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Abstract

In this work, a new time-sequential positioning and fault detection method is

developed for dual-frequency, multi-constellation Advanced Receiver Autono-

mous Integrity Monitoring (ARAIM). Unlike conventional “snapshot”

ARAIM, sequential ARAIM exploits changes in satellite geometry at the cost

of slightly higher computation and memory loads. From the perspective of

users on Earth, the motion of any given GNSS satellite is small over short time

intervals. But the accumulated geometry variations of redundant satellites

from multiple GNSS can be substantial. This paper quantifies performance

benefits brought by satellite motion to ARAIM. It specifically addresses the fol-

lowing challenges: (a) defining raw GNSS code and carrier error models over

time, (b) designing estimators and fault detectors exploiting geometric diversity

for positioning, cycle ambiguity estimation, and integrity evaluation, and (c)

formulating these algorithms in a computationally efficient implementation.

Performance improvements provided by sequential ARAIM over snapshot

ARAIM are evaluated by worldwide availability analysis for aircraft approach

navigation.

1 | INTRODUCTION

This paper describes the design, analysis, and evaluation
of a new time-sequential positioning and fault detection
method for Advanced Receiver Autonomous Integrity
Monitoring (ARAIM) using the dual-frequency, multi-
constellation Global Navigation Satellite System (GNSS).
The new approach differs from prior work on “snapshot”
(or instantaneous) ARAIM algorithms1-3 in that it also
exploits satellite motion. This provides observability on
constant measurement bias errors4 and is used in this
work to estimate floating (real valued) carrier phase cycle
ambiguities, thereby improving navigation accuracy and
integrity. The new approach is formulated as a straight-
forward, computationally efficient augmentation of snap-
shot ARAIM.

With the modernization of GPS, the full deployment
of GLONASS, and the emergence of Galileo and Beidou,
a greatly increased number of redundant ranging signals

become available, which has recently drawn a renewed
interest in RAIM. RAIM exploits redundant GNSS mea-
surements to achieve self-contained fault detection at the
user receiver.5,6 In particular, RAIM can help relax
requirements on ground-based integrity monitors. For
example, researchers in the European Union and in the
United States are investigating ARAIM for worldwide
vertical guidance of aircraft.1-3

One of the primary tasks in RAIM is to evaluate
integrity risk or, equivalently, the protection levels
(which are probabilistic bounds on positioning errors).
Integrity risk is the probability of undetected faults caus-
ing unacceptably large positioning errors. Multiple
research efforts have recently been conducted to design
optimal estimators and detectors that minimize the integ-
rity risk in ARAIM, while meeting specified continuity
and accuracy criteria.7,8 These methods have been
employed in the ARAIM Milestone Reports 22 (MS2),
and Milestone Report 33 (MS3) to identify the
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circumstances under which dual-frequency GPS/Galileo
could satisfy LPV-200 requirements globally. The
localizer precision vertical (LPV) requirements are set to
support vertical navigation during approach operations
down to 200-ft altitude above the ground. The ARAIM
MS2-32,3 shows that worldwide coverage of LPV-200 is
achievable using optimal snapshot ARAIM algorithms
for a wide range of nominal measurement error and fault
parameters.

However, the MS2-32,3 also points out cases where
LPV200 is not achievable using dual-frequency GPS and
Galileo, for example, when the nominal constellations
are even slightly depleted—eg, by a single satellite in
each. In addition, the alert limit (ie, the limit on accept-
able positioning errors that defines hazardous situations)
is 35 m for LPV-200, which is much larger than, for
example, the category II precision approach alert limit
requirement of 10 m.9 Thus, given that the methods used
in Blanch et al.7 and Joerger et al.8 reach the best achiev-
able performance and unless additional satellites from
GLONASS or BeiDou are incorporated, snapshot ARAIM
algorithms cannot provide global service better than
LPV-200.

In response, this work explores the potential benefit
of new integrity monitoring methods that exploit satellite
motion in dual-frequency, multi-constellation ARAIM.

Unlike snapshot ARAIM algorithms, where carrier-
smoothed code (CSC) measurements from multiple satel-
lites are combined at one instant in time, position esti-
mates obtained, for example, from a batch estimator (or
finite-interval estimator10) are directly derived from time
sequences of raw measurements. The batch is more com-
putation and memory expensive, but it gives the means
to exploit satellite motion over short time intervals. The
time interval is limited by the minimum mission dura-
tion for an ARAIM-equipped aircraft. The shortest mis-
sion duration would be for an aircraft compelled to land
just after takeoff, which would include taxiing, takeoff,
go-around, and landing. A nominal batch duration of
10 minutes is therefore assumed, and periods of up to
20 minutes are considered in sensitivity analyses.

In the next section of this paper, previous research
efforts are outlined, which specifically use geometry
change for carrier phase–based positioning. These prior
references have in common that they rely on large
changes in geometry from a small number of ranging
sources. Conversely, in this paper, we exploit the combi-
nation of small angular variations from many space vehi-
cles (SV).

The third section of this paper addresses the key chal-
lenge of measurement error modeling over time. The
ARAIM error models given in Working Group C1 provide
values of the instantaneous CSC measurement error

standard deviations due to satellite clock and orbit
ephemeris, troposphere, multipath, and receiver noise.
For each of these error sources, this paper builds upon
the work of Joerger et al.11 to model the time correlation
of errors affecting raw code and carrier measurements,
which are the inputs to the CSC filter used in snapshot
ARAIM.1-3 An analysis of 9 months of experimental data
is carried out to validate the new temporal GPS satellite
clock and orbit ephemeris error models.

These raw measurement error models are then
processed in a batch estimator and detector. In this
implementation, a batch estimator is preferred over a
Kalman filter (KF) because KF-based integrity risk eval-
uation would require banks of KFs as in Brenner.12 The
batch estimator runs sequentially using a sliding-window
mechanism. A compact, computationally efficient for-
mulation is introduced using raw carrier and CSC mea-
surements taken at a few, infrequent sample times
within the fixed batch interval. This algorithm exploits
two fundamental estimation principles: (a) Raw code
errors due to multipath and receiver noise are averaged
out using CSC; (b) redundant satellite motion is cap-
tured using raw carrier at a few, temporally separated
sample times. This second principle is not leveraged in
snapshot ARAIM.

Fault detection is performed using a batch multiple
hypothesis solution separation (MHSS) algorithm. The
batch MHSS approach is similar to snapshot ARAIM,
except that a time sequence of measurements is
processed rather than a single set of CSC data. The pro-
posed formulation is a straightforward augmentation of
snapshot ARAIM that only requires a few past-time
measurements.

The fifth section of this paper presents a step-by-step
analysis of the new method. The section first shows that
the raw measurement error models match the ARAIM
assumptions on CSC errors. It then evaluates, in com-
parison with snapshot ARAIM, the integrity risk reduc-
tion provided by satellite motion using only three
samples over a nominal 10-minute batch period, which
is possible using the computationally efficient
formulation.

Finally, a performance analysis is carried out for air-
craft approach applications using ARAIM with dual-fre-
quency GPS and Galileo satellite measurements. The
results quantify the substantial reduction in integrity risk
achieved using batch ARAIM as compared to the baseline
snapshot ARAIM algorithm. Worldwide availability maps
show that, unlike snapshot ARAIM, batch ARAIM meets
LPV-200 requirements even with depleted constellations.
Under conditions described in the paper, batch ARAIM
can even satisfy much more stringent requirements,
including a 10-m alert limit.
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2 | BACKGROUND ON GEOMETRY
CHANGE

This work aims at exploiting changes in satellite geome-
try to obtain fast and accurate estimates of carrier phase
cycle ambiguities.4 The Integrity Beacon Landing System
(IBLS) devised in the early 1990s13 and experimentally
demonstrated in Cohen et al.14 and Gutt et al.15 was an
early implementation of this principle for aircraft preci-
sion approach and landing. GPS signal transmitters serv-
ing as pseudo-satellites (“pseudolites”) placed on the
ground along the airplane's trajectory provided additional
ranging sources and a large geometry change as the
receiver's downward-looking antenna flew over the
installation. By 2000, Rabinowitz et al.16 designed a
receiver capable of tracking carrier phase measurements
from GPS and from the low Earth orbiting (LEO) tele-
communication constellation GlobalStar. Using Glo-
balStar satellites' large range variations, precise cycle
ambiguity resolution and positioning were achieved
within 5 minutes. Another example of LEO satellite-aug-
mented GPS was analyzed in 2010,11 where ranging sig-
nals from Iridium satellites were combined with GPS to
provide worldwide carrier phase positioning and fault
detection using RAIM.

In each of the above references, greatly improved
positioning performance was achieved by exploiting the
fast relative angular motion between user receiver and
the few ranging sources (LEO SVs or pseudolites) in view
during short (5-10 minutes long) mission durations. Con-
versely, in this work, we only consider measurements
from medium earth orbiting (MEO) GNSS satellites,
which are slowly moving from the perspective of a user
near Earth's surface. It is the multiplicity of ranging
sources from several GNSS constellations that is exploited
here to achieve a significant accumulated geometry
change.

To reinforce this idea, Appendix A introduces a rela-
tive positioning problem inspired from the kinematic sur-
veying problem given in Hwang.17 This qualitative
exercise helps identify the driving mechanisms of carrier
phase–based estimation. In Hwang,17 differential carrier
phase measurements from a single SV were used to esti-
mate a one-dimensional horizontal baseline. We slightly
modify this problem by including measurements from
multiple satellites to estimate a vertical displacement
with respect to an initial position, as illustrated in Fig-
ure 1. Appendix A shows that the variance σ2V of the base-
line estimate error is given by

σ2V =
2Pn

i=1
cosiθ0−cosiθ1
� �2 σ2Δφ, ð1Þ

where σ2V is the variance of the vertical position estimate
error
σ2Δϕ is the variance of the carrier phase ranging measure-
ment error (assumed constant and equal for all SVs)
iθ0 is the zenith angle for SV i at some initial time 0
iθ1 is the zenith angle for SV i at a later time 1

Equation (1) describes two fundamental mechanisms
by which σ2V can be reduced. First, the larger the angular
variation between iθ0 and iθ1 is, the smaller σ2V
becomes.̂ 17 Second, the larger the number of visible SVs
n is, the smaller becomes. In multi-constellation ARAIM,
even though iθ variations may be small over short time
periods, the number n of contributing terms in the
denominator of Equation (1) can be large enough to pro-
vide significant sigma_V 2̂ reduction.

Further results in Appendix A show that the motion
of low-elevation satellites contributes to vertical position-
ing more than geometry changes of high-elevation SVs.

3 | RAW MEASUREMENT ERROR
MODEL DERIVATION

Two fundamental principles are exploited in batch
ARAIM. The first one is code noise averaging using car-
rier-based smoothing. This is also achieved in snapshot
ARAIM via Hatch filters, which are geometry-free filters
that average code minus carrier over time. The second
principle, which is not leveraged in snapshot ARAIM, is
cycle ambiguity estimation using changes in geometry.

Both snapshot and batch estimation are represented
in Figure 2. Let n be the number of satellites in view and
q be the number of samples, collected from batch start
time at epoch 1 to current time q. For snapshot estima-
tion, raw code measurements iρQ for SV i (as indicated by
the left superscript) are smoothed using carrier data iϕQ

sampled at all times 1 to q (right subscript “Q,” where
Q ≡ 1,…,q). The resulting carrier-smoothed code mea-
surements i�ρq at time q for i = 1,…,n, are then used, for
example, in a weighted least-squares estimator1 or in a

FIGURE 1 Illustrative static surveying example
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modified non-least-squares estimator,2,3,8 to determine
the user's position x̂SNAP at one instant in time. In con-
trast, the batch estimator directly uses raw code and car-
rier signals from all SVs at all times to simultaneously
estimate user position x̂BATCH at time q and floating cycle
ambiguities.

The first key challenge in this work is that the
ARAIM measurement error models in Working Group
C1-3 were only established for CSC code i�ρq , using large
data collection campaigns in Murphy et al.18,19 However,
evaluating batch ARAIM performance requires raw mea-
surement error models for iρQ and iϕQ. This work builds
upon prior research on ranging error time correlation in
Joerger et al11 to derive statistical models over time for
raw data used in batch ARAIM.

The linearized ionosphere error–free code and carrier
phase measurement equations for satellite i at time k,
respectively, This comments is in relation to the Equation
(2) throughout the paper: can we have the second line of
equations to be to the right of the equal sign?... (these
equations should really be a single line, but the columns
are not large enough)are as follows:

iρk = − ieTk xk + τk +
iεT,k +

iεE,k

+ iεMP,ρ,k + iεRN ,ρ,k +
ibρ,k,

ð2Þ

iϕk = − ieTk xk + τk + iη+ iεT,k + iεE,k

+ iεMP,ϕ,k +
iεRN ,ϕ,k + bϕ,k,

where iek is the 3 × 1 line-of-sight vector in a local refer-
ence frame (eg, north-east-down or NED) for satellite i at
time k

xk is the 3 × 1 user position vector in NED
τk is the receiver clock offset
iεT,k is the tropospheric error
iεE,k is the SV clock and orbit ephemeris error
ibρ,k is a nominal code bias mainly due to code signal
deformation
ibϕ,k is a nominal carrier bias, which appears in the
paired overbounding process20,21
iη is the carrier phase cycle ambiguity (constant over
time)
iεMP,ρ,k and iεMP,φ,k respectively, are code and carrier
errors due to multipath
iεRN,ρ,k and respectively, are code and carrier receiver
noise terms

The following subsections describe models for each
individual source of error.

3.1 | Tropospheric delay

We model the tropospheric delay for SV i at time k as
follows:

iεT,k =
icT,k

ivZTD,k, ð3Þ

where ivZTD,k is the zenith tropospheric delay
iθk is the elevation angle for SV i at time k
icT,k is the tropospheric zenith-to-slant mapping
coefficient:

icT,k =1:001=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:002001+ sin iθk

� �� �2q
:

Equation (3) is the instantaneous error contribution
assumed in snapshot ARAIM1-3: ivZTD,k is zero-mean nor-
mally distributed with variance σ2ZTD. We use the notation
ivZTD,k ~N 0,σ2ZTD

� �
, v ~ N(0, σ2) where σZTD = 0.12 m.1 In

this paper, ivZTD,k is a random time sequence (white
noise) independent across SVs i, for i = 1,…,n. Unlike in
previous work,22,23 we do not model the tropospheric
error correlation over time or across satellites. This is a
conservative assumption that will be refined in future
work using tropospheric error data.

3.2 | Satellite clock and orbit ephemeris
error

The satellite clock and orbit ephemeris error equation for
satellite i at time k is as follows:

iεE,k =
ibE + igE tk− t1ð Þ+ iεRES,k, ð4Þ

where ibE is an unknown, constant bias
igE is an unknown, constant gradient (ramp)

FIGURE 2 Overview of “snapshot” ARAIM estimation (top)

vs “batch” ARAIM (bottom)
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t1 is the first time epoch of the batch interval
tk represents any time k during the batch interval, such
that 1 ≤ k ≤ q, where q is the last epoch of the batch
interval
iεRES,k residual errors not captured by the “bias plus
ramp” model

The first term in Equation (4) captures the instanta-
neous uncertainty in iεE,k. It is therefore set according
to ARAIM assumptions as ibE~N 0,σ2ð Þ, nominally,
σURA = 1 m .2,3 It can easily be shown that a time-invari-
ant bias ibE affecting a sequence of raw code measure-
ments input to a Hatch filter causes the same error ibE in
the resulting output CSC i�ρq.

However, the ARAIM error model does not specify
whether nominal SV clock and orbit errors can be
assumed constant over any particular time interval. To
account for temporal error variation, a second term in
Equation (4) is added, which is a ramp over time with an
unknown but constant gradient igE, accounting for linear
variations from the initial value over (tk − t1). Joerger et
al.11 give evidence that periodic variations of orbit errors
are on the order of the MEO GNSS orbital period, which
supports the use of a simple linear model over 10 minutes.
It also cites Parkinson and Spilker, 24 Warren and
Raquet,25 and Pervan and Gratton26 to establish a distri-
bution on the rate of change of orbit/clock errors:
igE~N(0,(4.7 � 10−4 m/s)2). In addition, Section 3.5.2 of the
GPS Standard Positioning Service Performance Standard
(SPS PS)27 describes the signal-in-space (SIS) user range
rate error (URRE), which supports the model of linear
orbit and clock variations. The GPS SPS PS27 does not
specify an integrity performance standard yet.

To validate Equation (4), a preliminary experimental
data analysis is carried out. Similar to prior work,2,25,28

precise GPS satellite orbit and clock estimates from the
National Geospatial-Intelligence Agency (NGA) are con-
sidered truth reference data and are compared to broad-
cast GPS ephemerides archived by the Crustal Dynamics
Data Information System (CDDIS). The focus in this
work is on the validation of error model characteristics
over time.

In this analysis, a set of data from January 4, 2015, to
September 19, 2015, is processed, for Block IIF satellites
including PRNs 1, 3, 6, 9, 25, 26, 27, and 30 (the total
number of orbit data points is 572 520). The bias-plus-
ramp model in Equation (4) is fit to truth-minus-broad-
cast data. Because NGA orbit data are only provided
every 5 minutes, the fit interval is selected to be
30 minutes long. This is larger than the example 10- and
20-minute batch periods assumed in the next sections of
this paper. It will provide conservative results because
residual fitting errors are larger over 30 minutes than
they would be over 20 minutes.

Based on this data, empirical parameter distributions
for ibE and igE are established. These are then bounded in
the cumulative distribution function (CDF) sense20,21

using Gaussian distributions. The standard deviations of
the overbounding Gaussian functions are given in Table 1
for the clock error contribution and for the three-dimen-
sional orbit errors. Orbit errors are expressed in a local-
level, satellite-fixed reference frame, in terms of the in-
track, cross-track, and radial components.24 Because GPS
satellites are at altitudes of about 20 000 km, user
receivers near Earth's surface are affected by ranging
errors that are mostly due to the radial orbit and clock
components. Fortunately, orbit radial and clock errors
are significantly smaller than orbit in-track and cross-
track components, as shown in Table 1.

To get a conservative estimate of the error parameter
variance σ2BE for ibE while taking into account the worst-
case geometry between an SV and a user receiver near
Earth's surface, we use the following equation:

σ2BE = σ2BE,CLK + σ2BE,R +0:242 σ2BE,I + σ2BE,C
� �

, ð5Þ

where 0.24 is a multiplier accounting for the worst-case
projection of non-radial orbit error components; σ2BE,CLK ,
σ2BE,R , σ

2
BE,I , and σ2BE,C , respectively, are the variances of

the clock, orbit radial, in-track, and cross-track error
components contributing to ibE. The same can be done
for the variance σ2GE of igE.

Equation (5) is a formulation similar to the ones
found in Warren and Raquet,25 Department of Defense
GPS NAVSTAR,27 and Heng29 but modified to evaluate
variances instead of errors. The worst-case error projec-
tions are often referred to signal-in-space range error
(SISRE) for ibE and SIS range rate error (SISRRE) for igE.
Our 9-month data analysis provides values of σBE = 0.61m
and σGE = 1.8 � 10−4m/s, which are both smaller than the
assumptions mentioned above. It is therefore conserva-
tive, in the upcoming availability analysis, to use the

TABLE 1 Error model parameter overbounding standard

deviations

Standard Deviation of
Overbounding Gaussian Function

For bE,
m

For gE, m/
s

For εRES,
m

Clock component 0.27 1.0�10−4 0.042

Orbit radial 0.30 1.1�10−4 0.027

Orbit in-track 1.22 3.5�10−4 0.084

Orbit cross-track 1.46 2.4�10−4 0.072

Worst-case
projection

0.61 1.8�10−4 0.056
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values assumed in prior work1-3,11: σBE = σURA = 1m and
(in future work, we will process more data to check
whether it is safe to assume lower σBE and σBE values).

In addition, the distribution of residual errors iεRES,k
is plotted for the orbit radial and in-track components in
Figures 3 and 4, respectively. iεRES,k is obtained by remov-
ing the best fit bias-plus-ramp model from the truth-
minus-broadcast data. The figures show that iεRES,k is not
negligible as compared to other error sources affecting
carrier measurements. Since we do not know whether
these residual errors are due to errors in the NGA truth
data, we will account for them in the availability analysis,
assuming

iεRES,k ~N 0, 0:056mð Þ2� �
, ð6Þ

where the standard deviation of 0.056 m was obtained
using the same formula as in Equation (5) but applied to

iεRES,k, using the bounding standard deviations in the
rightmost column of Table 1. Future work will include a
detailed analysis of the time characteristics of iεRES,k,
which, for now, is modeled as white noise for samples
taken several minutes apart (we will use a 5-minute sam-
ple time interval in Section 6 later in this paper).

3.3 | Multipath and antenna group delay
error

Time-correlated raw code and carrier measurement
errors due to multipath reflections are modeled as first-
order Gauss-Markov processes (GMP) with time constant
TMP. Using this model, Chan et al.30 provide an expres-
sion for the steady-state CSC multipath error and dual-
frequency antenna group delay variance iσ2MP,�ρ in terms
of TMP, the Hatch filter (HF) smoothing time constant
THF, the HF sampling interval TS, and the raw code and
carrier error variances σ2MP,ρ and σ2MP,φ , respectively.
iσ2MP,�ρ is given by

iσ2MP,�ρ =
α+ αβ−β

2α−1ð Þ α−αβ+ βð Þ
iσ2MP,ρ

+
2 α−1ð Þ2 1−βð Þ
2α−1ð Þ α−αβ+ βð Þ

iσ2MP,φ,

ð7Þ

where α = THF/TS and.
To date, ARAIM analyses have assumed THF= 100 sec-

onds and an associated elevation-dependent model for
σ2MP,�ρ . For GPS, the following equation is given in Work-
ing Group C1:

iσMP,�ρ,k = cIF 0:13+ 0:53exp − iθk=10
� �� �

, ð8Þ

where

iσMP,�ρ,k is expressed in meters for SV i at time k
iθk is the elevation angle in degrees
cIF is the ionosphere-free measurement combination
multiplier:

cIF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 4L1 + f 4L5
� �

= f 2L1− f 2L5
� �2q

:

fL1 and fL5, respectively, are L1 and L5 frequencies.
Equation (8) accounts for the combination of

multipath and antenna group delay.31,32 Dual-frequency
antennas assumed in this work have much lower group
delay than single-frequency antennas.33

A similar model is provided in Working Group C1 for
Galileo. Equation (8) was established using experimental

FIGURE 3 Folded CDF (empirical and bounding Gaussian)

for the orbit radial error component of the best-fit bias-plus-ramp

model

FIGURE 4 Folded CDF (empirical and bounding Gaussian)

for the orbit in-track error component of the best-fit bias-plus-ramp

model
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data collected and analyzed in Murphy et al.18 using
THF = 100 seconds and TS = 0.5 second. We assume,
based on experimental data analysis in Joerger et al.11

and Parkinson and Spilker,24 that iσ2MP,φ is typically 100
times smaller than iσ2MP,ρ . Equation (7) still contains two
unknowns: iσ2MP,ρ and TMP.

Fortunately, a second set of experimental data was
analyzed in Murphy et al.,19 which provides a different
value of the CSC standard deviation iσMP,�ρ,k 30s using
THF = 30 seconds. This second relationship provides the
means to solve for both unknowns in Equation (7). It fol-
lows that

iσMP,φ,k =0:015iσMP,�ρ,k, iσMP,φ,k =0:015iσMP,�ρ,k, ð9Þ

and

TMP =80 s: ð10Þ

This model assumes a fixed TMP even though TMP

values actually vary.34 In future work, we will evaluate
the sensitivity of our proposed batch ARAIM integrity
risk bound to TMP values (preliminary analyses suggest
that the bound is not very sensititive to TMP because iεT,k
is the dominating term in the carrier phase error budget).
In parallel, we will use the method in Langel35 to derive
an upper bound on the positioning error based on
unknown, bounded values of TMP.

3.4 | Receiver noise

The CSC receiver noise standard deviation assumed in
ARAIM1 is given by

iσRN ,�ρ,k = cIF 0:15+ 0:43exp − iθk=6:9
� �� �

, ð11Þ

where iσRN ,�ρ,k is expressed in meters for SV i at time k
iθk is the elevation angle in degrees

Receiver noise is time uncorrelated. We follow the
same approach as for multipath errors in Equations (7) to
(9), which is simplified because TMP no longer needs to
be determined and β = 0. Raw code and carrier standard
deviations are thus expressed as follows:

iσRN ,φ,k =0:196iσRN ,�ρ,k, iσRN ,φ,k =0:196iσRN ,�ρ,k: ð12Þ

Throughout this section, we made the assumption
that the error models are robust and accurate over the
entire 10- to 20-minute–long batch interval. References
are cited in Joerger et al. 11 to support this assumption,

but further experimental validation will have to be car-
ried out in future work. Also, undetected and unrepaired
cycle slips that impact both snapshot and batch ARAIM
are not accounted for in this paper, the emphasis being
on comparing snapshot to batch ARAIM. The only
sources of error left unaddressed in Equation (2) are ibρ,k
and ibϕ,k, which are dealt with in the next section.

4 | BATCH ESTIMATOR AND
DETECTOR DESIGN

In this section, the raw measurement error models
derived above are incorporated in a batch estimator and
in a batch MHSS RAIM fault detection algorithm that
enables integrity risk evaluation. This raw-data–based
implementation, or “raw batch,” is then re-formulated in
a much more computationally efficient process, referred
to as “batch ARAIM,” which only requires about three
samples over 10 minutes to provide equivalent perfor-
mance to the full raw batch.

4.1 | Batch measurement equation

For each SV i, for i = 1,…,n, raw code and carrier mea-
surements from times 1 to q are, respectively, stacked in
q × 1 vectors iρ and iφ. These vectors are then arranged
in a batch measurement vector:

φT ρT
� �T

= 1φT � � �nφT 1ρT � � �nρT� �T
: ð13Þ

This vector can be expressed in terms of state variables
and measurement error vectors as follows:

φ
ρ

� �
=

G HN HERR

G 0qn×n HERR

� � u

η
sERR

2
64

3
75+

vT,E,RNM,ϕ

vT,E,RNM,ρ

� �
+

bϕ
bρ

� �
,

ð14Þ

where, for an example dual-constellation GPS/Galileo
implementation, u is a vector of positions and GPS and
Galileo receiver clock offsets at all times
η is an n × 1 vector of cycle ambiguities
sERR is a 2n × 1 vector of constant error states
0a × b is an a × b matrix of zeros
vT,E,RNM,φ and vT,E,RNM,ρrespectively, are raw code and
carrier errors due to residual troposphere delay, residual
clock and orbit ephemeris errors, receiver noise, and
multipath.
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Vector u is constructed using the following equations:

u= uT
1 � � �uT

q

h iT
,uk = xTk τGPS,k τGAL,k

� �T
, ð15Þ

where τGPS,k and τGAL,k are the receiver clock offsets for
GPS and Galileo, respectively, assuming that the time off-
set between the two constellations is unknown.

The vector of constant cycle ambiguities is defined as
follows:

η= 1η� � �nη� �T
: ð16Þ

The vector of error states is given by

sERR = bTE gTE
� �T

,

where bE and gE are the n × 1 vectors of constant clock
and orbit ephemeris biases and gradients for all n satel-
lites constructed following the exact same pattern as η in
Equation (16).

Error states sERR are included in the state vector, not
because their estimated values are of particular interest
but because state augmentation is a practical way to
incorporate measurement error dynamics. Prior knowl-
edge on these error states is captured in a diagonal state
information matrix (inverse of covariance matrix) with
diagonal elements:

01× 5q+ n½ � σ−2
BE 11×n σ−2

GE11×n
� �

,

where1a × b is an a × b matrix of ones.
This a priori knowledge of state estimate errors can

directly be incorporated in the estimator by adding up
information matrices as described in Section 2.1.2 of
Joerger et al.,11 or it can be included by measurement
vector augmentation, ie, assuming pseudo-measurements
on sERR as in Joerger et al.11 and Joerger.36

For clarity of presentation, the batch state coefficient
matrices G, HN, and HERR are constructed for example
GPS/Galileo geometries where satellites are visible
throughout the batch duration. Procedures to handle sat-
ellites coming in and out of sight are straightforward in
batch implementations and are described in Joerger.36

Position and receiver clock state coefficients for SV i
at time k are arranged in the following vectors:

igTk = − ieTk 1 0
� �

if SV i is a GPS satellite,
igTk = − ieTk 0 1

� �
if SV i is a Galileo satellite, where

line-of-sight vectors ieTk were defined in Equation (2). We
then build geometry matrices over time, one satellite at a
time:

iG=

igT1 01× 5

. .
.

01× 5
igTq

2
664

3
775, ð17Þ

and we stack these matrices for all satellites:

G= 1GT � � �nGT
� �T

:

Next, the cycle ambiguity and error state coefficient
matrices take the following forms:

HN =

1q× 1 0q× 1

. .
.

0q× 1 1q× 1

2
664

3
775,

HERR =

1q× 1 0q× 1 hG 0q× 1

. .
. . .

.

0q× 1 1q× 1 0q× 1 hG

2
664

3
775,

where hG = 0TS� � � q−1ð ÞTS½ �T . The measurement error
covariance matrix V of vector requires additional steps to
account for code/carrier measurement error correlation;
both are described in Appendix B.

The 2qn × 1 vector bT
ϕ b

T
ρ

h iT
represents nominal car-

rier and code biases for all SVs at all times for vector
φT ρT½ �T . The elements of bϕ are significantly smaller
than those of bρ because we assume that signal deforma-
tion does not affect the carriers. bϕ is included to account
for non-Gaussian errors following the paired over-
bounding method.21 bρ and bϕ are unknown, but their
elements are bounded by known values.

Next, we consider the batch measurement Equa-
tion (14), with an additive 2qn × 1 batch fault vector f,
which will have to be detected. The resulting batch obser-
vation equation can be rewritten in a standard form as
follows:

z=Hx+ v+b+ f , ð18Þ

where z is the batch measurement vector
H is the batch observation matrix
x is the batch state vector
v is the batch measurement error vector:
v~N(0,V)b is the batch bias-bounded vector accounting
for non-Gaussian components of errors:

b� bTϕb
T
ρ

h iT
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4.2 | Batch estimator design

The batch estimate for the state of interest (eg, for the
vertical position coordinate, which is of primary interest
in aircraft approach navigation) at the current time q is
defined as follows:

x̂0 � sT0 z, ð19Þ

where s0 is the 2qn × 1 vector of batch estimator coeffi-
cients. Subscript “0” designates the all-in-view or “full-
set” solution (the same notations, with additional details,
are used in Joerger et al.37) The estimator is a weighted
least-squares estimator modified using Equations (35) to
(37) in Working Group C3 to reduce integrity risk. The
full-set estimate error is noted ε0: ε0 � x− x̂0 , where x is
the true value of the state of interest. ε0 is such that

ε0 ~N b0 + sT0 f ,σ
2
0 � sT0Vs0

� �
, ð20Þ

where b0 is the impact on state estimation of nominal
bias-bounded errors. The ARAIM error model in Work-
ing Group C1,2 assumes that the elements of b for CSC
measurements can be bounded by a maximum value
noted bnom: bnom = 0.75 m in MS2.2 In this paper, we con-
servatively assume that nominal ranging biases can be
different for all satellites at all times, that they mostly
affect code due to signal deformation, and that they also
account for small biases in the common clock and orbit
ephemeris paired bounding process. It follows that b0 can
be bounded by

b0 ≤ sT0A
		 		1qn× 1bnom, ð21Þ

where jj denotes the element-wise absolute value opera-
tor. Matrix A is defined as follows:

A=
aφIqn
Iqn

� �
,aφ =0:05,

where Ia is the a × a identity matrix.

4.3 | Batch detector design

A multiple-hypothesis solution separation (MHSS) batch
RAIM method1-3,12,37 is adopted for detection of f. Let h
be the number of fault hypotheses that need to be moni-
tored against (refer to Working Group C3 and Joerger et

al.37 for details on how to determine h). A set of mutually
exclusive, exhaustive hypotheses Hi, for i = 0,…,h, is con-
sidered. Under Hi, a number ni of measurements are
simultaneously impacted by the fault. The fault-free sub-
set solution, which excludes these ni measurements, is
written as follows: x̂i � sTi z, where si is the 2qn × 1 vector
of the subset solution's batch estimator coefficients with
zeros for elements corresponding to the ni faulted mea-
surements.37 Under Hi, the estimation error εi of x̂i is
such that

εi ~N bi,σ
2
i � sTi Vsi

� �
, ð22Þ

where

bi ≤ sTi A
		 		1qn× 1bnom: ð23Þ

The batch MHSS test statistics are then defined as
follows:

Δi � x̂0− x̂i for i=1,…,h: ð24Þ

Δi is normally distributed with variance σ2Δi.
3 In snap-

shot ARAIM, hypotheses Hi, for i = 1,…,h, are defined by
satellites being faulted or not. Batch ARAIM additionally
opens the possibility for a sub-subset of data being either
faulted or fault free over time. It is then worth asking
whether a larger number of measurements being faulted
over time necessarily cause a higher integrity risk. On the
one hand, more faulted measurements may increase the
estimation error, but, on the other hand, it may also pro-
vide more opportunities for detection.

4.4 | Computationally efficient batch
implementation

In this section, two additional parameters are introduced.
Let TB be the batch period, ie, the finite time interval over
which measurements are processed: TB determines the
amount of change in SV geometry (eg, we will use
TB = 10 minutes and TB = 20 minutes in the next sections
of the paper). Also, let TS be the sampling interval, ie, the
time between raw samples within the batch (eg,
TS = 0.5 second).

Batch Equations (13) to (25) assume that multi-GNSS
measurements are processed at regular TS intervals over
TB. The dimensions of the resulting raw batch matrices
and vectors are therefore very large, and matrix inver-
sions, needed, for example, to calculate s0 in Equa-
tion (19), are extremely time-consuming. Alternatives to
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batches were considered, including Kalman filters (KF).
But KF innovation-based RAIM requires computation of
the PHMI maximizing failure mode slope,38,39 and KF-
based MHSS requires banks of KFs, which is
cumbersome.12

In response, we derive a computationally efficient,
reduced batch implementation, illustrated in Figure 5,
based on raw carrier phase and CSC measurements taken
at few, infrequent sample times during TB. This algo-
rithm exploits the same two fundamental estimation
principles as the raw batch: (a) Code noise is averaged
out using CSC obtained from Hatch filters (HF); (b)
redundant satellite motion is captured using raw carrier
phase measurements at few, temporally separated sample
times. This implementation is a straightforward augmen-
tation of snapshot ARAIM that incorporates a few sam-
ples over time instead of a set of data at one instant in
time.

Let TRBS be the reduced batch sampling interval
within the batch period TB. Because in this reduced batch
process, noise averaging is performed in separate HFs,
TRBS can be selected much larger than the raw measure-
ment sampling period TS (TRBS >> TS).

For example, in Section 5, we use TB = 10 minutes
and TRBS = 5 minutes. The resulting number of sample
times drops from q = 1200 for the raw batch (for
TB = 10 minutes, TS = 0.5 second) down to q = 3 for the
reduced batch.

The reduced batch ARAIM MHSS method is the same
as for raw batch in Equations (13) to (25), except for two
differences. First, Equation (14) becomes

φ
�ρ

� �
=

G HN HERR

G 0qn×n HERR

� � u

η
sERR

2
64

3
75+

vT,E,RNM,ϕ

vT,E,RNM,�ρ

� �
+

bϕ
bρ

� �
,

ð25Þ

whereq is the number of sample times, much smaller for
the reduced batch than for the raw batch

�ρ is a qn × 1 vector of CSC measurements
vT,E,RNM,�ρ is a qn × 1 vector of residual ephemeris and tro-
pospheric error and of CSC receiver noise and multipath
error

Then, off-diagonal elements of the covariance matrix
�V of vector vTT,E,RNM,ϕ vTT,E,RNM,�ρ

h i
account for the correla-

tion of raw carrier measurements with CSC. Complete
analytical expressions of the correlation between CSC
and raw carrier measurements are given in Appendix C.
It is worth noting that the 5-minute TRBS value used in
the next sections of this paper is very large as compared
to the multipath correlation time constant (TMP = 80 sec-
onds) and to the HF smoothing time constant
(THF = 100 seconds). It follows, as explained in Appendix
C, that the expression of can be simply and accurately
approximated using blocks of diagonal matrices.

In summary, the reduced batch ARAIM MHSS
method presents the following characteristics.

a. It is much more computation and memory efficient
than the raw batch.

b. Since it is also based on CSC, it only requires a minor
augmentation of the existing snapshot ARAIM
algorithms.

The reduced batch implementation in Figure 5 is used
in Section 6. From now on, it is referred to as “reduced-
batch ARAIM” or simply “batch ARAIM,” as opposed to
the “raw batch” in Equation (14), which will be used
shortly to analyze raw measurement error models.

4.5 | Integrity and continuity risk
evaluation

The integrity risk, or probability of hazardous misleading
information PHMI, is upper bounded as follows37:

PHMI ≤P jε0j> ℓjH0ð ÞPH0

+
Xh
i=1

P jεij+ τi > ℓjHið ÞPHi,
ð26Þ

where ℓ is the alert limit (AL) that defines hazardous sit-
uations: in MS2, 2 the vertical AL is ℓ = 35 m
PHi is the prior probability of Hi occurrence
H0 is the fault-free hypothesis
Hi for i = 1,…,h are the fault hypotheses corresponding to
faults on subset measurement i (including single-satellite
and multi-satellite faults)

Under fault-free hypothesis H0, the detection thresh-
old τi is set based on an allocated continuity risk

FIGURE 5 Computationally efficient batch ARAIM

implementation
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requirement CREQ (specified in Working Group C2,3) to
limit the probability of false alarms. τi can be defined as
follows:

τi =Q−1 CREQ= 2hPH0ð Þ
 �
σΔi, ð27Þ

where the function Q−1{} is the inverse tail probability
distribution of the standard normal distribution.

The following section analyzes the probability distri-
butions of ε0, εi, and Δi for raw batch versus snapshot
ARAIM and for varying values of TB.

5 | ANALYSIS OF MEASUREMENT
ERROR MODELS AND OF
SNAPSHOT VS BATCH
APPROACHES

This section describes a step-by-step analysis to show
that, given TB of 10 minutes or larger, estimation perfor-
mance improves substantially for batch ARAIM as com-
pared to snapshot ARAIM. The raw batch described in
Equation (14), based on raw measurements, is used
throughout this section. Also, the computationally effi-
cient reduced batch in Equation (25) is shown to be
equivalent in integrity performance to the raw batch.

5.1 | “Frozen geometry” analysis: Raw
versus CSC measurement error model
comparison

The comparison between snapshot ARAIM and raw
batch ARAIM in Figure 2 illustrates that the main differ-
ence between the two approaches is the use of SV
motion. Assuming a constant, “frozen geometry” should
therefore provide identical performance for both
implementations. This observation can be used to con-
firm that the raw measurement error models in Equa-
tions (1) to (12) are consistent with ARAIM CSC models
in the ARAIM MS1-2.1,2

To do so, the transient response of the Hatch filter
(HF) must also be accounted for, because CSC error
models in 1,2MS2[2], Murphy et al.19 and De Cleene20 are
specified assuming that the HF has reached steady state.
The steady-state CSC multipath error standard deviation
is expressed in Equation (7) in terms of α = THF/TS. In
parallel, in appendix A of Joerger,36 the variance of the
raw batch position estimate assuming frozen geometry is
expressed in terms of the number of samples nS (nS=TB/
TS). These two expressions are used to find that equiva-
lent performance is expected when TB = 2THF, ie,
TB = 200 seconds since THF = 100 seconds.19

In the following Figures 6–8, the fault-free means and
standard deviations of the random variables in Equa-
tion (26) are evaluated over 24 hours at an example Chi-
cago location (25.5�N, −80.1�E), assuming dual-
frequency measurements from GPS and Galileo. Nominal
simulation parameters are further described in the next
section where they become relevant. The means and
standard deviations for raw batch ARAIM are σ0, b0, σi,
bi, and σΔi, which are defined in Equations (20) to (25).
The same quantities for snapshot ARAIM are, respec-
tively, noted σ0, b0, σi, bi, and σΔi. The legend is the same
in all three figures. Figure 6 shows the results for
TB = 200 seconds, for frozen geometries. Snapshot versus
raw batch results match closely, which confirms that the
raw measurement error models derived earlier are consis-
tent with ARAIM assumptions in MS2.2

5.2 | Impact of satellite motion

The fault-free estimation error means and standard devi-
ations are plotted in Figure 7 assuming the same

FIGURE 6 Comparing snapshot and raw batch ARAIM to

show that raw measurement error models are consistent with

ARAIM assumptions on CSC in Working Group C1,2 (frozen

geometry, TB = 200 seconds)
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simulation parameters as in Figure 6, but the geometry is
no longer frozen. Figure 7 shows the substantial impact
of satellite motion over TB = 200 seconds on estimation
performance. It confirms that bias observability using SV
motion is a performance-driving principle. This effect is
further accentuated in Figure 8 (especially for b0 and bi),
where the batch interval is increased from TB = 200 sec-
onds to TB = 600 seconds.

Figure 9 also shows the significant PHMI reduction
obtained using raw batch ARAIM as compared to snap-
shot ARAIM. In Figure 9, the fraction of time where the
PHMI curves are below the dashed line is the availability.

In this case, availability is 99.7% for raw batch ARAIM
and is much lower for snapshot ARAIM (65%). In addi-
tion, Figure 9 shows that raw batch ARAIM and reduced
batch ARAIM have overlapping PHMI curves, even
though reduced batch ARAIM is much more computa-
tion and memory efficient.

The integrity risk PHMI is plotted in Figure 9 for raw
batch ARAIM (TB = 600 seconds, TS = 0.5 seconds) and
for reduced batch ARAIM (TB = 600 seconds,
TRBS = 300 seconds), over 24 hours, at the example Chi-
cago location. The dashed horizontal line in Figure 9 is
the integrity risk requirement IREQ, specified in Working
Group C2 to be IREQ = 0.98 � 10−7 for the vertical position
coordinate. Figure 9 also assumes that the vertical alert
limit in Equation (24) is ℓ = 10m, that prior probabilities
of satellite and constellation faults, noted PHi in Equa-
tion (24), respectively, are Psat = 10−5 and Pconst = 10−8,
and that the continuity risk requirement in Equation (27)
is CREQ = 3.9 � 10−6.

6 | BATCH ARAIM AVAILABILITY
ANALYSIS

This section evaluates the global availability of LPV-200
navigation requirements to support localizer precision
vertical aircraft approach operations down to 200 ft above
the ground, using ARAIM with dual-frequency measure-
ments from GPS and Galileo. Nominal simulation

FIGURE 7 Impact of satellite motion: all parameters identical

to Figure 6, but geometry is no longer frozen (TB = 200 seconds)

FIGURE 8 Impact of TB: all parameters identical to Figure 7,

except TB = 600 seconds

FIGURE 9 Integrity risk bound using snapshot vs batch

ARAIM: all parameters identical to Figure 8 (TB = 600 seconds,

TRBS = 300 seconds)
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parameters are defined in Working Group C2 and include
the following:

• a 5� satellite elevation mask
• values for all ARAIM measurement error model

parameters in Equations (1) to (10) and (21)
• navigation requirements: IREQ = 0.98.10-7 ,

CREQ = 3.9 � 10−6, ℓ = 35m
• prior probabilities of faults: Psat = 10−5, Pconst = 10−4

• reduced batch period and sampling interval:
TB = 10 minutes, TRBS = 5 minutes

• nominal constellations, comprising 24 GPS satellites
and 24 Galileo SVs40

These parameters are modified below to evaluate per-
formance sensitivity. For example, to account for poten-
tial satellite outages, “depleted” constellations of 24-1
GPS satellites and 24-1 Galileo SVs are simulated.40

“Optimistic” constellations of 27 GPS and 27 Galileo SVs
are considered as well.40 Additional requirements,
including effective monitor threshold (EMT) and fault-
free accuracy requirements,2 are included in the simula-
tion but not discussed in this paper as they only have a
minor impact on overall availability.

6.1 | Batch vs snapshot ARAIM
availability using depleted constellations

Figures 10 and 11 display availability maps for a
10� × 10� latitude-longitude grid of locations, for
“depleted” 24-1 GPS and 24-1 Galileo constellations, for
satellite geometries simulated at regular 10-minute inter-
vals over a 24-hour period. Availability is computed at
each location as the fraction of time where the PHMI

bound is lower than IREQ.

In the figures, availability is color coded: White corre-
sponds to a value of 100%, and black represents 80%.
Constant availability contours are also displayed. The
gray areas in Figure 10 indicate that snapshot ARAIM is
clearly outperformed by batch ARAIM in Figure 11. Even
more substantial differences will be observed in the next
subsection.

The worldwide availability metric given in the figure
captions is the weighted coverage of 99.5% availability:
Coverage is defined as the percentage of grid point loca-
tions exceeding 99.5% availability. The coverage compu-
tation is weighted at each location by the cosine of the
location's latitude because grid point locations near the
equator represent larger areas than near the poles. Fig-
ures 10 and 11 show that the coverage of 99.5% availabil-
ity increases from 87.2% for snapshot ARAIM to 93.3%
for batch ARAIM, assuming TB = 600 seconds for
ℓ = 35 m. For context, based on the assumptions
described in Section 4 of MS3,3 coverage of 99% availabil-
ity using Satellite Based Augmentation Systems (SBAS) is
11% as of 2015 and may reach 45% in 2026 using dual-fre-
quency SBAS.

6.2 | Batch vs snapshot ARAIM
availability for a 10-m alert limit

Figures 12 and 13 evaluate the potential of batch ARAIM
to meet requirements that are more stringent than
LPV200, including a tight alert limit: ℓ = 10 m. One key
assumption to achieve high availability is that the prior
probability of constellation-wide faults must be reduced
to Pconst = 10−8. This assumption is also made for GPS in
en route operation using horizontal ARAIM (see appen-
dix B in Working Group C2) and may be justifiable using

FIGURE 10 Availability map for snapshot ARAIM using

depleted constellations, Pconst = 10−4, ℓ = 35 m (coverage of 99.5%

availability is 87.2%)

FIGURE 11 Availability map for reduced batch ARAIM

(TB = 600 seconds, TRBS = 300 seconds) using depleted

constellations, Pconst = 10−4, ℓ = 35 m (coverage of 99.5%

availability is 93.3%)
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the guidelines in Walter and Blanch.41 These guidelines
exploit additional information from the Air Navigation
Service Provider (ANSP) ground segment. In Figures 12
and 13, availability maps assume nominal 24-satellite
GPS and Galileo constellations. The same color code as
in Figures 10 and 11 is employed. Again, batch ARAIM
with TB = 1200 seconds in Figure 13 provides a dramatic
improvement as compared to snapshot ARAIM in
Figure 12.

Table 2 lists worldwide coverage of 99.5% availability
and of 95% availability (given in parentheses), for the
above configurations, for TB = 600 seconds and assuming
TB = 1200 seconds, and for depleted, nominal, and opti-
mistic constellations. The table quantifies the global per-
formance improvement brought by batch ARAIM as
compared to snapshot ARAIM (snapshot ARAIM results
match the coverage reported in tables 2 and 3 in Working
Group C2 for ℓ = 35 m). This improvement comes at the
cost of slightly higher computation and memory loads.

Further improvement can be obtained by lengthening
the batch duration. For example, for TB = 1800 seconds,
ℓ = 10 m, Pconst = 10−8, and assuming a nominal constel-
lation, the coverage of 99.5% availability reaches 95% as
compared to 75.5% using TB = 1200 seconds and to 0%
for snapshot ARAIM. But the batch duration is limited
by mission duration and by the period of validity of the
error models. Another source of improvement is the
potential future addition of other GNSS constellations
(eg, GLONASS and BeiDou), which will increase the
accumulated impact of redundant satellite motion. In this
case, new measurement error and fault models would
have to be derived and validated because current assump-
tions on GPS and Galileo performance may not hold for
other constellations (eg, the definition of GLONASS satel-
lite faults is not rigorously consistent with that of GPS42).

It must also be noted that, for aircraft navigation stan-
dards that are more stringent than LPV-200 and that
include ℓ = 10 m, additional requirements are typically
involved, eg, on the communication link between ANSP
ground segment and aircraft. Such considerations are
beyond the scope of this paper.

7 | CONCLUSION

In this paper, a new ARAIM integrity monitoring method
was devised, which exploits the motion of satellites from
multiple GNSS constellations. Raw measurement error
models over time were established and were shown to be
consistent with conventional snapshot ARAIM assump-
tions on carrier-smoothed code measurements in MS1-
3.1-3 These raw measurements were then incorporated in
batch estimation and solution separation fault detection

FIGURE 12 Availability map for snapshot ARAIM using

nominal constellations, Pconst = 10−8, ℓ = 10 m (coverage of 99.5%

availability is 0%)

FIGURE 13 Availability map for reduced batch ARAIM

(TB = 1200 seconds, TRBS = 300 seconds) using nominal

constellations, Pconst = 10−8, ℓ = 10 m (coverage of 99.5%

availability is 75.5%)

TABLE 2 Coverage of 99.5% availability and coverage of 95% availability (in parentheses)

Example Configurations Snapshot ARAIM Batch ARAIMTS = 600 s Batch ARAIMTS = 1200 s

Depleted constellations Pconst = 10−4, ℓ = 35 m 87.2%(100%) 93.3%(100%) 96.0%(100%)

Nominal constellations Pconst = 10−4, ℓ = 35 m 99.8%(100%) 100%(100%) 100%(100%)

Nominal constellations Pconst = 10−8, ℓ = 10 m 0%(0%) 8.5%(31.5%) 75.5%(99.3%)

Optimistic constellations Pconst = 10−8, ℓ = 10 m 0%(0%) 14.8%(55.0%) 85.6%(99.8%)
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processes that constitute minor augmentations to snap-
shot ARAIM.

The impact of satellite motion on batch ARAIM was
analyzed as a function of batch period and then quanti-
fied globally in comparison with conventional snapshot
ARAIM. The proposed batch ARAIM implementation is
slightly more computation and memory expensive than
snapshot ARAIM. However, it can provide dramatic per-
formance improvements both when aiming to achieve
LPV-200 requirements using depleted constellations and
when trying to meet a much more stringent 10-m alert
limit.

The next step of this research is to pursue the valida-
tion and refinement of raw measurement error models
over time using large amounts of experimental data. Fur-
ther measurement error and performance sensitivity ana-
lyses will be carried out considering additional GNSS
(GLONASS and BeiDou).
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APPENDIX A: | ILLUSTRATIVE “STATIC
SURVEYING” EXAMPLE USING MULTIPLE
SATELLITES

The analysis described in this appendix and illustrated in
Figure 1 is a direct extension of the “static surveying”
problem given in Hwang.17 In this case, the measurement
vector is augmented to include differential carrier phase
signals iΔφ0 and iΔφ1 (at times 0 and 1 as indicated by
subscripts) not only from a single SV but also from satel-
lites i, for i = 1,…,n. The measurement equation becomes

Δφ0

Δφ1

� �
=

G0 In
G1 In

� �
ΔxV
η

� �
+

v0
v1

� �
, ðA:1Þ

where

Δφ0 =
1Δφ0� � �nΔφ0

� �T
,Δφ1 =

1Δφ1� � �nΔφ1

� �T
,

η=

1η

..

.

nη

2
664

3
775,G0 =

cos1θ0

..

.

cosnθ0

2
664

3
775,G1 =

cos1θ1

..

.

cosnθ1

2
664

3
775,

andΔxV is the vertical baseline distance to be estimated
(displayed in Figure 1)
In is an n × n identity matrix
iη carrier phase cycle ambiguity for SV i

The carrier phase measurement noise vector ½vT0 vT1 �T
is assumed zero-mean normally distributed with covari-
ance matrix I2nσ2Δφ . The least-squares estimate error vari-
ance for ΔxV is given by

σ2V = σ2Δφ 101×n½ � GT
0 GT

1

In In

" #
G0 In
G1 In

� � !−1
1

0n× 1

� �
,

ðA:2Þ

where 0a × b is an a × b matrix of zeros
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Using a popular matrix inversion formula, σ2V
becomes

σ2V =
2σ2Δφ

2GT
0G0 + 2GT

1G1− GT
0 +GT

1

� �
G0 +G1ð Þ , ðA:3Þ

which, using the above definitions of G0 and G1, can be
written as follows:

σ2V =
2σ2ΔφPn

i=1
cosiθ0−cosiθ1
� �2 , ðA:4Þ

whereiθ0 is the zenith angle for SV i at some initial time 0
iθ1 is the zenith angle for SV i at a later time 1

Equation (A.4) is discussed in the body of the paper
(under Equation (1)).

Equation (A.4) can be further analyzed considering
small angular variations over an infinitesimally small
time interval δt. The reasoning is pursued in the informa-
tion form because information (inverse of variance) can
directly be added up, and it avoids discussing the special
case of iθ0 =

iθ1 when no information is provided by car-
rier only. The change in square root information can be
expressed as follows:

δσ−1
V =

σ−1
Δϕ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i=1

cosiθ−cos iθ+ δiθ
� �� �2s

: ðA:5Þ

Using a first-order Taylor series approximation for small
angular variations about θ of the second term in the sum
and dividing both sides by δt, Equation (A.5) becomes

_σ−2
V =

d
dt

σ−1
V

� �� �2
=
σ−2
Δϕ

2

Xn
i=1

i _θsiniθ
� 2

: ðA:6Þ

Low-elevation satellites have a zenith angle iθ
approaching 90�. Equation (A.6) shows that the informa-
tion contribution is larger for low-elevation satellites than
for high-elevation SVs, both because of the siniθ term
and because _θ is larger at low elevations.

APPENDIX B: | BATCH MEASUREMENT
ERROR COVARIANCE MATRIX DESCRIPTION

In this appendix, consistent with Section 4.1, the mea-
surement noise covariance matrix is constructed, for
example, GPS/Galileo geometries where satellites are

visible throughout the batch duration. The measure-
ment error covariance matrix is the sum of two
contributions:

V=VT,E +VRNM :

VT,E is constructed using blocks of four identical diagonal
matrices accounting for the fact that code and carrier
measurements are impacted by the same troposphere and
ephemeris errors. VT,E can be expressed as follows:

VT,E =
VT + Inqσ2RES VT + Inqσ2RES
VT + Inqσ2RES VT + Inqσ2RES

" #
,

where σ2RES = 0:056mð Þ2 in Equation (6) and VT is a diag-
onal matrix (assuming that errors from different satellites
are independent from each other as in Working Group
C2) with the ((i − 1)�q + k)th diagonal term being
ic2T,kσ

2
ZTD as described in Equation (3) and in the text that

follows.
For the reduced batch, VRNM is described in Appendix

C. For the raw batch, VRNM is block diagonal, each block
corresponding to observations from the same SV over
time (to facilitate this process, we grouped measurements
satellite per satellite in Equation (17)). Within each block,
off-diagonal components capture the time correlation
due to multipath error, which is modeled as a first-order
Gauss-Markov process. Thus, within the block
corresponding to satellite i, the off-diagonal element
accounting for the error correlation of sample time tk and
is expressed as σMP, ρ=ϕð Þ,kσMP, ρ=ϕð Þ,le−Δtkl=TMP , where Δtkl = |
tk − tl| and where iσMP,(ρ/ϕ),k is the (code/carrier)
multipath error variance defined in Equation (9) and TMP

is the correlation time constant in Equation (10). The
quantities iσ2RN ,ρ,k and iσ2RN ,ϕ,k in Equation (12) are also
added to the diagonal elements of VRNM to account for
code phase and carrier phase uncorrelated receiver noise,
respectively.

APPENDIX C: | MEASUREMENT ERROR
CORRELATION IN REDUCED BATCH
IMPLEMENTATION

This appendix provides analytical expressions of the cor-
relation between CSC and raw carrier measurements.
These expressions are needed to express the measure-
ment error covariance matrix �V of vector
vTT,E,RNM,ϕv

T
T,E,RNM,�ρ

h i
in Equation (25). �V is constructed

similar to V = VT,E+VRNM in Appendix B, but the dimen-
sions of VT,E and the term VRNM differ. We use the nota-
tion �V=VT,E + �VRNM .
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Equations are provided assuming time-correlated raw
code and carrier phase noise modeled as first-order
Gauss-Markov processes with a time constant TMP:

ερ,k = βερ,k−1 + vρ,k, ðC:1Þ

εφ,k = βεφ,k−1 + vφ,k, ðC:2Þ

where vρ,k and vφ,k are white random sequences, and

β= e−TS=TMP : ðC:3Þ

These models are used to account for multipath (assum-
ing TMP = 80 seconds) and receiver noise (assuming
β = 0).

We can express the raw carrier phase measurement
time correlation over one time step as follows:

E εφ,k−1εφ,k

 �

=E εφ,k−1 βεφ,k−1 + vφ,k
� �
 �

= βσ2φ,k−1,

ðC:4Þ

where E{} is the expected value operator and where we
defined σ2φ,k �E εφ,kεφ,k


 �
. For the reduced batch imple-

mentation, measurements are taken at infrequent time
intervals, much larger than the raw data sampling period.
Let us define the number K of raw sample times between
two successive reduced batch samples. K is given by

K =TRBS=TS: ðC:5Þ

For example, for values used in performance analysis,
K=600. Over TRBS, Equation (C.4) becomes

E εφ,k−Kεφ,k

 �

= βKσ2φ,k−K : ðC:6Þ

For K=600, TS = 0.5 second, and TMP = 80 seconds, we
can use the following approximation: E{εφ,k − Kεφ,k} ≈ 0.

In addition, the HF CSC measurement equation is
expressed as follows:

ε�ρ,k =
1
α
ερ,k +

α−1
α

ε�ρ,k−1 + εφ,k−εφ,k−1
� �

, ðC:7Þ

where

α=THF=TS: ðC:8Þ

Equation (C.7) is used to evaluate the correlation
between ε�ρ,k and εφ,k, which can be written as follows:

E ε�ρ,kεφ,k

 �
=E

1
α
ερ,k +

α−1
α

ε�ρ,k−1 + εφ,k−εφ,k−1
� �� �

εφ,k

� �

=
1
α
E ερ,kεφ,k

 �

+
α−1
α

E ε�ρ,k−1εφ,k

 �

+
α−1
α

E εφ,kεφ,k

 �

−
α−1
α

E εφ,k−1εφ,k

 �

=0+
α−1
α

βE ε�ρ,k−1εφ,k−1

 �

+
α−1
α

σ2φ,k−
α−1
α

βσ2φ,k−1:

At steady state, E ε�ρ,kεφ,k

 �

≈E ε�ρ,k−1εφ,k−1

 �

, we
obtain the following expression:

E ε�ρ,kεφ,k

 �

=
α−1

α+ 1−αð Þβ σ2φ,k−βσ2φ,k−1

� 
: ðC:9Þ

The carrier phase measurement variance σ2φ,k changes
slowly over time: It is elevation dependent and varies
with satellite motion. However, it is constant over
TS = 0.5 second, so that Equation (C.9) becomes

E ε�ρ,kεφ,k

 �

= γ α−1ð Þ 1−βð Þσ2φ,k, ðC:10Þ

where

γ=
1

α+ 1−αð Þβ : ðC:11Þ

The same assumptions and the same type of deriva-
tions are used to establish the following results, which
are needed to populate �VRNM :

E ε�ρ,k−Kεφ,k

 �

= γ α−1ð Þ 1−βð ÞβKσ2φ,k−K , ðC:12Þ

E ε�ρ,kεφ,k−K

 �

= γ α−1ð Þ β−1ð ÞβK−1σ2φ,k−K : ðC:13Þ

One of the most challenging terms to derive is the time
correlation of CSC measurements over time. Time corre-
lation is caused by both multipath and the HF, which
keeps a finite memory of past measurements. A full deri-
vation is not provided here to limit the length of the
paper, but the following result was obtained:

E ε�ρ,kε�ρ,k−K

 �
= ζK

1
α
βγσ2ρ,k−K−

α−1ð Þ2
α

β−1ð Þ2γσ2φ,k−K

 !

+
α−1
α

� �K

σ2�ρ,k−K ,

ðC:14Þ

where we used the notations
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ζK =
XK−1

i=0

α−1
α

� �K−1− i

βi, ðC:15Þ

σ2�ρ,k �E ε�ρ,kε�ρ,k

 �

,σ2ρ,k �E ερ,kερ,k

 �

: ðC:16Þ

It is worth noting that when TRBS >> TMP and
TRBS >> THF, which is the case in our performance anal-
ysis, the correlation terms in Equations (C.6) and (C.12)
to (C.14) approach 0. The only non-negligible terms in �V
are the known quantities σ2φ,k �E εφ,kεφ,k


 �
, σ2�ρ,k �

E ε�ρ,kε�ρ,k

 �

, and E ε�ρ,kεφ,k

 �

in Equation (C.10).
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