Landerer, F.,
    5. Bertiger, W.,
    6. Sakumura, C.,
    7. Bandikova, T., &
    8. Mccullough, C.
    (2020). Gravity recovery and climate experiment follow-on (GRACE-FO). In Level-1 data product user handbook. JPL D-56935 (URS270772). https://podaac.jpl.nasa.gov/gravity/gracefo-documentation
  37. ↵
    1. Wu, M.,
    2. Wang, K.,
    3. Liu, J., &
    4. Zhu, Y.
    (2023). Relativistic effects of LEO satellite and its impact on clock prediction. Measurement Science and Technology, 34(9), 095005. https://doi.org/10.1088/1361-6501/acd545
  38. ↵
    1. Xue, X.,
    2. Qin, H., &
    3. Lu, H.
    (2021). High-precision time synchronization of kinematic navigation system using GNSS RTK differential carrier phase time transfer. Measurement, 176, 109132. https://doi.org/10.1016/j.measurement.2021.109132
  39. ↵
    1. Yang, L.
    (2019). The Centispace-1: A LEO satellite-based augmentation system. Proc. of the14th Meeting of the International Committee on Global Navigation Satellite Systems, Bengaluru, India, 12. https://www.unoosa.org/documents/pdf/icg/2019/icg14/WGB/icg14_wgb_S5_4.pdf
  40. ↵
    1. Zeng, T.,
    2. Sui, L.,
    3. Ruan, R.,
    4. Jia, X.,
    5. Feng, L., &
    6. Xiao, G.
    (2021). GPS triple-frequency undifferenced and uncombined precise orbit determination with the consideration of receiver time-variant bias. Measurement, 169, 108281. https://doi.org/10.1016/j.measurement.2020.108281
  41. ↵
    1. Zhang, Y.,
    2. Li, Z.,
    3. Wang, Z.,
    4. Li, R., &
    5. Yuan, H.
    (2021). The improvement of BDS observation geometry with LEO constellations in orbit determination. Measurement, 177, 109228. https://doi.org/10.1016/j.measurement.2021.109228
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 3
Fall 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
High-Precision Time Transfer and Relative Orbital Determination Among LEO Satellites in Real Time
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
High-Precision Time Transfer and Relative Orbital Determination Among LEO Satellites in Real Time
Kan Wang, Baoqi Sun, Ahmed El-Mowafy,, Xuhai Yang
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.659; DOI: 10.33012/navi.659

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
High-Precision Time Transfer and Relative Orbital Determination Among LEO Satellites in Real Time
Kan Wang, Baoqi Sun, Ahmed El-Mowafy,, Xuhai Yang
NAVIGATION: Journal of the Institute of Navigation Sep 2024, 71 (3) navi.659; DOI: 10.33012/navi.659
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 PROCESSING STRATEGY
    • 3 TEST RESULTS
    • 4 DISCUSSION
    • 5 CONCLUSIONS
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
  • Identification of Authentic GNSS Signals in Time-Differenced Carrier-Phase Measurements with a Software-Defined Radio Receiver
Show more Original Article

Similar Articles

Keywords

  • GNSS
  • low earth orbit (LEO)
  • phase common view
  • real time
  • time transfer

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire