Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

Timescale Realization with Linked Platforms for AltPNT

Christopher Flood and Penina Axelrad
NAVIGATION: Journal of the Institute of Navigation December 2024, 71 (4) navi.669; DOI: https://doi.org/10.33012/navi.669
Christopher Flood
University of Colorado Boulder, Smead Aerospace Engineering Sciences, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Penina Axelrad
University of Colorado Boulder, Smead Aerospace Engineering Sciences, Colorado, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bock, H.,
    2. Dach, R.,
    3. Yoon, Y., &
    4. Montenbruck, O.
    (2009). GPS clock correction estimation for near real-time orbit determination applications. Aerospace Science and Technology, 13(7), 415–422. https://doi.org/10.1016/j.ast.2009.08.003
  2. ↵
    1. Brogan, W. L.
    (1991). Design of linear feedback control systems. In Modern control theory, 448–457. Prentice Hall. https://books.google.com/books/about/Modern_Control_Theory.html?id=OPFQAAAAMAAJ
  3. ↵
    1. Brown, K. R.
    (1991). The theory of the GPS composite clock. Proc. of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991), Albuquerque, NM, 223–241. https://www.ion.org/publications/abstract.cfm?articleID=4867
  4. ↵
    1. Chaudhry, A. U., &
    2. Yanikomeroglu, H.
    (2021). Laser intersatellite links in a Starlink constellation: A classification and analysis. IEEE Vehicular Technology Magazine, 16(2), 48–56. https://doi.org/10.1109/MVT.2021.3063706
  5. ↵
    1. Coleman, M. J., &
    2. Beard, R. L.
    (2020). Autonomous clock ensemble algorithm for GNSS applications. NAVIGATION, 67(2), 333–346. https://doi.org/10.1002/navi.366
  6. ↵
    1. Flood, C.,
    2. Axelrad, P., &
    3. Hinks, J.
    (2023). The formation of a chip scale atomic clock ensemble using software defined radios. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 3, 77–87. https://doi.org/10.1109/OJUFFC.2023.3285204
  7. ↵
    1. Fox, R. W.,
    2. Oates, C. W., &
    3. Hollberg, L. W.
    (2003). Stabilizing diode lasers to high-finesse cavities. Experimental Methods in the Physical Sciences, 40, 1–46. https://doi.org/10.1016/S1079-4042(03)80017-6
  8. ↵
    1. Greenhall, C. A.
    (2006). A Kalman filter clock ensemble algorithm that admits measurement noise. Metrologia, 43(4), S311. https://doi.org/10.1088/0026-1394/43/4/S19
  9. ↵
    1. Greenhall, C. A.
    (2011). Reduced Kalman filters for clock ensembles. Proc. of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), San Francisco, CA, 1–5. https://doi.org/10.1109/FCS.2011.5977317
  10. ↵
    1. Harper, J.
    (2020). DARPA set to deliver new space capabilities. National Defense, 105(801), 32–35. https://www.nationaldefensemagazine.org/articles/2020/8/14/darpa-set-to-deliver-new-space-capabilities
  11. ↵
    1. Heine, F.,
    2. Brzoska, A.,
    3. Gregory, M.,
    4. Hiemstra, T.,
    5. Mahn, R.,
    6. Pimentel, P. M., &
    7. Zech, H.
    (2023). Status on laser communication activities at Tesat-Spacecom. Proc. of the Free-Space Laser Communications XXXV (SPIE LASE), San Francisco, CA, 83–93. https://doi.org/10.1117/12.2648425
  12. ↵
    1. Kunzi, F.,
    2. Braun, B.,
    3. Markgraf, M., &
    4. Montenbruck, O.
    (2023). A GNSS-synchronized satellite navigation payload for LEO PNT. Proc. of the 36th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2023), Denver, CO, 1425–1435. https://doi.org/10.33012/2023.19322
  13. ↵
    1. Kunzi, F., &
    2. Montenbruck, O.
    (2022). Precise onboard time synchronization for LEO satellites. NAVIGATION, 69(3). https://doi.org/10.33012/navi.531
  14. ↵
    1. McDowell, J. C.
    (2020). The low earth orbit satellite population and impacts of the SpaceX Starlink constellation. The Astrophysical Journal Letters, 892(2), L36. https://doi.org/10.3847/2041-8213/ab8016
  15. ↵
    1. Microsemi
    . (2019). SA.45s CSAC. https://ww1.microchip.com/downloads/aemDocuments/documents/FTD/ProductDocuments/Brochures/SA.45s-CSAC-Options-001-and-003-00002985.pdf
  16. ↵
    1. NEL Frequency Controls
    . (2019). Precision ultra low phase noise multi frequency OCXO reference module. https://www.nelfc.com/pdf/1326a.pdf
  17. ↵
    1. Prol, F. S.,
    2. Ferre, R. M.,
    3. Saleem, Z.,
    4. Välisuo, P.,
    5. Pinell, C.,
    6. Lohan, E. S.,
    7. Elsanhoury, M.,
    8. Elmusrati, M.,
    9. Islam, S.,
    10. Çelikbilek, K.,
    11. Selvan, K.,
    12. Yliaho, J.,
    13. Rutledge, K.,
    14. Ojala, A.,
    15. Ferranti, L.,
    16. Praks, J.,
    17. Bhuiyan, M. Z. H.,
    18. Kaasalainen, S., &
    19. Kuusniemi, H.
    (2022). Position, navigation, and timing (PNT) through low earth orbit (LEO) satellites: A survey on current status, challenges, and opportunities. IEEE Access, 10, 83971–84002. https://doi.org/10.1109/ACCESS.2022.3194050
  18. ↵
    1. Reid, T. G.,
    2. Neish, A. M.,
    3. Walter, T., &
    4. Enge, P. K.
    (2018). Broadband LEO constellations for navigation. NAVIGATION, 65(2), 205–220. https://doi.org/10.1002/navi.234
  19. ↵
    1. Safran
    . (2019). MRO-50 miniature, ultra-portable high precision & performance atomic frequency source. https://safran-navigation-timing.com/wp-content/uploads/2023/03/SAFRAN_mRO-50_Datasheet_08-28-2023_US.pdf
  20. ↵
    1. Senior, K. L., &
    2. Coleman, M. J.
    (2017). The next generation GPS time. NAVIGATION, 64(4), 411–426. https://doi.org/10.1002/navi.208
  21. ↵
    1. Sherman, J., &
    2. Jordens, R.
    (2016). Oscillator metrology with software defined radio. Review of Scientific Instruments, 87(054711), 1–11. https://doi.org/10.1063/1.4950898
    CrossRef
  22. ↵
    1. Sherman, J. A.,
    2. Arissian, L.,
    3. Brown, R. C.,
    4. Deutch, M. J.,
    5. Donley, E. A.,
    6. Gerginov, V.,
    7. Levine, J.,
    8. Nelson, G. K.,
    9. Novick, A. N.,
    10. Patla, B. R.,
    11. Parker, T. E.,
    12. Stuhl, B. K.,
    13. Sutton, D. D.,
    14. Yao, J.,
    15. Yates, W. C.,
    16. Zhang, V., &
    17. Lombardi, M. A.
    (2021). A resilient architecture for the realization and distribution of coordinated universal time to critical infrastructure systems in the United States: Methodologies and recommendations from the National Institute of Standards and Technology (NIST) (tech. rep.). https://doi.org/10.6028/NIST.TN.2187
  23. ↵
    1. Stanford Research Systems
    . (2019). FS725 benchtop rubidium frequency standard. https://www.thinksrs.com/downloads/pdfs/catalog/FS725c.pdf
  24. ↵
    1. Tournear, D.
    (2020). Future directions: Delivering capabilities. Proc. of the Small Satellite Conference (SSC20-IV-02), Logan, UT. https://digitalcommons.usu.edu/smallsat/2020/all2020/267/
  25. ↵
    1. Van Buren, D.,
    2. Axelrad, P., &
    3. Palo, S.
    (2021). Design of a high-stability heterogeneous clock system for small satellites in LEO. GPS Solutions, 25(3). https://doi.org/10.1007/s10291-021-01134-x
  26. ↵
    1. Wang, Q., &
    2. Rochat, P.
    (2022). ONCLE (one clock ensemble) for Galileo’s next-generation robust timing system. NAVIGATION, 69(3). https://doi.org/10.33012/navi.536
  27. ↵
    1. Zucca, C., &
    2. Tavella, P.
    (2005). The clock model and its relationship with the Allan and related variances. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2), 289–296. https://doi.org/10.1109/TUFFC.2005.1406554
    PubMed
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (4)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 4
Winter 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Timescale Realization with Linked Platforms for AltPNT
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Timescale Realization with Linked Platforms for AltPNT
Christopher Flood, Penina Axelrad
NAVIGATION: Journal of the Institute of Navigation Dec 2024, 71 (4) navi.669; DOI: 10.33012/navi.669

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Timescale Realization with Linked Platforms for AltPNT
Christopher Flood, Penina Axelrad
NAVIGATION: Journal of the Institute of Navigation Dec 2024, 71 (4) navi.669; DOI: 10.33012/navi.669
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 HARDWARE OVERVIEW
    • 3 CLOCK ENSEMBLING THEORY
    • 4 NCO SIGNAL SYNTHESIS
    • 5 CLOCK ENSEMBLE TESTBED INTEGRATION
    • 6 DISCUSSION
    • 7 CONCLUSIONS & FUTURE WORK
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Wide-Sense CDF Overbounding for GNSS Integrity
  • Comprehensive Analysis of Acquisition Time for a Multi-Constellation and Multi-Frequency GNSS Receiver at GEO Altitude
  • Performance Evaluation of DFMC SBAS Messages Broadcast by the Japanese Quasi-Zenith Satellite System (QZSS) in Oslo, Norway
Show more Regular Papers

Similar Articles

Keywords

  • clock ensemble
  • clock stability
  • small satellite timing
  • timescale realization

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire