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Abstract

The GPS C/A-code is the most widely utilized GNSS signal today. The C/A-

code design includes (1) a short (length-1023) spreading code that repeats

every 1 ms and (2) a low (50 bps) data rate. These two characteristics can lead

to undesired interactions between received C/A-code signals within user

equipment. In this paper, a simple model is derived for predicting the impact

of C/A-code self-interference on receiver performance. The accuracy of the

model in predicting C/A-code self-interference is assessed through the use of a

high-fidelity GPS receiver software simulation.

1 | INTRODUCTION

The GPS C/A-code is the most widely utilized GNSS
signal today. The C/A-code design includes (1) a short
(length-1023) spreading code that repeats every one milli-
second and (2) a low (50-bps) navigation data rate. These
two characteristics can lead to undesired interactions
between received C/A-code signals within user equip-
ment. This topic has been the subject of much prior
research.1–10

In this paper, a simple model is derived for predicting
the impact of C/A-code self-interference on GPS receiver
functions that are dependent solely on prompt 20-ms
correlation sums (eg, carrier phase tracking and data
demodulation). The model is based upon the use of a
two-parameter autocorrelation function to characterize a
C/A-code signal either with or without navigation
data. The paper additionally provides an assessment of
the accuracy of the model in predicting C/A-code self-
interference. This assessment is accomplished through
the use of a high-fidelity GPS receiver software
simulation.

The model described in the paper is intended for
system-level interference assessments, and the paper
describes two current applications: (1) development of
interference requirements for next-generation GNSS
avionics and (2) US bilateral and multilateral radio-
frequency compatibility assessments for emerging or
evolving GNSS constellations.

2 | RECEIVER AND SIGNAL
MODEL

Figure 1 shows a model for a correlator within a GPS
C/A-code receiver when presented with interference
from a single C/A-code signal. The interfering C/A-code
signal, s1(t − Δ), with Doppler frequency difference, ω
(rad/s), is correlated against a C/A-code replica, s2(t). For
steady-state tracking, the correlator output is integrated
over a navigation data bit period, Tb = 20 ms.

The interfering C/A-code signal without Doppler or
time delay is modeled as

s1 tð Þ=
X∞

k= −∞
dk

X19
l=0

X1022
m=0

cmpTc
t− 20 460k+1023l+m½ �Tcð Þ

ð1Þ

where dk � {+1,−1} are the navigation data bits,
cm � {+1,−1} are the C/A-code spreading code chips,
Tc = 1/(1.023 MHz) is the spreading code chip period,
and pTc(t) is a rectangular pulse of width Tc, that is,

pTc
tð Þ= 1, 0≤ t<Tc

0,else:

�
ð2Þ

For the purposes of the model developed in this
paper, the C/A-code spreading code is treated as a
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random periodic sequence of length-1023 chips, with
each chip value cm independent from another. As with
the true pseudorandom C/A-code sequences, in
Equation (1), the length-1023 spreading code repeats
20 times over each 20-ms data bit interval. A single repe-
tition occurs over period T = 1023Tc = 1 ms, and there
are a total of 20 460 chips in one 20-ms data bit period so
Tb = 20 460Tc. This structure is illustrated in Figure 2.

The receiver spreading code replica is modeled simi-
larly but without navigation data:

s2 tð Þ=
X∞

k= −∞

X1022
l=0

clpTc
t− 1023k+ l½ �Tcð Þ: ð3Þ

Although the same notation is used in Equations (1)
and (3) for the spreading code chips, importantly, the
chip values for the replica are assumed to be statistically
independent of the chip values for the interfering C/A-
code signal. The replica and interfering signals have a dif-
ferential delay of Δ seconds. The differential delay is typi-
cally within the range of ±25 ms for GPS users on or near
the surface of Earth. Both of these signals are
cyclostationary, not wide-sense stationary (WSS), and
thus, their statistics are properly characterized using their
two-parameter autocorrelation functions. Since the
period of the cyclostationarity is 20 ms, without any loss
of generality, the model introduced in this paper will only
consider differential delays ranging from 0 to 20 ms, that
is, 0 ≤ Δ < 20 ms, which is set equal to the absolute dif-
ferential delay modulo 20 ms.

Although in a real receiver both the incoming inter-
fering signal and replica would have Doppler frequencies,

for simplicity within this paper, the replica is assumed to
be generated with zero Doppler and the interfering signal
with differential Doppler ω in rad/s or f = ω/(2π) in
hertz. This frequency represents the difference in Dopp-
ler between the interfering C/A-code signal and the
desired C/A-code signal when the receiver is in
tracking mode.

3 | INTERFERENCE STATISTICS

The kth correlator output, yk, is a random variable. Its
mean value (with respect to the random chip and data bit
values) is

E yk½ �=
ðk+1ð ÞTb

t= kTb

E s1 t−Δð Þ½ �E s2 tð Þ½ �ejωtdt, = 0 ð4Þ

and its variance is

E ykj j2� �

=E
ðk+1ð ÞTb

α= kTb

s1 α−Δð Þs2 αð Þejωαdα
ðk+1ð ÞTb

β= kTb

s1 β−Δð Þs2 βð Þe− jωβdβ

2
64

3
75

=
ðk+1ð ÞTb

α= kTb

ðk+1ð ÞTb

β= kTb

E s1 α−Δð Þs1 β−Δð Þ½ �E s2 αð Þs2 βð Þ½ �ejωαe− jωβdαdβ

=
ðk+1ð ÞTb

α= kTb

ðk+1ð ÞTb

β= kTb

R1 α−Δ,β−Δð ÞR2 α,βð Þejωαe− jωβdαdβ:

ð5Þ

To proceed further, the two-parameter autocorrelation
functions of the interfering C/A-code signal and receiver
replica, R1(α,β) and R2(α,β), respectively, are needed.
These are derived in Appendix A. The results are

R2 α,βð Þ=
X∞

k= −∞
pTc

β−1023kTc− lTcð Þ, ð6Þ

FIGURE 1 Receiver correlator model

FIGURE 2 C/A-code structure

[Color figure can be viewed at

wileyonlinelibrary.com and www.ion.

org]
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for the replica signal autocorrelation where the integer
l is given by

l=mod α=Tcb c,1023ð Þ, ð7Þ

and for the interfering signal autocorrelation

R1 α−Δ,β−Δð Þ=X19
p=0

pTc
β−Δ− 20 460k+1023p+m½ �Tcð Þ, ð8Þ

where the integers k and m are given by

k= b α−Δð Þ=Tb c

m=mod b α−Δð Þ=Tcð c,1023Þ:

ð9Þ

Figure 3 shows an example of the autocorrelation
function of the receiver C/A-code replica, R2(α,β), for
α�[0,Tc). Once the first time value, α, is fixed, this
two-parameter autocorrelation function consists of
20 pulses of width Tc with unity amplitude over any
20-ms correlation interval. For instance, as shown in the
figure, if α falls within the time duration of the first
repetition of the first chip in the spreading sequence,
then the autocorrelation function takes on a value of
unity for the duration of every repetition of this chip and
is 0 for all other values of β. The same autocorrelation
function would result if α fell within any other repetition
of the first C/A-code chip, for example,
α � [13 T,13 T + Tc).

3.1 | Data bits aligned

The simplest scenario to evaluate is when the interfering
C/A-code signal's data bits are aligned with the desired
C/A-code signal, that is, Δ = 0 (see Figure 4). With
Δ = 0, the autocorrelation functions of both the interfer-
ing C/A-code signal (Equation (8)) and the receiver rep-
lica (Equation (6)) become identical over each correlator
integration interval. Further, since a unit amplitude pulse
train is unchanged by self-multiplication, Equation (5)
becomes

E ykj j2� �
=

ðk+1ð ÞTb

α= kTb

ðk+1ð ÞTb

β= kTb

R1 α,βð ÞR2 α,βð Þejωαe− jωβdαdβ

=
ðk+1ð ÞTb

α= kTb

ðk+1ð ÞTb

β= kTb

R2 α,βð Þejωαe− jωβdαdβ:

ð10Þ

As derived in Appendix B, substituting Equation (6)
into Equation (10) yields:

E ykj j2� �
=T�Tc

sin2 πfTcð Þ
πfTcð Þ2

sin2 πfTbð Þ
sin2 πfTð Þ : ð11Þ

If the receiver correlator shown in Figure 1 was
driven by additive white Gaussian noise with power spec-
tral density I0, rather than by an interfering C/A-code
signal, its output would have zero mean and variance:

FIGURE 3 Autocorrelation function of

receiver C/A-code replica for α � [0,Tc),

β � [0,Tb) [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]

FIGURE 4 Interfering and desired C/A-

code signals with data bits aligned [Color figure

can be viewed at wileyonlinelibrary.com and

www.ion.org]
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E ykj j2� �
= I0Tb: ð12Þ

Comparing 12 with 11, an equivalent white noise
interference density I0 can be defined as the level of white
noise that causes the same correlator variance as the true
C/A-code interference. This level is

I0≜
E ykj j2� �

Tb
=

T
Tb

�Tc
sin2 πfTcð Þ

πfTcð Þ2
sin2 πfTbð Þ
sin2 πfTð Þ , ð13Þ

for the assumed unit-power interfering C/A-code signal
and

I0 =PR� TTb
�Tc

sin2 πfTcð Þ
πfTcð Þ2

sin2 πfTbð Þ
sin2 πfTð Þ≜PR�SSC, ð14Þ

for the more general case where the interfering C/A-code
signal is set to PR watts. The spectral separation coeffi-
cient (SSC) (see, eg, Betz and Goldstein11) is defined by
the comparison of the first and second line of
Equation (14).

For most users at or near the surface of Earth, the dif-
ferential Doppler between received C/A-code signals is
dominated by the motion of the GPS satellites and within
the range −10 kHz < f < 10 kHz. With this restriction on
f, the SSC can be well approximated as

SSC≈
T
Tb

�Tc�sin
2 πfTbð Þ

sin2 πfTð Þ : ð15Þ

This SSC approximation is plotted in units of dB/Hz
in Figure 5.

3.2 | Data bits misaligned

Consider next the case when the interfering C/A-code
signal's data bits are not aligned with the desired C/A-
code signal, that is, Δ 6¼ 0 (see Figure 6). In this case,

R1 α−Δ,β−Δð Þ=P19
p=0

pTc
β−Δ− 20 460k+1023p+m½ �Tcð Þ,α<Δ

P19
p=0

pTc
β−Δ− 1023p+m½ �Tcð Þ, α≥Δ

8>>>><
>>>>:

ð16Þ

with m as defined in Equation (9).
As derived in Appendix B, if the data bit mis-

alignment is an integer multiple of 1 ms, that is, Δ = KT
for integer K, with 0 ≤ K < 20, then,

SSC=
T
Tb

�Tc
sin2 πfTcð Þ

πfTcð Þ2
sin2 πfKTð Þ
sin2 πfTð Þ +

sin2 πf 20−K½ �T�ð Þ
sin2 πfTð Þ

� �
:

ð17Þ

For typical differential Dopplers that are less than
10 kHz in magnitude (see earlier discussion), the SSC for
this case is well approximated as

SSC≈
T�Tc

Tb

sin2 πfKTð Þ
sin2 πfTð Þ +

sin2 πf 20−K½ �T�ð Þ
sin2 πfTð Þ

� �
: ð18ÞFIGURE 5 SSC for interfering C/A-code signal with data bits

aligned with desired C/A-code signal [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]

FIGURE 6 Interfering and desired C/A-

code signals with data bits misaligned [Color

figure can be viewed at wileyonlinelibrary.com

and www.ion.org]
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For the more general case where Δ = KT + CTc

where both K and C are integers, with 0 ≤ K < 20, and
0 ≤ C < 1023, the SSC becomes

SSC=
1023−C
1023

SSCK +
C

1023
SSCK +1, ð19Þ

where SSCK is the SSC that arises when Δ = KT (ie, the
SSC in Equation (17) for arbitrary differential Doppler or
Equation (18) for typical near-Earth user differential
Dopplers).

3.3 | Effect of small changes in data bit
alignment

The previous subsection presented an expression for SSC
that is valid when the data bit misalignment between
interfering and desired C/A-code signals is constrained to
an integer multiple of a C/A-code chip period. With this
constraint, the product of the two-parameter autocorrela-
tion functions of the desired and interfering signal
becomes a pulse train where each pulse has width of Tc:

R1 α−Δ,β−Δð ÞR2 α,βð Þ=P19
p=0

pTc
β−Δ− 20 460k+1023p+m½ �Tcð Þ,α<Δ

P19
p=0

pTc
β−Δ− 1023p+m½ �Tcð Þ, α≥Δ

8>>>><
>>>>:

ð20Þ

which is the same as Equation (16).
Small changes in data bit alignment on the order of a

single C/A-code spreading code chip (Tc ≈ 978 ns) can
significantly alter the correlator output variance. For
instance, if the interfering signal's navigation data bits
start out perfectly aligned with the victim signal's naviga-
tion data bits, the SSC shown in Equation (15) results. If
the data bit misalignment Δ increases from 0, then the
situation illustrated in Figure 7 arises. The product of
R1(α − Δ,β − Δ) and R2(α,β) is no longer a train of pulses
of width Tc. For fixed α, the product of R1(α − Δ,β − Δ)
and R2(α,β) for 0 ≤ Δ < Tc is either a train of pulses of
width Δ or width Tc − Δ (only the first pulse in the train
is shown in the figure). By the time that Δ has reached
just one-half a chip (Tc/2), then it is straightforward to
show (as outlined below) that the SSC will be given by
Equation (15) divided by two.

For an arbitrary Δ, let Δc = mod(Δ,Tc). Then, the
product of R1(α − Δ,β − Δ) and R2(α,β) will consist of a
train of pulses of width Δc for a fraction of Δc/Tc values
of α and pulses of width (Tc − Δc) for a fraction of
(Tc − Δc)/Tc values of α. The net result, for typical

differential Dopplers, is that a factor of Tc in the SSC
expressions in the previous subsection is replaced by a
factor of

Δc
2

Tc
+

Tc−Δcð Þ2
Tc

: ð21Þ

Note that, per Equation (21), C/A-code self-
interference effects are maximized when the interfering
C/A-code signal's chips are perfectly aligned with the
desired C/A-code signal's chips (Δc = 0). The effects are
minimized when the interfering and desired signals'
chips are perfectly staggered (Δc = Tc/2).

Due to user-satellite motion, most interfering satel-
lites are expected to have their bit alignment with respect
to the desired signal undergo changes greater than one-
half a chip over small time intervals. For instance, with a
differential Doppler of 1 kHz, the differential bitphase
between a desired and interfering signal will change by
1000/1540 ≈ 0.65 chips per second. With this rationale,
the model within this paper is implemented using an
averaging over the “fast” fluctuations in SSC that are
expected to arise due to small changes in differential
bitphase. Replacing an original factor of Tc in Equa-
tion (18) with 2Tc/3, which is the average of Equation (21)
over Δc, yields

SSC≈
2T�Tc

3Tb

sin2 πfKTð Þ
sin2 πfTð Þ +

sin2 πf 20−K½ �T�ð Þ
sin2 πfTð Þ

� �
: ð22Þ

The SSC predicted from Equation (22) is shown in
Figure 8 for various values of Δ from 0 to 10 ms. The
SSCs for values of Δ > 10 ms can be inferred from the
figure since, due to symmetry, the same SSC results for
bit misalignments of 20 ms − Δ as for Δ.

As implemented, for an arbitrary Δ = KT + CTc + Δc,
Equations (19) and (22) are utilized with a rounded value
of C. The rounded value of C is simply C itself for

FIGURE 7 Effect of data bit misalignment that is a

noninteger multiple of a C/A-code chip period
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Δc ≤ Tc/2 or C + 1 for Δc > Tc/2. If the rounded value of
C is 1023, then C is set to 0 and K is incremented.

4 | COMPARISON WITH EARLIER
RESULTS

If the cyclostationarity of the C/A-code signal is ignored,
and this signal is instead treated as a WSS random pro-
cess, then considerable simplification results. In this case
and with differential Doppler ω = 0, as derived by
Hegarty et al,12 Equation (5) reduces to

E ykj j2� �
=Tb

ð∞
τ= −∞

R1 τð ÞR2 τð Þ 1−
τj j
Tb

� �
dτ, ð23Þ

for a coherent integration interval of 20 ms. Using an
arbitrary coherent integration interval of Ti seconds and
scaling the correlator output variance to yield an equiva-
lent white noise level yields

I0 =
ð∞

τ= −∞

R1 τð ÞR2 τð Þ 1−
τj j
Ti

� �
dτ: ð24Þ

In Equations (23) and (24), single-parameter autocor-
relation functions are used as appropriate for WSS ran-
dom processes. Each single-parameter autocorrelation is
related to the previously defined two-parameter autocor-
relation function by

R1 τð Þ≜E s1 α+ τð Þs1 αð Þ½ �=R1 α+ τ,αð Þ ð25Þ

Oftentimes, it is more convenient to work in the
frequency domain, using the power spectrum of both
desired and interfering signals. For WSS signals,
Equation (24) can alternatively be expressed as12

I0 =
ð∞

f1 = −∞

ð∞
f2 = −∞

S1 f1ð ÞS2 f2ð ÞTi
sin2 π f1 + f2ð ÞTi½ �
π f1 + f2ð ÞTi½ �2 df 1df 2,

ð26Þ

where Si(f ) is the Fourier transform of Ri(τ) (for i = 1,2).
As Ti is steadily increased, Equation (26) approaches13

I0 =
ð∞

f = −∞

S1 fð ÞS2 fð Þdf : ð27Þ

Although the C/A-code signal is more accurately
modeled as being cyclostationary, the WSS assumption
was made in past efforts to model C/A-code self-
interference effects. The remainder of this
section describes these earlier models in increasing order
of sophistication.

The simplest model for C/A-code self-interference is
to ignore the fact that the pseudorandom noise (PRN)
code repeats every 1023 chips and treats the PRN as an
infinitely long coin-flip sequence. Furthermore, utilizing
a time average allows the use of the simple, single-valued
autocorrelation function:

R τð Þ= 1− τj j=Tc, τj j<Tc

0, else,

�
ð28Þ

and corresponding power spectrum

S fð Þ=Tc
sin2 πfTcð Þ

πfTcð Þ2 : ð29Þ

Utilizing Equation (29) with (27) yields

I0 =
2Tc

3
, ð30Þ

for a unit-power interfering C/A-code signal, or

I0 =PR�SSC,
SSC=

2Tc

3
,

ð31Þ

FIGURE 8 SSC versus Doppler for various bit alignment

scenarios [Color figure can be viewed at wileyonlinelibrary.com

and www.ion.org]
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more generally for an interfering C/A-code signal with
received power of PR watts. In decibel units, the SSC in
Equation (31) is approximately −61.9 dB/Hz and is not a
function of either differential Doppler or differential
bitphase. This assumption was made in some early C/A-
code interference treatments.14

More complicated WSS models have been
proposed7–9, 15, 16 to predict C/A-code self-interference by
taking into account the true C/A-code structure with
20 repetitions of the PRN code per navigation data bit.
These references all provide SSC equations that are
equivalent in value (but not necessarily in form) to

SSC=
2Tc

3

X20
m= −20

1−
mj j
20

� �P

cos 2πfmTð Þ, ð32Þ

where P = 1, 2, or 3 depending on whether the model
assumes navigation data on both the interfering signal
and receiver replica,15, 16 on only the interfering signal,8

or on neither.7 The P value also depends on whether the
model takes into account a finite (eg, 20 ms) coherent
correlation period (Equation (24) or (26)) or used the
long coherent period approximation (Equation (27)).
With P = 1, Equation (32) can be shown to be equal to
Equation (22) evaluated with K = 0.

Of the previously proposed WSS C/A-code interfer-
ence models, those that rely on Equation (32) with P = 2,
as in O'Driscoll and Fortuny-Guasch8 or Van
Dierendonck and Hegarty15 (but for the wrong reasons
within the latter), are the most accurate for general use
as will be demonstrated later within this paper. However,
as will be shown, the new cyclostationary model intro-
duced in this paper is more accurate still albeit slightly
more complicated. The increased accuracy and increased
complexity both arise due to the dependence of the pro-
posed model on knowledge of differential bitphase in
addition to differential Doppler.

It is important to note that no random model will ever
be as accurate as assessments of C/A-code self-
interference based upon use of the true deterministic
C/A-code PRNs.4 However, random models are much

simpler to utilize in practice, which was the main motiva-
tion for this study.

5 | MODEL UTILIZATION

The model derived in this paper may be used with a sim-
ple orbit propagator to predict levels of C/A-code interfer-
ence that may arise at any time and any arbitrary
location on/near Earth. Using a satellite effective isotro-
pic radiated power (EIRP) that is a function of off-
boresight angle, the orbit propagator can provide esti-
mates of (1) received power levels, (2) received Doppler
frequencies, and (3) true range for the C/A-code signals
received from each visible satellite. These three parame-
ters are utilized along with Equations (19) and (22) to
predict the equivalent white noise interference level
presented to the user.

Table 1 shows a simple example of the computations
involved with four visible satellites. The first column is
the satellite PRN identifier. For this example, PRN 1 is
the desired satellite. The second column is the received
power level, which can be calculated using standard
methods involving the true range, EIRP in the direction
of signal propagation, and user antenna gain model.17

The transit time is simply the true range divided by the
speed of light. The Doppler frequency can be computed
using a finite time difference within the orbital
propagator.

Equations (19) and (22) are used to compute the fifth
column of Table 1. The differential frequency parameter,
f, used within Equation (22) is found by differencing the
desired signal's Doppler from each interfering signal's
Doppler. Similarly, the data bit misalignment parameter,
Δ, is found by differencing the desired signal's transit
time from each interfering signal's transit time. So, for
instance, the SSC for PRN 2 is found using Equation (19)
with f = −1069.4 Hz and Δ = 8 T + 307Tc = 8.3 ms (note
the rounding of Δ as discussed earlier). The total level of
equivalent white noise interference seen by the receiver
channel tracking PRN 1 is −215.9 dBW/Hz (which is
much lower than a typical receiver noise floor of around

TABLE 1 Illustration of model utilization

PRN Received power (dBW) Transit time (ms) Doppler (Hz) SSC (dB/Hz) I0 (dBW/Hz)

1 −162.3 78.4 854.2 - -

2 −158.8 70.1 −215.2 −60.6 −219.4

3 −155.4 85.3 3420.1 −75.4 −230.8

4 −152.1 80.2 −999.8 −66.6 −218.7

Total −215.9
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−201.5 dBW/Hz and would not be of concern for most
applications).

The model proposed in this paper has been adopted
for use by Special Committee 159 of RTCA, Inc. (formerly
the Radio Technical Commission for Aeronautics) for
their update of a report (RTCA document DO-235B)
assessing the interference environment in the 1559- to
1610-MHz band. This report update is being undertaken
to support the development of interference requirements
for next-generation GNSS avionics. The proposed model
has also been adopted for use in US bilateral and multi-
lateral radiofrequency compatibility assessment activities,
which are being conducted under the auspices of the
International Telecommunication Union. Previously,
C/A-code self-interference was underestimated using an
SSC of −60 dB/Hz by both RTCA and within US
bilateral/multilateral activities based loosely upon Equa-
tion (31) along with a recognition that C/A-code SSCs
can be worse than this value but were previously difficult
to quantify.

6 | VALIDATION

To validate the model derived in this paper, a GPS
receiver simulation tool was utilized. The GPS C/A-code
signals were emulated using the true, deterministic PRN
codes with a 4-MHz sample rate, random 50-bps naviga-
tion data, and using an orbital simulator to emulate the
satellite positions for a 36-satellite GPS constellation from
Cerruti et al.10 Thermal noise and broadband interfer-
ence were emulated as additive white Gaussian noise
with spectral density of −198 dBW/Hz. For further details
on the scenario, see Cerruti et al.10

PRN 6 was selected as the desired satellite for a user
in Illinois over a 20-min simulation time. Over this
20-min period, up to 14 interfering C/A-code signals were
visible above the local horizon. With the receiver in a
steady-state tracking mode (e.g., with the code and car-
rier tracking loops locked), each interfering satellite's
contributions to the 20-ms correlation sums driving the
tracking loops were recorded. The results are shown in
Figure 9. Each contribution exhibited a mean value very
close to 0. Vertical biases were added to each within
Figure 9 to facilitate viewing. The colored curves in the
figure are the raw 20-ms correlation sum contributions
from each interfering signal.

Although not easily discerned in Figure 9, there are
also two other sets of curves. The first set of curves are
running estimates of ±one-sigma values (using a moving
window of 400 data points = 8 s in time for the 50 Hz
correlation sums). The second set of curves are predicted
±one-sigma values using the model proposed within this

paper. The predicted ±one-sigma values are found using
Equations (22) and (19) to determine an equivalent white
noise level and then Equation (12) to relate these to the
predicted variance. The predicted one-sigma is simply the
square root of the predicted variance. Excellent agree-
ment was found in all cases between the observed one-
sigma values and the predicted one-sigma values. As just
one example, Figure 10 shows an expanded view of the
PRN 16 result from Figure 9 (as noted earlier, an artificial
vertical bias was added to facilitate viewing).

The interfering signals' contributions to the correla-
tion sums were observed to exhibit a dependence on both
differential Doppler and differential bitphase. This
dependence is illustrated in Figure 11, which plots SSC
estimates that were formed by scaling the running one-
sigma estimates for each interfering signal over the
20-min simulation time. The appropriate scaling is found
combining Equations (12) and (14):

SSC=
E ykj j2� �

PR
: ð33Þ

In Figure 11, the horizontal axis is differential Dopp-
ler modulo 1 kHz. Excellent agreement is found between
these observed results and those predicted in Figure 8.
Earlier proposed WSS C/A-code interference models are

FIGURE 9 Contributions to PRN 6 20-ms correlation sums

from each interfering C/A-code signal (with vertical biases added to

facilitate viewing) [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]
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far less accurate primarily because they predict equiva-
lent white noise levels that are not a function of differen-
tial bitphase. Equation (32) with P = 2 provides the best
match of any previously proposed WSS model to the
observed simulation results if they are averaged over dif-
ferential bitphase, but the prediction accuracy using
Equations (19) and (22) as proposed within this paper is
far superior.

Figure 12 illustrates the accuracy of the model in
predicting the overall PRN 6 correlation sum statistics
over the 20-min simulation time. The figure shows the
overall thermal noise plus interference level (N0 + I0)
experienced by the receiver in tracking PRN 6 as inferred

from the simulation results using Equation (12) and as
predicted by the model proposed in this paper using
Equations (19) and (22).

Additional validation is ongoing within RTCA's
Special Committee 159. Thus far, the model has been
found to be far more accurate than previous models in
predicting C/A-code self-interference.

7 | SUMMARY

This paper has proposed a simple model for predicting
the impact of C/A-code self-interference on GPS receiver
functions that are dependent solely on prompt
20-mscorrelation sums (e.g., carrier phase tracking and
data demodulation). The model treats the C/A-code
signal as a cyclostationary random process and is more
accurate albeit slightly more complex than previously
proposed models, which treat the C/A-code signal as a
WSS random process. The increased accuracy and
increased complexity both arise due to the dependence of
the proposed model on differential bitphase in addition
to differential Doppler.

The accuracy assessments in this paper focused on
the ability of the model to predict the level of white noise
that when injected into the victim receiver would
produce the same second-order statistics (mean and
variance) of a GPS receiver's 20-ms correlation sums as
the C/A-code self-interference. Importantly, this paper
did not directly assess the performance of the receiver's
tracking loops in the presence of the C/A-code self-
interference versus in the presence of this equivalent
level of white noise. This topic is outside the scope of this
paper, and the interested reader is referred to Golshan
et al.18

FIGURE 12 Predicted versus observed N0 + I0 for C/A-code

interference simulation [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]
FIGURE 10 PRN 6 correlation sum contribution from PRN

16 (gray = raw correlation sum contributions, black = running

±one-sigma estimate over 8 s, and white = ±predicted one-sigma)

FIGURE 11 SSC versus differential Doppler and data bit

misalignment as observed from simulation [Color figure can be

viewed at wileyonlinelibrary.com and www.ion.org]

HEGARTY 327

http://wileyonlinelibrary.com
http://www.ion.org
http://wileyonlinelibrary.com
http://www.ion.org


ORCID
Christopher J. Hegarty https://orcid.org/0000-0001-
5728-6925

REFERENCES
1. Nagle J, Van Dierendonck AJ, Hua Q. Inmarsat-3 navigation

signal C/A code selection and interference analysis. NAVIGA-
TION. 1992-1993;39:445-462.

2. Raghavan S, Kumar R, Lazar S, Zeitzew M, Wong R, et al. The
CDMA limit of C/A codes in GPS applications-analysis and
laboratory test results. Proceedings of the 12th International
Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GPS 1999). Nashville, Tennessee; September
1999:569–580.

3. Van Dierendonck AJ, McGraw GA, Erlandson RJ, Coker R.
Cross-correlation of C/A codes in GPS/WAAS receivers.
Proceedings of the 12th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GPS 1999).
Nashville, Tennessee; September1999:581–596.

4. Van Dierendonck AJ, Erlandson R, McGraw G, Coker R.
Determination of C/A code self-interference using cross-
correlation simulations and receiver bench tests. Proceedings of
the 15th International Technical Meeting of the Satellite Division
of the Institute of Navigation (ION GPS 2002). Portland, Oregon;
September 2002:630–642.

5. Raghavan S, Powell T. A simple approach to obtain the CA
code spectral separation coefficient. Proceedings of 22nd
International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS 2009). Savannah, Georgia;
September2009:86–94.

6. Cerruti AP, Rushanan JJ, Winters DW. Modeling C/A on C/A
interference. Proceedings of 2009 International Technical
Meeting of the Institute of Navigation. Anaheim, California;
January 2009:142–156.

7. Shibata T, Maeda H. Extended theory of spectral separation
coefficient for GNSS signal interference. Proceedings of 2010
International Technical Meeting of the Institute of Navigation.
San Diego, California; January 2010:930–940.

8. O'Driscoll C, Fortuny-Guasch J. On the determination of C/A
code self-interference with application to RFC analysis and
pseudolite systems. Proceedings of 25th International Technical
Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2012). Nashville, Tennessee; September 2012:
3620–3631.

9. Van Dierendonck AJ, Erlandson R, Shallberg K. The inade-
quacy of the spectral separation coefficient and aggregate gain
factor for quantifying the effects of GPS C/A code self interfer-
ence. Proceedings of 26th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS+
2013). Nashville, Tennessee; September 2013:1435–1444.

10. Cerruti A, Betz J, Rushanan J. Further investigations into C/A-
on-C/A interference. Proceedings of 2014 International Techni-
cal of the Institute of Navigation. San Diego, California;
January2014:349–361.

11. Betz J, Goldstein D. Candidate designs for an additional civil
signal in GPS spectral bands. Proceedings of 2002 National
Technical Meeting of the Institute of Navigation. San Diego, CA;
January2002:622–631.

12. Hegarty C, Tran M, Lee Y. Simplified techniques for analyzing
the effects of Non-white interference on GPS receivers. Proceed-
ings of 15th International Technical Meeting of the Satellite Divi-
sion of the Institute of Navigation (ION GPS 2002). Portland,
Oregon; September2002:620–629.

13. Van Dierendonck AJ. GPS receivers. In: Parkinson B, Spilker
JJ, eds. Global Positioning System: Theory and Applications.
Washington, D.C.: American Institute of Aeronautics and
Astronautics; 1996.

14. Titus B, Betz J, Hegarty C, Owen R. Intersystem and
intrasystem interference analysis methodology. Proceedings of
16th International Technical Meeting of the Satellite Division of
the Institute of Navigation (ION GPS/GNSS 2003). Portland,
Oregon; September 2003:2061–2069.

15. Van Dierendonck AJ, Hegarty C. Methodologies for assessing
intrasystem and intersystem interference to satellite Naviga-
tion. Proceedings of the 15th International Technical Meeting of
the Satellite Division of the Institute of Navigation (ION GPS
2002). Portland, Oregon; September 2002:1241–1250.

16. Hegarty C. C/A on C/A spectral separation coefficients.
Unpublished notes (referenced in [9]), March 2008.

17. Owen R, Goldstein D, Hegarty C. Modeling maximum aggre-
gate GPS signal power levels for GPS self-interference analyses.
Proceedings of 2002 National Technical Meeting of the Institute
of Navigation. San Diego, California; January 2002:939–947.

18. Golshan R, Fan T, Arrendondo A, Stansell T. Implications of
C/A-on-C/A interference on carrier tracking loop performance.
Proceedings of 27th International Technical Meeting of the Satel-
lite Division of the Institute of Navigation (ION GNSS+ 2014).
Tampa, Florida; September 2014:3510–3525.

19. Andrews GE. Number Theory. New York: Dover Publications;
1971.

How to cite this article: Hegarty CJ. A simple
model for GPS C/A-code self-interference.
NAVIGATION . 2020;67:319–331. https://doi.
org/10.1002/navi.359

328 HEGARTY

-US

https://orcid.org/0000-0001-5728-6925
https://orcid.org/0000-0001-5728-6925
https://orcid.org/0000-0001-5728-6925
https://doi.org/10.1002/navi.359
https://doi.org/10.1002/navi.359


APPENDIX A: AUTOCORRELATION FUNCTION
DERIVATIONS

This appendix derives the autocorrelation functions of
both the interfering C/A-code signal and the receiver
C/A-code replica.

A.1. | Interfering signal autocorrelation

The two-parameter autocorrelation function, R1(α,β), is
defined by

R1 α,βð Þ≜E s1 αð Þs1 βð Þ½ �: ðA1Þ

Substituting Equation (1) into Equation (A1) yields

R1 α,βð Þ=E
X∞

k= −∞
dk

X19
l=0

X1022
m=0

cmpTc α− 20 460k+1023l+m½ �Tcð Þ
"

×

X∞
n= −∞

dn
X19
p=0

X1022
q=0

cqpTc β− 20 460n+1023p+ q½ �Tcð Þ
#

=
X∞

k= −∞

X∞
n= −∞

X19
l=0

X19
p=0

X1022
m=0

X1022
q=0

E dkdn½ �E cmcq
� �

×

pTc α− 20 460k+1023l+m½ �Tcð Þ×

pTc β− 20 460n+1023p+ q½ �Tcð Þ

=
X∞

k= −∞

X∞
n= −∞

X19
l=0

X19
p=0

X1022
m=0

X1022
q=0

δknδmq ×

pTc α− 20 460k+1023l+m½ �Tcð Þ×

pTc β− 20 460n+1023p+ q½ �Tcð Þ

=
X∞

k= −∞

X19
l=0

X19
p=0

X1022
m=0

pTc α− 20 460k+1023l+m½ �Tcð Þ×

pTc β− 20 460k+1023p+m½ �Tcð Þ

=
X19
p=0

pTc β− 20 460k+1023p+m½ �Tcð Þ,

ðA2Þ

where, in the last line, the integers k and m are restricted
to their unique values such that

0≤ α− 20 460k+1023l+m½ �Tc <Tc, ðA3Þ

or equivalently,

k= α=Tbb c,
m=mod α=Tcb c,1023ð Þ: ðA4Þ

The fact that there are unique values for the integers
k and m follows directly from Euclid's division lemma
(see, e.g., Andrews19). Note that the values of k and m are
independent of the value of l.

A.2. | Receiver replica autocorrelation

Substituting Equation (3) into Equation (A1) yields

R2 α,βð Þ=E
X∞

k= −∞

X1022
l=0

clpTc α− 1023k+ l½ �Tcð Þ
"

×

X∞
m= −∞

X1022
n=0

cnpTc β− 1023m+n½ �Tcð Þ
#

=
X∞

k= −∞

X∞
m= −∞

X1022
l=0

X1022
n=0

E clcn½ �×

pTc α− 1023k+ l½ �Tcð Þ×
pTc β− 1023m+ n½ �Tcð Þ

=
X∞

k= −∞

X∞
m= −∞

X1022
l=0

X1022
n=0

δnl ×

pTc α− 1023k+ l½ �Tcð Þ×

pTc β− 1023m+n½ �Tcð Þ

=
X∞

k= −∞

X∞
m= −∞

X1022
l=0

pTc α− 1023k+ l½ �Tcð Þ×

pTc β− 1023m+ l½ �Tcð Þ

=
X∞

m= −∞
pTc β− 1023m+ l½ �Tcð Þ,

ðA5Þ

where

l=mod α=Tcb c,1023ð Þ: ðA6Þ

APPENDIX B: CORRELATOR OUTPUT
VARIANCE DERIVATIONS

This appendix derives correlator output variance using
Equations (5), (6), and (8) for various scenarios.

B.1. | Data bits aligned

Substituting Equation (6) into Equation (10) yields
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E ykj j2� �
=

ðk+1ð ÞTb

α= kTb

ðk+1ð ÞTb

β= kTb

X∞
k= −∞

pTc
β−1023kTc− lTcð Þejωαe− jωβdαdβ

=
ðk+1ð ÞTb

α= kTb

ejωα
ðk+1ð ÞTb

β= kTb

X∞
k= −∞

pTc
β−1023kTc− lTcð Þe− jωβdβ dα:

ðB1Þ

The inner integration is the Fourier transform (FT) of
a pulse train. Using

FT pTc
βð Þ	 


=Tc
sin πfTcð Þ

πfTcð Þ e− jπfTc , ðB2Þ

and the time-shift property of the FT, Equation (B1) can
be rewritten as

E ykj j2� �
=Tc

sin πfTcð Þ
πfTcð Þ e− jπfTc

X19
k=0

e− jωkT
ðk+1ð ÞTb

α= kTb

ejω α− lTcð Þ dα:

ðB3Þ

The summation that appears in Equation (B3) can be
expressed as

X19
k=0

e− jωkT =
1−e− jω20T

1−e− jωkT

=
1−e− jωTb

1−e− jωT
:

ðB4Þ

Substituting Equation (7), and focusing on the zeroth
correlation sum (with no loss of generality), the integral
on the right-hand side of Equation (B3) can be progressed
as

ðTb

α=0

ejω α− lTcð Þ dα=
ðTb

α=0

ejω α− α=Tc½ c−1023α=Tð c�TcÞdα

=
X19
l=0

ejωlT
ðT

α=0

ejω α−α=Tcð cTcÞdα

=1023
X19
l=0

ejωlT
ðTc

α=0

ejωαdα

=1023Tc
sin πfTcð Þ

πfTcð Þ ejπfTc

X19
l=0

ejωlT :

ðB5Þ

The progression from the second to the third line of
B5 is obtained by dividing the integral of α over 1023 sub-
intervals of width Tc and noting that the integrals of each
subinterval are equal (since the argument of the integral
is periodic with period Tc). Equation (B5) also relies in
several instances on the identity for the floor operator
that bx+rc = bxc+r for real x and integer r.

Substituting Equations (B4) and (B5) into (B3) yields

E ykj j2� �
=T�Tc

sin2 πfTcð Þ
πfTcð Þ2

1−e− jωTb

1−e− jωT

� �
1−ejωTb

1−ejωT

� �

=T�Tc
sin2 πfTcð Þ

πfTcð Þ2
sin2 πfTbð Þ
sin2 πfTð Þ :

ðB6Þ

B.2. | Data bits misaligned by an integer multiple
of a C/A-code chip period

Substituting Equation (20) into Equation (5) and focusing
on the zeroth correlation sum (with no loss of generality)
yields

E ykj j2� �
=

ðΔ
α=0

ðTb

β=0

X19
p=0

pTc β−Δ−pT +Tb−mTcð Þejωαe− jωβdαdβ

+
ðTb

α=Δ

ðTb

β=0

X19
p=0

pTc β−Δ−pT−mTcð Þejωαe− jωβdαdβ:

ðB7Þ

To proceed further, it is useful to define the following
disjoint sets:

A1 = α : 0≤ α<Δ,mod α,Tcð Þ<CTcf g,
A2 = α : 0≤ α<Δ,mod α,Tcð Þ≥CTcf g,
A3 = α :Δ≤ α<Tb,mod α,Tcð Þ<CTcf g,
A4 = α :Δ≤ α<Tb,mod α,Tcð Þ≥CTcf g:

ðB8Þ

Then,

E ykj j2� �
=

ð
α�A1

ðTb

β=0

X19
p=19−K

pTc β−Δ−pT +Tb−mTcð Þejωαe− jωβdαdβ

+
ð

α�A2

ðTb

β=0

X19
p=20−K

pTc β−Δ−pT +Tb−mTcð Þejωαe− jωβdαdβ

+
ð

α�A3

ðTb

β=0

X18−K

p=0

pTc β−Δ−pT−mTcð Þejωαe− jωβdαdβ

+
ð

α�A4

ðTb

β=0

X19−K

p=0

pTc β−Δ−pT−mTcð Þejωαe− jωβdαdβ:

ðB9Þ
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The integrals with respect to β are simple FTs. Taking
these FTs yields

E ykj j2� �
=Tc

sin πfTcð Þ
πfTcð Þ e− jπfTc

×
ð

α�A1

ejωα
X19

p=19−K

e− jω Δ+ pT−Tb +mTcð Þdα

2
64

+
ð

α�A2

ejωα
X19

p=20−K

e− jω Δ+ pT−Tb +mTcð Þdα

+
ð

α�A3

ejωα
X18−K

p=0

e− jω Δ+ pT +mTcð Þdα

+
ð

α�A4

X19−K

p=0

e− jω Δ+ pT +mTcð Þdα

3
75:

ðB10Þ

Substituting Equation (9) and considerable algebra
results in

E ykj j2� �
=
Tc

2

Tb

sin2 πfTcð Þ
πfTcð Þ2 × 1023−Cð Þf

sin2 πfKTð Þ+ sin2 πf 20−K½ �Tð Þ
sin2 πfTð Þ

� �

+C
sin2 πf K +1½ �Tð Þ+ sin2 πf 19−K½ �Tð Þ

sin2 πfTð Þ

� ��
:

ðB11Þ

If C = 0, then Equation (B11) reduces to

E ykj j2� �
=

T
Tb

Tc
sin2 πfTcð Þ

πfTcð Þ2 ×
sin2 πfKTð Þ+ sin2 πf 20−K½ �Tð Þ

sin2 πfTð Þ
� �

:

ðB12Þ
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