Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleRegular Papers
Open Access

Improving the Prediction of GNSS Satellite Visibility in Urban Canyons Based on a Graph Transformer

Shaolong Zheng, Kungan Zeng, Zhenni Li, Qianming Wang, Kan Xie, Ming Liu, and Shengli Xie
NAVIGATION: Journal of the Institute of Navigation December 2024, 71 (4) navi.676; DOI: https://doi.org/10.33012/navi.676
Shaolong Zheng
1School of Automation, Guangdong University of Technology, Guangzhou, China
2Guangdong–HongKong–Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kungan Zeng
1School of Automation, Guangdong University of Technology, Guangzhou, China
2Guangdong–HongKong–Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhenni Li
1School of Automation, Guangdong University of Technology, Guangzhou, China
3111 Center for Intelligent Batch Manufacturing Based on Internet of Things Technology, Guangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qianming Wang
1School of Automation, Guangdong University of Technology, Guangzhou, China
4Techtotop Microelectronics Technology Co., Ltd., Guangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kan Xie
1School of Automation, Guangdong University of Technology, Guangzhou, China
2Guangdong–HongKong–Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming Liu,
5Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shengli Xie
6Key Laboratory of Intelligent Detection and the Internet of Things in Manufacturing, Guangzhou, China
7Guangdong Provincial Key Laboratory of Intelligent Systems and Optimization Integration, Guangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Anat Schaper, F. R., &
    2. Schön, S.
    (2022). Diffraction modeling for improved 3DMA GNSS urban navigation. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 1902–1916. https://doi.org/10.33012/2022.18541
  2. ↵
    1. Blais, A.,
    2. Couellan, N., &
    3. Munin, E.
    (2022). A novel image representation of GNSS correlation for deep learning multipath detection. Array, 14, 100167. https://doi.org/10.1016/j.array.2022.100167
  3. ↵
    1. D’Antonio, S.,
    2. Palomba, C.,
    3. Frasca, S.,
    4. Astone, P.,
    5. La Rosa, I.,
    6. Leaci, P.,
    7. Mastrogiovanni, S.,
    8. Piccinni, O.,
    9. Pierini, L., &
    10. Rei, L.
    (2021). Sidereal filtering: A novel robust method to search for continuous gravitational waves. Physical Review D, 103(6), 063030. https://doi.org/10.1103/PhysRevD.103.063030
  4. ↵
    1. da Silva, D. L.,
    2. Antreich, F.,
    3. Coutinho, O. L., &
    4. Machado, R.
    (2020). Q-learning applied to soft-kill countermeasures for unmanned aerial vehicles (UAVS). Proc. of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, 91–99. https://doi.org/10.1109/PLANS46316.2020.9110222
  5. ↵
    1. Dong, D.,
    2. Wang, M.,
    3. Chen, W.,
    4. Zeng, Z.,
    5. Song, L.,
    6. Zhang, Q.,
    7. Cai, M.,
    8. Cheng, Y., &
    9. Lv, J.
    (2016). Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map. Journal of Geodesy, 90, 255–262. https://doi.org/10.1007/s00190-015-0870-9
  6. ↵
    1. Geragersian, P.,
    2. Petrunin, I.,
    3. Guo, W., &
    4. Grech, R.
    (2022). Multipath detection from GNSS observables using gated recurrent unit. Proc. of the 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, VA, 1–7. https://doi.org/10.1109/DASC55683.2022.9925850
  7. ↵
    1. Gonzalez, T.,
    2. Blais, A.,
    3. Couëllan, N., &
    4. Ruiz, C.
    (2022). Distributional loss for convolutional neural network regression and application to GNSS multi-path estimation. arXiv. https://doi.org/10.48550/arXiv.2206.01473
  8. ↵
    1. Haigh, S.,
    2. Kulon, J.,
    3. Partlow, A.,
    4. Rogers, P., &
    5. Gibson, C.
    (2019). A robust algorithm for classification and rejection of NLOS signals in narrowband ultrasonic localization systems. IEEE Transactions on Instrumentation and Measurement, 68(3), 646–655. https://doi.org/10.1109/TIM.2018.2853878
  9. ↵
    1. Hamilton, W. L.,
    2. Ying, R., &
    3. Leskovec, J.
    (2017). Inductive representation learning on large graphs. arXiv. http://arxiv.org/abs/1706.02216
  10. ↵
    1. Kim, S.,
    2. Byun, J., &
    3. Park, K.
    (2022). Machine learning-based GPS multipath detection method using dual antennas. Proc. of the 2022 13th Asian Control Conference (ASCC), Jeju, South Korea, 691–695. https://doi.org/10.23919/ASCC56756.2022.9828175
  11. ↵
    1. Kim, S.,
    2. Lee, H., &
    3. Park, K.
    (2021). GPS multipath detection based on carrier-to-noise-density ratio measurements from a dual-polarized antenna. Proc. of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, South Korea, 1099–1103. https://doi.org/10.23919/ICCAS52745.2021.9648845
  12. ↵
    1. Kipf, T. N., &
    2. Welling, M.
    (2016). Semi-supervised classification with graph convolutional networks. Proc. of the International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico. https://doi.org/10.48550/arXiv.1609.02907
  13. ↵
    1. Li, Z.,
    2. Zeng, K.,
    3. Wang, L.,
    4. Kan, X.,
    5. Yuan, R., &
    6. Xie, S.
    (2023). NLOS/LOS classification by constructing indirect environment interaction from GNSS receiver measurements using a transformer-based deep learning model. Proc. of the 2023 International Technical Meeting of the Institute of Navigation (ITM 2023), Long Beach, California, 1902–1916. https://doi.org/10.33012/2023.18657
  14. ↵
    1. Liu, C.,
    2. Tao, Y.,
    3. Xin, H.,
    4. Zhao, X.,
    5. Liu, C.,
    6. Hu, H., &
    7. Zhou, T.
    (2021). A single-difference multipath hemispherical map for multipath mitigation in bds-2/bds-3 short baseline positioning. Remote Sensing, 13(2), 304. https://doi.org/10.3390/rs13020304
  15. ↵
    1. Liu, X.,
    2. Wang, G., &
    3. Chen, K.
    (2022). High-precision vision localization system for autonomous guided vehicles in dusty industrial environments. NAVIGATION, 69(1). https://doi.org/10.33012/navi.502
  16. ↵
    1. Lu, R.,
    2. Chen, W.,
    3. Dong, D.,
    4. Wang, Z.,
    5. Zhang, C.,
    6. Peng, Y., &
    7. Yu, C.
    (2021). Multipath mitigation in GNSS precise point positioning based on trend-surface analysis and multipath hemispherical map. GPS Solutions, 25(3), 119. https://doi.org/10.1007/s10291-021-01156-5
  17. ↵
    1. Min, D.,
    2. Kim, M.,
    3. Lee, J.,
    4. Circiu, M. S.,
    5. Meurer, M., &
    6. Lee, J.
    (2022). DNN-based approach to mitigate multipath errors of differential GNSS reference stations. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25047–25053. https://doi.org/10.1109/TITS.2022.3207281
  18. ↵
    1. Mohamed, H. A.,
    2. Moussa, A. M.,
    3. El-Sheimy, N., &
    4. Elhabiby, M. M.
    (2021). Multi-slices navigation approach for unknown 3D environments using micro aerial vehicles. NAVIGATION, 68(1), 61–73. https://doi.org/10.1002/navi.403
  19. ↵
    1. Ng, H.-F.
    (2022). Multi-epoch kriging-based 3D mapping aided GNSS using factor graph optimization. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 1706–1720. https://doi.org/10.33012/2022.18497
  20. ↵
    1. Ng, H.-F.,
    2. Zhang, G., &
    3. Hsu, L.-T.
    (2021). Robust GNSS shadow matching for smartphones in urban canyons. IEEE Sensors Journal, 21(16), 18307–18317. https://doi.org/10.1109/JSEN.2021.3083801
  21. ↵
    1. Oono, K., &
    2. Suzuki, T.
    (2019). On asymptotic behaviors of graph CNNS from dynamical systems perspective. arXiv. https://arxiv.org/abs/1905.10947v1
  22. ↵
    1. Qin, Y.,
    2. Li, Z.,
    3. Xie, S.,
    4. Yuan, R., &
    5. Xie, J.
    (2022). BDS multipath signal classification using support vector machine. Proc. of the 2022 4th International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 1–6. https://doi.org/10.1109/IAI55780.2022.9976714
  23. ↵
    1. Quan, Y.,
    2. Lau, L.,
    3. Roberts, G. W.,
    4. Meng, X., &
    5. Zhang, C.
    (2018). Convolutional neural network based multipath detection method for static and kinematic GPS high precision positioning. Remote Sensing, 10(12), 2052. https://doi.org/10.3390/rs10122052
  24. ↵
    1. Shetty, A.,
    2. Hussain, T., &
    3. Gao, G.
    (2023). Decentralized connectivity maintenance for multirobot systems under motion and sensing uncertainties. NAVIGATION, 70(1). https://doi.org/10.33012/navi.552
  25. ↵
    1. Shuai, Z., &
    2. Yu, H.
    (2021). Multi-sensor fusion for autonomous positioning of indoor robots. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 105–112. https://doi.org/10.33012/2021.17870
  26. ↵
    1. Varshney, M., &
    2. Singh, P.
    (2021). Optimizing nonlinear activation function for convolutional neural networks. Signal, Image and Video Processing, 15, 1323–1330. https://doi.org/10.1007/s11760-021-01863-z
  27. ↵
    1. Vaswani, A.,
    2. Shazeer, N.,
    3. Parmar, N.,
    4. Uszkoreit, J.,
    5. Jones, L.,
    6. Gomez, A. N.,
    7. Kaiser, L., &
    8. Polosukhin, I.
    (2017). Attention is all you need. arXiv. http://arxiv.org/abs/1706.03762
  28. ↵
    1. Wang, Y.,
    2. Xu, J.,
    3. Yang, R., &
    4. Zhan, X.
    (2021). GNSS multipath detection based on decision tree algorithm in urban canyons. Proc. of the China Satellite Navigation Conference (CSNC 2021), Jiangxi, China, 375–383. https://doi.org/10.1007/978-981-16-3142-9_35
  29. ↵
    1. Xu, L., &
    2. Rife, J.
    (2019). NLOS and multipath detection using doppler shift measurements. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 4064–4075. https://doi.org/10.33012/2019.17115
  30. ↵
    1. Zabalegui, P.,
    2. De Miguel, G.,
    3. Pérez, A.,
    4. Mendizabal, J.,
    5. Goya, J., &
    6. Adin, I.
    (2020). A review of the evolution of the integrity methods applied in GNSS. IEEE Access, 8, 45813–45824. https://doi.org/10.1109/ACCESS.2020.2977455
  31. ↵
    1. Zhang, G.,
    2. Xu, P.,
    3. Xu, H., &
    4. Hsu, L.-T.
    (2021). Prediction on the urban GNSS measurement uncertainty based on deep learning networks with long short-term memory. IEEE Sensors Journal, 21(18), 20563–20577. https://doi.org/10.1109/JSEN.2021.3098006
  32. ↵
    1. Zhao, H.,
    2. Li, Z.,
    3. Chen, C.,
    4. Wang, L., &
    5. Xie, S.
    (2023). Fusing vehicle trajectories and GNSS measurements to improve GNSS positioning correction based on actor-critic learning. Proc. of the 2023 International Technical Meeting of the Institute of Navigation (ITM 2023), Long Beach, CA, 82–94. https://doi.org/10.33012/2023.18593
  33. ↵
    1. Zhu, N.,
    2. Betaille, D.,
    3. Marais, J., &
    4. Berbineau, M.
    (2020). GNSS integrity monitoring schemes for terrestrial applications in harsh signal environments. IEEE Intelligent Transportation Systems Magazine, 12(3), 81–91. https://doi.org/10.1109/MITS.2020.2994076
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 71 (4)
NAVIGATION: Journal of the Institute of Navigation
Vol. 71, Issue 4
Winter 2024
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improving the Prediction of GNSS Satellite Visibility in Urban Canyons Based on a Graph Transformer
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Improving the Prediction of GNSS Satellite Visibility in Urban Canyons Based on a Graph Transformer
Shaolong Zheng, Kungan Zeng, Zhenni Li, Qianming Wang, Kan Xie, Ming Liu,, Shengli Xie
NAVIGATION: Journal of the Institute of Navigation Dec 2024, 71 (4) navi.676; DOI: 10.33012/navi.676

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Improving the Prediction of GNSS Satellite Visibility in Urban Canyons Based on a Graph Transformer
Shaolong Zheng, Kungan Zeng, Zhenni Li, Qianming Wang, Kan Xie, Ming Liu,, Shengli Xie
NAVIGATION: Journal of the Institute of Navigation Dec 2024, 71 (4) navi.676; DOI: 10.33012/navi.676
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 RELATED WORK
    • 3 BACKGROUND OF GNNS
    • 4 PROPOSED METHOD
    • 5 EXPERIMENTAL STUDIES
    • 6 CONCLUSION AND FUTURE WORKS
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ranging Performance Evaluation for Higher-Order Scalable Interplex
  • Combinatorial Watermarking Under Limited SCER Adversarial Models
  • Wide-Sense CDF Overbounding for GNSS Integrity
Show more Regular Papers

Similar Articles

Keywords

  • environment representations
  • graph neural network
  • multipath
  • transformer

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire