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Abstract
The in-motion alignment for the underwater strapdown inertial navigation sys-
tem is still a challenging problem due to various disturbances in the underwa-
ter environment. In this paper, a novel in-motion alignment method, based on
the Lie group representation, is developed. In this method, the process model is
rewritten using the Lie group of the constant attitudematrix between two inertial
frames as the state. An exact linearmeasurementmodel is constructed by analyz-
ing the effect of the sensor errors in calculating the velocity vector. Next, the state-
dependent Lie group filter is designed basing on accurate derivation expressions
for the covariancematrices of state-dependent noises. The simulation and experi-
ment results demonstrate that the proposedmethod can achieve better alignment
accuracy and time than the existingmethod. The accuracy improves by 70%with
the quaternion Kalman filter.

1 INTRODUCTION

Strapdown inertial navigation system (SINS) is a useful
navigation system with lower cost, reduced size, and bet-
ter reliability than other navigation systems, e.g., Platform
Inertial Navigation, GNSS (Global Navigation Satellite Sys-
tem), or SLAM (Simultaneous Localization andMapping).
For SINS, the initial attitude alignment is a critical pre-
navigation process. During the initial alignment process,
the attitude matrix between the body frame and naviga-
tion frame is determined based on measurement informa-
tion from inertial sensors. Existing methods are usually
performed in stationary mode (Fang & Wan, 1996; Wang
& Shen, 2005); however, for some specific conditions, such
as underwater, in-mooring, and in-flight, in-motion align-
ment is essential (Cui, Mei, Qin, Yan, & Fu, 2017; Emami
& Taban, 2018; Li, Wu, Wang, & Lu, 2013). There are many
factors that make underwater vehicle attitude alignment

challenging. The main two factors are: the GPS-aided sen-
sors may be affected by disturbances or not available, and
in-motion alignment might be continuously implemented
because the vehicle may remain in motion due to water
flow (Ben, Zhu, Li, & Wu, 2011).
Over the last decade, alignment methods based on

the tracing gravity drift in the inertial frame for the
in-motion SINS alignment have received attractive
attentions. Because the projecting velocity in an inertial
frame can be separated into acceleration and angular
measurements, alignment methods that trace the velocity
of apparent motion in the inertial frame can effectively
solve the in-motion alignment problem. The inertial frame
alignment methods can be divided into two categories
according to the different features in the construction
of the vector of observations and the calculation pro-
cedure of the alignment matrix. These two methods
are the dual-vector attitude determination one and the
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attitude-optimization-based one. In the former one, the
initial attitudematrix is determined by selecting the appar-
ent gravitational motion vectors at two different moments,
in which the projections in the initial inertial navigation
frame are given as non-collinear vectors (Li et al., 2013;
Li, Ben, & Sun, 2013; Liu et al., 2015; Liu, Zhao, Liu, &
Wang, 2015; Qin, Zhu, Zhao, & Bai, 2008; Yan, Bai, Weng,
& Qin, 2011). To improve alignment accuracy, velocity
vectors integrated by gravitational acceleration instead
of gravity vectors are used in an improved alignment
solution (Li et al., 2013; Liu et al., 2015; Liu, Zhao, Liu, &
Wang, 2015). These self-alignment methods are applicable
to mooring alignment; thus, the rotation of the Earth from
the gyro measurement is not required to be separated.
However, in these methods, a long alignment time (more
than 300 seconds) is required to ensure sufficient random
noise smoothing and time intervals between two vectors
to avoid collinearity and ensure solution accuracy with
the dual-vector method. The second method is attitude-
optimization-based initial alignment, which transforms
the initial alignment problem into a continuous attitude
determination problem by using infinite vector observa-
tions (Ben et al., 2011; Chang, Li, & Chen, 2015; Kang,
Fang, & Wang, 2013; Kang, Ye, & Song, 2014; Li, Tang, Lu,
& Wu, 2013; Wu & Pan, 2013; Wu, Wu, Hu, & Hu, 2011;
Zhou, Qin, Zhang, & Cheng, 2012). All these methods
listed in these papers are based on the decomposition of
the attitude matrix into earth motion, inertial rate, and
alignment matrix, but have different vector observation
constructions and alignment matrix calculation proce-
dures. For underwater alignment, the vector observation
is usually constructed based on the velocity integration
formula in the body frame because of the adoption of the
Doppler Velocity Log (DVL), which is a common auxiliary
tool for underwater navigation and provides velocity mea-
surement in the body frame. The least-squares approach
(Kang et al., 2014; Li et al., 2013) and the Kalman filtering
approach (Zhou et al., 2012) are used to estimate the
alignment attitude matrix. In Zhou et al. (2012), a special
measurement equation resulting in a linear pseudo-
measurement equation is constructed and a novel quater-
nion Kalman filter is proposed to estimate the attitude
quaternion.
The attitude-optimization-based initial alignment

method is superior to the dual-vector attitude determi-
nation method in alignment accuracy and alignment
speed (Liu, Zhao, Liu, & Wang, 2015). However, there
are inherent flaws in this alignment method because
unit quaternion is used to represent the rigid-body
attitude. In this method, there is a double coverage of
the set of attitude spaces in the sense that each atti-
tude corresponds to two different quaternion vectors.
This implies that the closed-loop properties derived

using quaternions may not hold for the dynamics of the
physical rigid-body on 𝑺𝑶(3) × ℜ3. Therefore, an attitude-
optimization-based initial alignment method using the
unit quaternion representation may yield undesirable
unwinding phenomena during the alignment process.
Meanwhile, a nonlinear filter must be applied in the
attitude-optimization-based initial alignment method
because the measurement model is a nonlinear equation
for quaternion vector measurements (Chang et al., 2015).
Although a linear pseudo-measurement equation is
constructed via mathematical transformation of quater-
nion matrices to solve this problem (Zhou et al., 2012),
the zero-measurement value induces an all-zero state
value, which causes the filter to converge slowly (or even
diverge).
The special orthogonal matrix (𝑺𝑶(3) × ℜ3) is global

and unique in the sense that each physical rigid-body atti-
tude corresponds to exactly one rotation matrix. Addition-
ally, rigid-body rotation space 𝑺𝑶(3) × ℜ3 is a Lie group
(Chaturvedi, Sanyal, & Mcclamroch, 2011), which is com-
pact and contains the full attitude of the rigid-body. Thus,
much effort has been paid to the development of attitude
representation and estimation using a Lie group (Barrau
& Bonnabel, 2015; De Ruiter, 2014; Markley, 2006; Sac-
con, Trumpf, Mahony, & Pedro Aguiar, 2016). Motivated
by above observations, this paper is going to develop a
novel in-motion alignment method for underwater vehi-
cle applications using a Lie group to represent the atti-
tude. Based on the concept of attitude matrix decompo-
sition, the attitude change matrix of the body frame and
the navigation frame and the constant matrix between two
inertial frames are reformulated using Lie group repre-
sentation. Then, the state equation, which uses the Lie
group of the constant matrix between two inertial frames
as the state vector, is constructed. The linear measure-
ment equation using Lie group representation is also con-
structed using a pair of velocity vectors in two solidifica-
tion inertial coordinate systems. Because the special state
vector is a Lie group, a state-dependent Lie group fil-
ter is developed to solve the attitude matrix estimation
problems. In addition, because the measurement noise
is dependent on the Lie group, an important contribu-
tion of this paper is to analyze and calculate the covari-
ance matrix of this state-dependent measurement noise.
The existing general expressions for the covariance matri-
ces of this state-dependent noise are extended from the
vector form to the Lie group representation. Then, the
covariance matrix of the Lie-group-dependent noise is cal-
culated according to the mapping relationship between
the Lie group and the Lie algebra. The simulation results
show that this in-motion alignment scheme can effectively
solve the alignment problem of SINS in the underwater
environment.
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The rest of this paper is organized as follows. In Sec-
tion 2, we compare existing attitude representation meth-
ods and introduce the basic concepts related to Lie groups.
In Section 3, based on the aided velocity in the carrier
frame, the system model is established and described in a
Lie group representation. Section 4 presents the Lie group
filter with state-dependent noise and analyzes the mea-
surement noise covariance matrix. Simulations are pre-
sented in Section 5, followed by which the conclusions are
drawn.

1.1 Coordinate system definitions

Several coordinate frames that are used in the alignment
of SINS in an inertial system are listed as follows:

The n frame is artificially selected as the ideal naviga-
tion frame with east-north-up axes.

The b frame is the body-fixed frame of the sensor.
The e frame is the Earth-fixed frame.
The i frame is the inertial coordinate frame.
The n0 frame is the inertial coordinate frame obtained
by fixing the n frame at the initial time.

The b0 frame is the inertial coordinate frame obtained
by fixing the b frame at the initial time.

2 LIE GROUP REPRESENTATION FOR
RIGID-BODY ATTITUDE

2.1 Comparison of existing attitude
representation methods

A rigid-body attitude is usually represented by three or
four parameters. Three-parameter representations of the
attitude include Euler angles, Rodrigues parameters, and
modified Rodrigues parameters. Euler angles are singu-
lar in kinematics because the transition from the time
rate to the angular velocity vector is not globally defined.
Rodrigues parameters and modified Rodrigues parame-
ters are also geometrically singular because they are not
defined for 180◦ of rotation (Zhou et al., 2012). Four-
parameter representations of the attitude include unit
quaternions and axis angles. Since the four-parameter rep-
resentations of the attitude are global and are free of the
singularity problem, thus they are typically adopted in
practical applications.
The unit quaternion representation of attitude is the

most common four-parameter representation used in atti-
tude control and determination because its two attractive
features, a linear dynamic equation and a nonsingular for-
mulation. However, the map from the space S3 of the unit
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F IGURE 1 Projection from quaternion space to physical rota-
tion space

quaternions to the space 𝑺𝑶(3) × ℜ3 of the rotations is a
double coverage map, and each corresponding rule gov-
erning attitude behavior is represented by a pair of oppo-
site unit quaternions ±𝑞. One implication of this non-
uniqueness representation is that the closed-loop proper-
ties derived using quaternionsmaynot hold for the dynam-
ics of the physical rigid-body in 𝑺𝑶(3) × ℜ3 (Zhou et al.,
2012). Therefore, the gradual and stable equilibrium of the
quaternion does not guarantee the gradual stabilization of
the posture. If the non-uniqueness of the unit quaternion
representation is neglected, the quaternion may not hold
for the physical rigid-body, and quaternion-basedmethods
may yield undesirable unwinding phenomena in the pro-
cess of attitude control and determination. Figure 1 shows
the projection from the quaternion space to the physical
rotation space.

2.2 The basics of Lie group
representation

A Lie group is a group 𝑮 that is a smooth manifold and for
which the group operations (g, ℎ) → gℎ and g → g−1 are
smooth. A Lie group is abelian if gℎ = ℎg for all g, ℎ ∈ 𝑮

(Markley, 2006). The special orthogonal group 𝑺𝑶(3) × ℜ3

is a subgroup of the general linear group𝑮𝑳(n), and the set
of this special orthogonal group is defined as

𝑺𝑶(3) =
{

𝑹 ∶ 𝑹 ∈ ℜ3×3, 𝑹𝑇𝑹 = 𝑰3×3, det(𝑹) = 1
}

, (1)

with an associated Lie algebra, which is a set of 3 × 3 skew-
symmetric matrices, given by

𝒔𝒐(3) = {𝑨 ∈ ℜ3×3|𝑨 = 𝐀𝑻}. (2)
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The function [⋅]× denotes amap froma 3 × 1 vector to its
corresponding 3 × 3 skew-symmetric matrix. For any 𝒌 ∈

ℝ3,

[𝒌] × =
⎡⎢⎢⎣

0 −𝑘3 𝑘2

𝑘3 0 𝑘1

−𝑘2 −𝑘1 0

⎤⎥⎥⎦ . (3)

The inverse function is [⋅]∨ ∶ 𝒔𝒐(3) → 𝒌, 𝒌 ∈ ℜ3.
Given 𝑹(𝑡) ∈ 𝑺𝑶(3), if the matrix 𝑹(𝑡)𝑇𝑹̇(𝑡) is skew-

symmetric (Markley, 2006), then

𝑹̇(𝑡) = 𝑹(𝑡) [𝝎] ×, (4)

where [𝝎]× = 𝑹𝑇(𝑡)𝑹̇(𝑡) ∈ 𝒔𝒐(3). For a given sampling
time interval 𝑇, the discrete implementation of the differ-
ential equation is

𝑹𝑘+1 = 𝑹𝑘 𝑒𝑇[𝝎]×. (5)

The matrix exponential that maps 𝒔𝒐(3) onto 𝑺𝑶(3) is
well known and can be derived from Rodrigues’ equation
for rotations:

𝑒𝑇[𝝎]× = 𝑰 +
𝑠𝑖𝑛 ‖𝝎‖‖𝝎‖ [𝝎] × +

1 − 𝑐𝑜𝑠 ‖𝝎‖‖𝝎‖2
([𝝎] ×)

2
. (6)

The initial alignment problem can be understood as the
problem of determining the attitude matrix between the
carrier coordinate system and the navigation coordinate
system. Because the vectors in the attitude matrix 𝑨 for
SINS are orthogonal, thus this attitude matrix has the fol-
lowing properties:

𝑨𝑨𝑇 = 𝑰, det(𝑨) = 1. (7)

3 INITIAL ALIGNMENT USING THE
QUATERNION REPRESENTATION

According to the attitude matrix chain rule, the matrix for
the attitude transformation from the body frame to the nav-
igation frame can be decomposed into three separate atti-
tude matrices, namely, an Earth motion matrix, an iner-
tial rate matrix, and an alignment matrix. The initial atti-
tudematrix is thuswritten as a product of three continuous
rotation matrices:

𝑪
𝑛(𝑡)

𝑏(𝑡)
= 𝑪

𝑛(𝑡)

𝑛(0)
𝑪

𝑛(0)

𝑏(0)
𝑪

𝑏(0)

𝑏(𝑡)
, (8)

where 𝑪𝑏
𝑎 denotes the rotation matrix from coordinate sys-

tem A to coordinate system B and 𝑛(0) and 𝑏(0) denote
the initial inertial coordinate systems 𝑛 and 𝑏, respectively.

Therefore, 𝑪
𝑏(0)

𝑏(𝑡)
can be rewritten as the following equa-

tions:

𝑪̇
𝑛(0)

𝑛(𝑡)
= 𝑪

𝑛(0)

𝑛(𝑡)
𝝎𝑛

𝑖𝑛
× (9)

𝑪̇
𝑏(0)

𝑏(𝑡)
= 𝑪

𝑏(0)

𝑏(𝑡)
𝝎𝑏

𝑖𝑏
×, (10)

where 𝝎𝑏
𝑎𝑏
represents the angular velocity vector of coor-

dinate system A relative to coordinate system B; in coor-
dinate system B and 𝝎𝑛

𝑖𝑛
= 𝝎𝑛

𝑖𝑒
+ 𝝎𝑛

𝑒𝑛, 𝝎𝑛
𝑒𝑛 is slowly chang-

ing with the movement of the vehicle. The value of 𝝎𝑛
𝑒𝑛

is unknown if the current position is unavailable; how-
ever, it is a small value that can be neglected. Consider
that 𝝎𝑛

𝑖𝑛
≈ 𝝎𝑛

𝑖𝑒
, where 𝝎𝑏

𝑖𝑏
is the measurement from the

gyroscope. 𝑪
𝑛(𝑡)

𝑛(0)
and 𝑪

𝑏(0)

𝑏(𝑡)
are initially equal to the iden-

tity matrix. Then, Lie groups 𝑪
𝑛(𝑡)

𝑛(0)
and 𝑪

𝑏(0)

𝑏(𝑡)
can be rewrit-

ten as Equations (9) and (10) in each step. Given an esti-
mate of the rotationmatrix𝑪

𝑛(0)

𝑏(0)
, the attitudematrix can be

obtained based on Equation (8). Furthermore, the current
location information 𝑷𝑛(𝑡𝑘+1) can be obtained by using
Equation (11):

𝑷𝑛 (𝑡𝑘+1) = 𝑷𝑛 (𝑡𝑘) +

𝑡𝑘+1

∫
𝑡𝑘

𝑪
𝑛(𝑡)

𝑛(0)
𝑪

𝑛(0)

𝑏(0)
𝑪

𝑏(0)

𝑏(𝑡)
𝒗𝑏 (𝑡𝑘+1 − 𝑡𝑘) 𝑑𝑡.

(11)
For underwater alignment, since the aided velocity

obtained from the DVL is expressed in the body frame, it
is unlikely for an autonomous underwater vehicle (AUV)
to move a large distance in a short time. The tradi-
tional method is to use the velocity differential equa-
tion in the body frame to build the dynamics model.
The Earth’s rotation and the movement of the naviga-
tion frame relative to the Earth’s frame are ignored when
building the model. In this paper, to reflect the influence
of the Earth’s rotation, an inertial force equation is con-
structed in the 𝑏0 frame, which makes the model more
accurate:

𝒗̇𝑏0 = 𝑪
𝑏0

𝑏
𝒇𝑏 + 𝑪

𝑏0
𝑛0

𝑪
𝑛0
𝑛 (𝐠𝑛 + 𝝎𝑖𝑒 × (𝝎𝑖𝑒 × 𝒓)) , (12)

where 𝒗 represents the velocity, 𝒇 represents the specific
force, and 𝐠 represents the acceleration due to gravity. The
velocity in the 𝑏0 frame can be determined using the DVL
measurement and the velocity induced by the Earth’s rota-
tion in the navigation frame and is given as

𝒗𝑏0 = 𝑪
𝑏0

𝑏
𝒗𝑏 + 𝑪

𝑏0
𝑛0

𝑪
𝑛0
𝑛 𝒗𝑛

𝑖𝑒
, (13)

where 𝒗𝑛
𝑖𝑒

= [𝝎𝑖𝑒𝑟 cos 𝐿 0 0], with 𝑟 being the Earth’s radius
and 𝐿 being the local latitude.
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Integrating both sides of Equation (12) and substituting
Equation (13) into the result, we obtain

𝑪
𝑏0

𝑏(𝑡)
𝒗𝑏(𝑡) + 𝑪

𝑏0
𝑛0

𝑪
𝑛0

𝑛(𝑡)
𝒗𝑛

𝑖𝑒
(𝑡) − 𝒗𝑏(0) − 𝑪

𝑏0
𝑛0

𝒗𝑛
𝑖𝑒

(0)

=

𝑡

∫
0

𝑪
𝑏0

𝑏(𝑡)
𝒇𝑏 + 𝑪

𝑏0
𝑛0

𝑪
𝑛0

𝑛(𝑡)

(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
𝑑𝑡. (14)

After a rearrangement, Equation (14) becomes

𝑪
𝑏0

𝑏(𝑡)
𝒗𝑏(𝑡) − 𝒗𝑏(0) −

𝑡

∫
0

𝑪
𝑏0

𝑏(𝑡)
𝒇𝑏

= 𝑪
𝑏0
𝑛0

𝑡

∫
0

𝑪
𝑛0

𝑛(𝑡)

(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
𝑑𝑡 + 𝑪

𝑏0
𝑛0

𝒗𝑛
𝑖𝑒

(0)

−𝑪
𝑏0
𝑛0

𝑪
𝑛0

𝑛(𝑡)
𝒗𝑛

𝑖𝑒
(𝑡). (15)

Then, the formula for 𝑪
𝑛(0)

𝑏(0)
is

𝜷(𝑡) = 𝑪
𝑛(0)

𝑏(0)
𝜶(𝑡), (16)

where

𝜷(𝑡) =

𝑡

∫
0

𝑪
𝑛0

𝑛(𝑡)

(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
𝑑𝑡 + 𝒗𝑛

𝑖𝑒
(0)

− 𝑪
𝑛0

𝑛(𝑡)
𝒗𝑛

𝑖𝑒
(𝑡) (17)

𝜶(𝑡) = 𝑪
𝑏0

𝑏(𝑡)
𝒗𝑏(𝑡) − 𝒗𝑏(0) −

𝑡

∫
0

𝑪
𝑏0

𝑏(𝑡)
𝒇𝑏. (18)

The sampling time for the gyroscope and accelerome-
ter is chosen to be a fixed value. Thus, 𝜶(𝑡) and 𝜷(𝑡) can
be accurately calculated using a suitable numerical algo-
rithm. The calculation of 𝜷(𝑡) is given as follows:

𝑡

∫
0

𝑪
𝑛0

𝑛(𝑡)

(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
𝑑𝑡

=

𝑁−1∑
𝑘=0

𝑪
𝑛(0)
𝑛(𝑡𝑘)

𝑡𝑘+1

∫
𝑡𝑘

𝑪
𝑛(𝑡𝑘+1)

𝑛(𝑡)

(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
𝑑𝑡

≈

𝑁−1∑
𝑘=0

𝑪
𝑛(0)
𝑛(𝑡𝑘)

𝑡𝑘+1

∫
𝑡𝑘

(
𝑰 + (𝑡 − 𝑡𝑘+1) 𝝎𝑛

𝑖𝑛
×
)

(19)

×
(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
𝑑𝑡

≈

𝑁−1∑
𝑘=0

𝑪
𝑛(0)
𝑛(𝑡𝑘)

(
𝑇𝑰 +

𝑇2

2
𝝎𝑛

𝑖𝑒
×

)(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
.

Then, one has that

𝜷 (𝑡𝑘) = 𝒗𝑛
𝑖𝑒

(0) − 𝑪
𝑛0

𝑛(𝑡𝑘)
𝒗𝑛

𝑖𝑒 (𝑡𝑘)

+

𝑁−1∑
𝑘=0

𝑪
𝑛(0)
𝑛(𝑡𝑘)

(
𝑇𝑰 +

𝑇2

2
𝝎𝑛

𝑖𝑒
×

)(
𝐠𝑛 + 𝝎𝑛

𝑖𝑒
×
(
𝝎𝑛

𝑖𝑒
× 𝒓

))
.

(20)

Because the values used to calculate 𝜷(𝑡𝑘) are constants
that can be found in a reference table, 𝜷(𝑡𝑘) is considered
to be a precise measurement. Moreover, 𝜶(𝑡𝑘) is calculated
as follows:

𝜶 (𝑡𝑘) ≈ 𝑪
𝑏(0)
𝑏(𝑡𝑘)

𝒗𝑏 (𝑡𝑘) − 𝒗𝑏(0)

−

𝑁−1∑
𝑘=0

𝑪
𝑏(0)
𝑏(𝑡𝑘)

𝑡𝑘+1

∫
𝑡𝑘

⎡⎢⎢⎢⎢⎣
Δ𝒗1 + Δ𝒗2

+
1

2
(Δ𝜽1 + Δ𝜽2) × (Δ𝒗1 + Δ𝒗2)

+
2

3
(Δ𝜽1 × Δ𝒗2 + Δ𝒗1 × Δ𝜽2)

⎤⎥⎥⎥⎥⎦
.

(21)

Based on the quaternion representation, Equation (16)
can be further written as

𝜷 (𝑡𝑘) = 𝑪
𝑛(0)

𝑏(0)
𝜶 (𝑡𝑘) = 𝒒

𝑛(0)

𝑏(0)
⊗ 𝜶 (𝑡𝑘) ⊗ 𝒒

𝑛(0)−1

𝑏(0)
, (22)

where 𝒒
𝑛(0)

𝑏(0)
denotes the quaternion representation of 𝑪

𝑛(0)

𝑏(0)
and ⊗ denotes quaternion multiplication.
Using Equations (8) and (22), many studies have

investigated in-motion alignment methods based on con-
tinuous attitude determination via the q-method approach
and the Kalman filtering approach. The q-method
approach can yield a closed-form optimal estimation of
the quaternion while explicitly preserving the unit-norm
property.
It is obvious that Equation (22) is a nonlinear equa-

tion for the unit quaternion representation. Therefore,
main filtering approaches used to estimate the sequen-
tial quaternion in attitude-optimization-based initial align-
ment methods are based on nonlinear filters. In Zhou
et al. (2012), quaternion Kalman filter (QKF) approach
was developed to estimate the attitude quaternion by con-
structing a special measurement equation called the linear
pseudo-measurement equation.
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First, Equation (22) is multiplied by 𝒒
𝑛(0)

𝑏(0)
from the right

on both sides and transposed:

𝜷 (𝑡𝑘) ⊗ 𝒒
𝑛(0)

𝑏(0)
= 𝒒

𝑛(0)

𝑏(0)
⊗ 𝜶 (𝑡𝑘) . (23)

Then, the alignment model can be written as{
𝐪𝑘+1 = 𝐪𝑘

𝛽 (𝑡𝑘+1) ⊗ 𝐪𝑘+1 = 𝐪𝑘+1 ⊗ 𝛼 (𝑡𝑘+1)

)
. (24)

Based on the results in Kang, Ye, and Song (2014), the
form of Hamiltonian operator in the Clifford algebra can
be defined as:

𝐻+ (𝜶) =

[
0 −𝜶𝑇

𝜶 [𝜶×]
𝑇

]
(25)

𝐻− (𝜶) =

[
0 −𝜷𝑇

𝜷 −[𝜷×]
𝑇

]
. (26)

Then, the quaternion product can be written as

𝒒𝑘 ⊗ 𝜶 (𝑡𝑘) = 𝐻− (𝜶 (𝑡𝑘)) 𝒒𝑘 (27)

𝜷 (𝑡𝑘) ⊗ 𝒒𝑘 = 𝐻+ (𝜷 (𝑡𝑘)) 𝒒𝑘. (28)

Combining Equations (27) and (28) together, the mea-
surement equation for the QKF can be written as:[
𝐻− (𝜶 (𝑡𝑘)) − 𝐻+ (𝜷 (𝑡𝑘))

]
𝒒𝑘

=

[
0 −(𝜶 (𝑡𝑘) − 𝜷 (𝑡𝑘))

𝑇

𝜷 (𝑡𝑘) − 𝜶 (𝑡𝑘) −[(𝜶 (𝑡𝑘) + 𝜷 (𝑡𝑘)) ×]
𝑇

]
= 0. (29)

The measurement matrixH can then be defined as

𝑯◦ Δ
=

[
0 −𝒅

◦𝑇

𝒅◦ − [𝒔◦×]

]
(30)

𝒔◦ Δ
=

1

2
(𝜶 (𝑡𝑘) + 𝜷 (𝑡𝑘)) (31)

𝒅◦ Δ
=

1

2
(𝜶 (𝑡𝑘) − 𝜷 (𝑡𝑘)) . (32)

4 INITIAL ALIGNMENT USING A
STATE-DEPENDENT LIE GROUP FILTER

Though the alignment methods are attractive and effec-
tive, there are still some flaws in these methods. In
these methods, a nonlinear filter operates on a nonlinear
quaternion measurement model. Although the QKF was

developed to estimate the attitude quaternion by construct-
ing a linear pseudo-measurement equation, it weakens the
convergence speed and also reduces the accuracy when
the left-hand side of the measurement equation is zero.
Moreover, all existing initial alignment methods estimate
quantities other than the attitude quaternion, such as the
sensor errors (bias, scale factor, etc.). Because the sensor
measurements are directly used to calculate 𝜶 and 𝜷, the
alignment accuracy is easily disturbed by sensor error,
especially noise from accelerometers and gyroscopes.
To overcome these flaws of the quaternion represen-

tation, a Lie group representation is used to replace
quaternion representation in the alignment process to
improve the initial alignment performance in our pro-
posed method. In this section, the basic attitude formula
is constructed based on the differential equation for Lie
group, and a linear measurement model is structured
based on the Lie group representation. Then, a relatively
accurate sensor noise analysis is presented for construct-
ing the new measurement model. To overcome the prob-
lem of state-dependent measurement noise, a novel state-
dependent Lie group filter is developed for estimating the
initial attitude.

4.1 Initial alignment model using Lie
group filter

According to Section 2, all rotation matrices can be repre-
sented using the Lie group representation. Therefore, we
can rewrite Equations (9) and (10) using the differential
equations for the Lie group:

𝑹̇
𝑛(0)

𝑛(𝑡)
= 𝑹

𝑛(0)

𝑛(𝑡)
𝝎𝑛

𝑖𝑛
× (33)

𝑹̇
𝑏(0)

𝑏(𝑡)
= 𝑹

𝑏(0)

𝑏(𝑡)
𝝎𝑏

𝑖𝑏
×, (34)

where 𝑹 ∈ 𝑺𝑶(3) represents the Lie group. These equa-
tions can be solved by Equation (5).
Then, Equation (8) can be further rewritten as

𝑹
𝑛(𝑡)

𝑏(𝑡)
= 𝑹

𝑛(𝑡)

𝑛(0)
𝑹

𝑛(0)

𝑏(0)
𝑹

𝑏(0)

𝑏(𝑡)
, (35)

where 𝑹
𝑛(0)

𝑏(0)
is the Lie group used to represent the rotation

matrix at the initial instant.
From Equation (21), the calculation of 𝜶(𝑡𝑘) uses gyro-

scope and accelerometermeasurements; thus, sensor error
is the major source of disturbance noise for 𝜶(𝑡𝑘). These
errors will eventually lead to the uncertainty measure-
ment noise in the measurement model. Discernible esti-
mation errors cannot be avoided, and the performance
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will be deteriorated if the measurement covariance matrix
adopted in the Kalman filter is unable to detect and track
the real changes in measurement noise.
To analyze the effects of sensor error and to construct a

precise alignment model, the sensor errors will be taken
into account in 𝜶(𝑡𝑘). Let 𝜺g and 𝜺𝛼 denote the gyroscope
random error and the accelerometer random error, respec-
tively. Adding the random sensor errors into the last term
of Equation (18) gives that

𝑡

∫
0

𝑹
𝑏(0)

𝑏(𝑡)

(
𝒇𝑏 − 𝜺𝛼

)
𝑑𝑡 ≈

𝑁−1∑
𝑘=0

(
𝑹

𝑏(0)
𝑏(𝑡𝑘)

− 𝑘𝑇
(
𝜺g×

))

×

𝑡𝑘+1

∫
𝑡𝑘

𝑹
𝑏(𝑡𝑘+1)

𝑏(𝑡)

(
𝒇𝑏 − 𝜺𝛼

)
𝑑𝑡

≈

𝑁−1∑
𝑘=0

(
𝑹

𝑏(0)
𝑏(𝑡𝑘)

− 𝑘𝑇
(
𝜺g×

)) 𝑡𝑘+1

∫
𝑡𝑘

⎛⎜⎜⎝𝑰 +
⎛⎜⎜⎝

𝑡

∫
𝑡𝑘

𝝎𝑏
𝑖𝑏

− 𝜺g𝑑𝜏
⎞⎟⎟⎠×

⎞⎟⎟⎠
×
(
𝒇𝑏 − 𝜺𝛼

)
𝑑𝑡. (36)

From Equation (36), it yields that

𝑡𝑘+1

∫
𝑡𝑘

⎛⎜⎜⎝𝑰 +
⎛⎜⎜⎝

𝑡

∫
𝑡𝑘

𝝎𝑏
𝑖𝑏

− 𝜺g𝑑𝜏
⎞⎟⎟⎠×

⎞⎟⎟⎠
(
𝒇𝑏 − 𝜺𝛼

)
𝑑𝑡

=

𝑡𝑘+1

∫
𝑡𝑘

⎛⎜⎜⎝𝑰 +
⎛⎜⎜⎝

𝑡

∫
𝑡𝑘

𝝎𝑏
𝑖𝑏

𝑑𝜏
⎞⎟⎟⎠×

⎞⎟⎟⎠𝒇𝑏𝑑𝑡

−

𝑡𝑘+1

∫
𝑡𝑘

⎛⎜⎜⎝𝑰 +
⎛⎜⎜⎝

𝑡

∫
𝑡𝑘

𝝎𝑏
𝑖𝑏

𝑑𝜏
⎞⎟⎟⎠×

⎞⎟⎟⎠ 𝜺𝛼𝑑𝑡 − 𝜺g ×

𝑡𝑘+1

∫
𝑡𝑘

(
𝒇𝑏 − 𝜺𝛼

)
𝑑𝑡

= Δ𝒗1 + Δ𝒗2 +
1

2
(Δ𝜽1 + Δ𝜽2) × (Δ𝒗1 + Δ𝒗2)

+
2

3
(Δ𝜽1 × Δ𝒗2 + Δ𝒗1 × Δ𝜽2)

−𝑇

[
𝑰 +

1

6
(5Δ𝜽1 + Δ𝜽2) ×

]
𝜺𝛼 + (Δ𝒗1 + Δ𝒗2 − 𝑇𝜺𝛼) × 𝜺g.

(37)

Merging Equations (21) and (36) together, we obtain

𝑡

∫
0

𝑹
𝑏(0)

𝑏(𝑡)

(
𝒇𝑏 − 𝜺𝛼

)
𝑑𝑡

≈

𝑁−1∑
𝑘=0

𝑹
𝑏(0)
𝑏(𝑡𝑘)

[
Δ𝒗1 + Δ𝒗2 +

1

2
(Δ𝜽1 + Δ𝜽2) × (Δ𝒗1 + Δ𝒗2)

+
2

3
(Δ𝜽1 × Δ𝒗2 + Δ𝒗1 × Δ𝜽2)

]
−

𝑁−1∑
𝑘=0

𝑹
𝑏(0)
𝑏(𝑡𝑘)

𝑇

[
𝑰 +

1

6
(5Δ𝜽1 + Δ𝜽2) ×

]
𝜺𝛼

+

𝑁−1∑
𝑘=0

{
𝑹

𝑏(0)
𝑏(𝑡𝑘)

(Δ𝒗1 + Δ𝒗2) × 𝜺g − 𝑘𝑇𝜺g ×
[
Δ𝒗1 + Δ𝒗2

+
1

2
(Δ𝜽1 + Δ𝜽2) × (Δ𝒗1 + Δ𝒗2)

+
2

3
(Δ𝜽1 × Δ𝒗2 + Δ𝒗1 × Δ𝜽2)

]}
= 𝜶′ + 𝜿𝜺𝛼 + 𝝀𝜺g, (38)

where

𝜶′ =

𝑁−1∑
𝑘=0

𝑹
𝑏(0)
𝑏(𝑡𝑘)

[
Δ𝒗1 + Δ𝒗2 +

1

2
(Δ𝜽1 + Δ𝜽2)

× (Δ𝒗1 + Δ𝒗2) +
2

3
(Δ𝜽1 × Δ𝒗2 + Δ𝒗1 × Δ𝜽2)

]
(39)

𝜿 = −

𝑁−1∑
𝑘=0

𝑹
𝑏(0)
𝑏(𝑡𝑘)

𝑇

[
𝐼 +

1

6
(5Δ𝜽1 + Δ𝜽2) ×

]
(40)

𝝀 =

𝑁−1∑
𝑘=0

[
𝑹

𝑏(0)
𝑏(𝑡𝑘)

(Δ𝒗1 + Δ𝒗2) × +𝑘𝑇Δ𝒗×
]

. (41)

Based on the above analysis, the final representation of
𝜶̂(𝑡) with random sensor error is given as

𝜶̂(𝑡) = 𝜶(𝑡) − 𝜿𝜀𝑎 − 𝝀𝜀g. (42)

If the sampling period is short, we can use the linear
forms of the angular rate and acceleration:

𝝎𝑏
𝑖𝑏

= 𝑎𝜔 𝑡 + 𝑏𝜔 (43)

𝒇𝑏 = 𝑎𝑓 𝑡 + 𝑏𝑓. (44)

Integrating the angular velocity, the incremental angle
can be obtained as:

Δ 𝜽1 =

𝑇∕2

∫
0

𝝎𝑏
𝑖𝑏

𝑑𝑡 =

𝑇∕2

∫
0

𝑎𝜔𝑡 + 𝑏𝜔𝑑𝑡 =
𝑇2

8
𝑎𝜔 +

𝑇

2
𝑏𝜔 (45)

Δ𝜽1 + Δ𝜽2 =

𝑇

∫
0

𝝎𝑏
𝑖𝑏

𝑑𝑡 =

𝑇

∫
0

𝑎𝜔𝑡 + 𝑏𝜔𝑑𝑡 =
𝑇2

2
𝑎𝜔 + 𝑇𝑏𝜔.

(46)
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From the above formulas, we have

𝑎𝜔 =
4 (Δ𝜽2 − Δ𝜽1)

𝑇2
(47)

𝑏𝜔 =
3Δ𝜽1 − Δ𝜽2

𝑇
. (48)

Similarly, one can get that

𝑎𝑓 =
4 (Δ𝒗2 − Δ𝒗1)

𝑇2
(49)

𝑏𝑓 =
3Δ𝒗1 − Δ𝒗2

𝑇
. (50)

Using Equations (20) and (21), 𝜷(𝑡𝑘) and 𝜶(𝑡𝑘) can be
calculated in each sampling period, however, finding the
optimal estimation 𝑹

𝑛(0)

𝑏(0)
is a problem. The proposed Lie

group filter significantly contributes to the solution of this
problem. Consider a state variable 𝑿 that represents 𝑹

𝑛(0)

𝑏(0)
,

which is a constant matrix. The discretized system model
is constructed as

𝑿𝑘+1 = 𝑿𝑘 (51)

𝜷𝑘+1 = 𝑿𝑘+1 (𝜶𝑘+1 + 𝛿𝜶𝑘+1) , (52)

where𝑿 ∈ 𝑺𝑶(3), 𝜷𝑘+1, and 𝜶𝑘+1 are two 3 × 1 vectors that
are calculated using Equations (20) and (21), respectively,
at 𝑡𝑘+1. The vector 𝜷𝑘+1 is obtained using the Earth’s rota-
tion rate (𝝎𝑛

𝑖𝑒
) and the component of gravitational accelera-

tion in the navigation frame (𝐠𝑛), both ofwhich are known.
Clearly, these values are just relatively accurate as 𝜶𝑘+1

contains a variety of sensormeasurements (e.g.,𝝎𝑏
𝑖𝑏
ismea-

sured via a gyroscope and𝒇𝑏 ismeasured via an accelerom-
eter). The coupled measurement noise, denoted by 𝛿𝜶𝑘+1,
is defined as

𝛿 𝜶𝑘+1 = 𝜶𝑘+1 − 𝜶̂𝑘+1 = 𝜿𝜺𝑎 + 𝝀𝜺g, (53)

where 𝜶𝑘+1 is the exact value of the observation.

4.2 Analysis and design of the
state-dependent noise covariance matrix

The above discretized system model can be solved using a
Lie group filter. However, using the traditional measure-
ment noise covariance matrix for state-dependent mea-
surement noise may lead to imprecise estimation. In this
section, based on the definition of the noise covariance
matrix, the difficulty of using the traditional measure-
ment noise covariance matrix for state-dependent mea-

surement noise is explained subsequently. Because the
noise and the state are linear and independent, a sec-
ond term is developed to construct an exact expression
for the state-dependent measurement noise covariance
matrix. The state error and covariance matrix are defined
based on the Lie group representation, and the propaga-
tion equation is given. Then, a novel Lie group filter is
presented.
For simplicity, the measurement equation is rewritten

as

𝜷𝑘+1 = 𝑿𝑘+1𝜶𝑘+1 + 𝑽𝑘+1, (54)

where

𝑽𝑘+1 = 𝑿𝑘+1 𝛿𝜶𝑘+1. (55)

Suppose that 𝛿𝜶𝑘+1 is the sum of two white Gaus-
sian noise components with covariance matrix 𝑹𝑘+1 =

(𝝈1 + 𝝈2) 𝑰3. 𝑬{𝛿𝜶𝑘+1} = 0 is statistically independent of
the state 𝑿𝑘+1. In the usual Kalman filter framework,
the mean value of 𝑽𝑘+1 is approximated to be zero, i.e.,
𝑬{𝑿𝑘+1𝛿𝜶𝑘+1} = 0, where 𝑿𝑘+1 is the ideal value of the
state. The state-dependent measurement noise covariance
matrix is expressed as

𝑬
{

𝑽𝑘+1𝑽𝑇
𝑘+1

}
= 𝑬

{
(𝑿𝑘+1𝛿𝜶𝑘+1) (𝑿𝑘+1𝛿𝜶𝑘+1)

𝑇
}

= 𝑬
{

𝑿𝑘+1𝛿𝜶𝛿𝜶𝑇𝑿𝑇
𝑘+1

}
= 𝑿𝑘+1𝑹𝑘+1𝑿𝑇

𝑘+1
. (56)

In the actual filtering process, 𝑿𝑘+1 is an unknown, and
the state estimation 𝑿̂𝑘+1 is used instead of 𝑿𝑘+1. In prac-
tical applications, 𝑽𝑘+1 is defined as

𝐸
{

𝑽𝑘+1𝑽𝑇
𝑘+1

}
= 𝑿̂𝑘+1 𝑹𝑘+1𝑿̂𝑇

𝑘+1
, (57)

where 𝑿̂𝑘+1 denotes the estimated value of the state at
𝑡𝑘+1. The error between 𝑿𝑘+1 and 𝑿̂𝑘+1 leads to inac-
curacy of the covariance matrix of 𝑽𝑘+1. It is supposed
that 𝐸{𝑿̂𝛿𝜶} = 𝒖, where 𝒖 characterizes the error between
𝑿̂ and 𝑿.Then, the real representation of the covariance
matrix of 𝑽 is given as

𝑬
{

(𝑽 − 𝒖) (𝑽 − 𝒖)
𝑇
}

=
⎡⎢⎢⎣

𝑉2
1 − 2𝑉1𝑢1 + 𝑢2

1 (𝑉1 − 𝑢1) (𝑉2 − 𝑢2)

(𝑉2 − 𝑢2) (𝑉1 − 𝑢1) 𝑉2
2 − 2𝑉2𝑢2 + 𝑢2

2
(𝑉3 − 𝑢3) (𝑉1 − 𝑢1) (𝑉3 − 𝑢3) (𝑉2 − 𝑢2)

×

(𝑉1 − 𝑢1) (𝑉3 − 𝑢3)

(𝑉2 − 𝑢2) (𝑉3 − 𝑢3)

𝑉2
3 − 2𝑉3𝑢3 + 𝑢2

3

⎤⎥⎥⎦ . (58)
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Clearly, this matrix can be further split into two parts:

𝑬
{

(𝑽 − 𝒖) (𝑽 − 𝒖)
𝑇
}

=
⎡⎢⎢⎣

𝑉2
1 𝑉1𝑉2 𝑉1𝑉3

𝑉2𝑉1 𝑉2
2 𝑉2𝑉3

𝑉3𝑉1 𝑉3𝑉2 𝑉2
3

⎤⎥⎥⎦
+
⎡⎢⎢⎣

−2𝑉1𝑢1 + 𝑢2
1 𝑢1𝑢2 − 𝑉1𝑢2 − 𝑉2𝑢1

𝑢2𝑢1 − 𝑉1𝑢2 − 𝑉2𝑢1 −2𝑉2𝑢2 + 𝑢2
2

𝑢1𝑢3 − 𝑉1𝑢3 − 𝑉3𝑢1 𝑢2𝑢3 − 𝑉2𝑢3 − 𝑉3𝑢2

×

𝑢1𝑢3 − 𝑉1𝑢3 − 𝑉3𝑢1

𝑢2𝑢3 − 𝑉2𝑢3 − 𝑉3𝑢2

−2𝑉3𝑢3 + 𝑢2
3

⎤⎥⎥⎦ . (59)

A more concise representation of Equation (58) is
expressed as

𝑬
{

(𝑽 − 𝒖) (𝑽 − 𝒖)
𝑇
}

= 𝑿̂𝑹𝑿̂𝑇 + 𝑀 (𝑽, 𝒖) . (60)

The second term in Equation (60) is amatrix representa-
tion associatedwith the state andmeasurement noise, aris-
ing from the state-dependent measurement noise. Moti-
vated by a theory similar to the one that applied to vec-
tor state-dependent noise inAlexander (2008), an extended
theory based on the Lie group representation is presented
in this paper. A more precise expression will be proposed
in this section, and the relationship between the state error
andmeasurement noisewill be revealed to develop the sec-
ond term.
Because 𝑽𝑘+1 represents state-dependent measurement

noise, an exact expression for its covariance matrix is
derived to design the filter. A similar and general form of
the state-dependent noise covariance matrix is provided in
the proposition presented in the appendix. These general
results are applied to our special case, and the measure-
ment equation is addressed in a similar way. 𝑿̂𝑘+1 denotes
the estimated value at 𝑡𝑘+1. 𝝃𝑘+1 is the estimated state error
of a Lie group that has a mapping relation with 𝑺𝑶(3) (as
discussed in the next section). The covariance matrices of
𝝃𝑘+1 and 𝑽𝑘+1 are 𝑷𝑘+1 and 𝑷𝑣

𝑘+1
, respectively. 𝛿𝜶𝑘+1 and

𝝃𝑘+1 are independent. Under the assumption that 𝛿𝜶𝑘+1 is
a white Gaussian noise with covariance matrix 𝑹𝑘+1, 𝑷𝑣

𝑘+1
can be expressed as

𝑷𝑣
𝑘+1

= 𝑿̂𝑘+1 𝑹𝑘+1𝑿̂𝑇
𝑘+1

+ 𝜺 (𝑹𝑘+1 ⊗ 𝑷𝑘+1) 𝜺𝑇. (61)

where 𝑿̂𝑘+1 is the predicted value of 𝑿𝑘+1 and ⊗ is
the Kronecker product. The matrix 𝛆̄ ∈ ℜ3×9 is defined
as

𝜺 =
[
𝑬1 𝑬2 𝑬3

]
, (62)

with

𝑬𝑖 = − [𝒆𝑖] ×, 𝑖 = 1, 2, 3. (63)

The vectors 𝒆𝑖, 𝑖 = 1, 2, 3 are the standard basis vectors in
ℜ3. The exact expression for 𝑷𝑣

𝑘+1
has a unique form given

in the proposition in the appendix.
The first term on the right-hand side of Equation (61) is

the usual approximation of the state-dependent measure-
ment noise covariance matrix in the Kalman filter frame-
work. The second term incorporates the error 𝑿̂−1

𝑘+1
𝑿𝑘+1

into the expression. This term includes the product of
𝛿𝜶𝑘+1 and the error 𝑿̂−1

𝑘+1
𝑿𝑘+1. The expression is derived by

considering the linearity of the state-dependent noise with
respect to 𝑿𝑘+1, which makes the filtering process more
accurate.

4.3 Lie group filtering process

Compared to the traditional Kalman filter, the proposed
filter directly estimates the rotation matrix instead of the
state vector. Due to the properties of the special observer
for a Lie group, the group multiplication operation (rather
than addition) is proposed for updating the state value. The
prediction and updating steps are performed as follows:

𝑿̂𝑘+1∕𝑘 = 𝑿̂𝑘 (64)

𝑿̂𝑘+1 = 𝑿̂𝑘+1∕𝑘Υ
(

𝑿̂−1
𝑘+1∕𝑘

)
𝜷𝑘+1, (65)

where Υ(⋅) is a function mapping ℜ3 to ℜ3×3 on a Lie
group. The link between the proposed updating step and
the traditional step can be understood in this way. The esti-
mation error𝑿−1

𝑘+1∕𝑘
𝑿̂𝑘+1 is defined onℜ3×3. According to

the left-right equivariance hypothesis, 𝑿̂−1
𝑘+1∕𝑘

𝑿𝑘+1𝜶𝑘+1 +

𝑿̂−1
𝑘+1∕𝑘

𝑽𝑘+1 can be interpreted as a Lie group equivalent
to 𝐻(𝑿̂𝑘+1∕𝑘 − 𝑿𝑘+1) + 𝑽𝑘+1.
In fact, the defined invariant output errors represent

a transformation from a linear error to a multiplicative
group, which is an isomorphic transformation.

𝜼𝑘+1 = 𝑿̂−1
𝑘+1

𝑿𝑘+1 (66)

𝜼𝑘+1∕𝑘 = 𝑿̂−1
𝑘+1∕𝑘

𝑿𝑘+1. (67)

In the process of applying the proposed filter, the mean
square error matrix 𝑷 is derived from the estimation error.
Thus, the error variables 𝜼𝑘+1 and 𝜼𝑘+1∕𝑘 are obtained
through the Markov process. The certification process is
given as follows.
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Substituting Equations (65) into (67), we obtain

𝜼𝑘+1 = Υ−1
(

𝑿̂−1
𝑘+1∕𝑘

𝜷𝑘+1

)
𝑿̂−1

𝑘+1∕𝑘
𝑿𝑘+1

= Υ−1
(

𝑿̂−1
𝑘+1∕𝑘

𝑿𝑘+1𝜶𝑘+1 + 𝑿̂−1
𝑘+1∕𝑘

𝑿𝑘+1𝛿𝜶𝑘+1

)
× 𝑿̂−1

𝑘+1∕𝑘
𝑿𝑘+1

= Υ−1
(
𝜼𝑘+1∕𝑘𝜶𝑘+1 + 𝜼𝑘+1∕𝑘𝛿𝜶𝑘+1

)
𝜼𝑘+1∕𝑘. (68)

Therefore, 𝜼𝑘+1 and 𝜼𝑘+1∕𝑘 can be rewritten as

𝜼𝑘+1∕𝑘 = 𝜼𝑘 (69)

𝜼𝑘+1 = Υ−1
(
𝜼𝑘+1∕𝑘𝜶𝑘+1 + 𝜼𝑘+1∕𝑘𝛿𝜶𝑘+1

)
𝜼𝑘+1∕𝑘. (70)

Because 𝜷𝑘+1 and 𝜶𝑘+1 are calculated at regular inter-
vals of time, the gain function Υ can be tuned freely. Anal-
ogous to the gain in the Kalman filter, the gain function Υ

can be structured in the following way. Because the error
state and model noise are relatively small, an exponential
map is used as a projection of the Lie algebra of the group.
Let 𝝌 → 𝒆𝒙𝒑([𝝌]×) denote the exponential map, for which
the specific calculation process has been given. Its inverse
function is defined as 𝑹 → log([𝑹]∨). The state error is
defined as

𝝃𝑘+1 = [log (𝜼𝑘+1)] ∨ (71)

𝝃𝑘+1∕𝑘 =
[
log

(
𝜼𝑘+1∕𝑘

)]
∨ . (72)

The innovation of the Lie group filter is defined as

Δ = 𝑿̂𝑇
𝑘+1

𝜷𝑘+1 − 𝜶𝑘+1, (73)

and the gain function is given as

Υ
(

𝑿̂−1
𝑘+1∕𝑘

𝜷𝑘+1

)
= 𝒆𝒙𝒑 (𝑲𝑘+1Δ𝑘+1) × . (74)

Then, the new definition of the state error is

𝝃𝑘+1∕𝑘 =
[
log

(
𝒆𝒙𝒑

(
𝝃𝑘

)
×
)]

∨ (75)

𝝃𝑘+1 =
[
𝒆𝒙𝒑 ((𝑲𝑘+1Δ𝑘+1) ×) log

(
𝒆𝒙𝒑

(
𝝃𝑘+1∕𝑘

)
×
)]

∨ .

(76)
Here, to simplify the calculation, we consider only the

first order of the exponential expansion, ([𝝌 ]×) ≈ 𝑰3 +

[𝝌]×:

𝝃𝑘+1∕𝑘 = 𝝃𝑘 (77)

𝝃𝑘+1 = 𝝃𝑘+1∕𝑘 − 𝑲𝑘+1

(
𝑯𝝃𝑘+1∕𝑘 + 𝑽𝑘+1

)
. (78)

Here, = 𝜕

𝜕𝝃
(exp([𝝃 ])×)𝜶) =

𝜕

𝜕𝝃
(𝜶 − [𝜶]) × 𝝃) = −[𝜶]×.

If the error variance of the state is defined as𝑷 = 𝑬{𝝃𝝃 𝑇},
then the gain 𝑲𝑘+1 can be obtained using the traditional
Kalmanmethod. First, a priori error covariance of the state
is computed:

𝑷𝑘+1∕𝑘 = 𝚽𝑷𝑘𝚽𝑇, (79)

where 𝚽 is a 3 × 3 identity matrix and

𝑺𝑘 = 𝑯𝑷𝑘+1∕𝑘𝑯𝑇 + 𝐏𝑣 (80)

𝑲𝑘+1 = 𝑷𝑘+1∕𝑘𝑯𝑇𝑺−1
𝑘

(81)

𝑷𝑘+1 = (𝑰 − 𝑲𝒌𝑯) 𝑷𝑘+1∕𝑘. (82)

𝑺𝑘 is themean square deviation of the innovation, which
describes the influence of the state and noise on the filter
gain. In the Lie group filter, the rotation matrix is directly
selected as a state matrix. In new forms of the state error,
the innovation and the measurement matrix based on the
Lie group representation, which take advantage of the
unique nature of the Lie group and the mapping relation
between the Lie group and Lie algebra, are innovatively
defined. An exponential mapping function is employed to
correct the a priori estimation with the innovation. The
propagation result is similar to that of the Kalman filter,
which aims to estimate the minimum variance of the state
error.
The Lie group filtering algorithm is proposed as follows:
Filter initialization: 𝑿0 = 𝑰3 and 𝑷0 = 5𝑰3.
Filtering process:

𝑿̂𝑘+1∕𝑘 = 𝑿̂𝑘 (83)

𝑷𝑘+1∕𝑘 = 𝑷𝒌 (84)

𝑷𝑣
𝑘

= 𝑿̂𝑘 𝑹𝑘𝑿̂𝑇
𝑘

+ 𝜺 (𝑹𝑘 ⊗ 𝑷𝑘) 𝜺𝑇 (85)

𝑺𝑘 = 𝑯𝑷𝑘+1∕𝑘𝑯𝑇 + 𝐏𝑣 (86)

𝑲𝑘+1 = 𝑷𝑘+1∕𝑘𝑯𝑇𝑺−1
𝑘

(87)

𝑷𝑘+1 = (𝑰 − 𝑲𝒌𝑯) 𝑷𝑘+1∕𝒌 (88)

Δ𝑘+1 = 𝑿̂𝑇
𝑘+1

𝜷𝑘+1 − 𝜶𝑘+1 (89)

𝑿̂𝑘+1 = 𝑿̂𝑘+1∕𝑘 𝒆𝒙𝒑 ([𝑲𝑘+1Δ𝑘+1] ×) . (90)

The process of initial alignment is summarized as
follows:

Step 1: Initialize 𝑹
𝑛(𝑡)

𝑛(0)
= 𝑰3 and 𝑹

𝑏(𝑡)

𝑏(0)
= 𝑰3.

Step 2: When the gyro and acceleration information
are available, update 𝑹

𝑛(𝑡)

𝑛(0)
and 𝑹

𝑏(𝑡)

𝑏(0)
using Equa-

tion (33) and part of Equation (34).
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Step 3: When the aided velocity in the 𝑏 frame mea-
sured by the DVL is available, update 𝜶(𝑡𝑘) and
𝜷(𝑡𝑘) using Equations (20) and (21).

Step 4: Use the proposed Lie group filter estimation
𝑹

𝑛(0)

𝑏(0)
to update the attitude transformation matrix

𝑹𝑛
𝑏
according to Equation (35) and the current geo-

graphic position 𝑷𝑛 by Equation (11).
Step 5: Return to step 2 unless the end of the initial
alignment phase has been reached.

5 SIMULATIONS AND EXPERIMENTS

In this section, a simulation model of underwater vehicle
motion is designed to verify the effectiveness of the pro-
posed alignment method. The pitch, roll, and yaw are sup-
posed to conform to cosine change, which are adopted to
simulate the effects of water flow around underwater vehi-
cles. Yaw 𝜓, pitch 𝜃, and roll 𝛾 represent cyclical changes.
The model of an AUV’s attitude is described as

𝜓 = 𝜓′ + 𝐴𝑦cos
(
𝜔𝑦𝑡 + 𝜑𝑦

)
(91)

𝜃 = 𝐴𝑟 cos (𝜔𝑟𝑡 + 𝜑𝑟) (92)

𝛾 = 𝐴𝑝 cos
(
𝜔𝑝𝑡 + 𝜑𝑝

)
, (93)

where 𝐴𝑦 , 𝐴𝑟, 𝐴𝑝 are the amplitudes of three attitude
angles; 𝜔𝑦 , 𝜔𝑟, 𝜔𝑝 are the angular velocity; 𝜑𝑦 , 𝜑𝑟, 𝜑𝑝 are
initial phases; and 𝜓′ is the initial azimuth.
The line speed is set to less than 3m/s, and described as

𝑉𝐷𝑖 = 𝐴𝐷𝑖 cos (𝜔𝐷𝑖𝑡 + 𝜑𝐷𝑖) , (94)

where 𝑖 = 𝑥, 𝑦, 𝑧, 𝐴𝐷𝑖 is the amplitude of speed; 𝜔𝐷𝑖 is the
frequency of speed; 𝜑𝐷𝑖 is the initial phase.
The initial position is at 116◦ east longitude and 38◦

north latitude. The random drift of the gyro is 0.01◦∕ℎ, the
random travel coefficient of the gyroscope is 0.001◦∕

√
ℎ,

the constant deviation of the accelerometer is 1 × 10−4g,
the standard accelerometer measurement white noise is
1 × 10−5g, the DVL bias is 0.5% of the voyage velocity, and
the sampling frequency of the DVL is 1 Hz.

5.1 Simulation results and analysis

Case 1: The amplitudes ofwind andwave are small, the
initial azimuth is 30◦, and parameters of attitude
angles and speed are listed in Table 1 (Tal, Klein,
& Katz, 2017).

Case 2: The amplitudes of wind and wave are big, the
initial azimuth is 120◦, and parameters of attitude

TABLE 1 General condition

𝝍′ = 𝟑𝟎◦ 𝒚 𝒓 𝒑

𝐴 3◦ 7◦ 6◦

𝜔 2𝜋∕7 2𝜋∕5 𝜋∕6

𝜑 𝜋∕3 𝜋∕4 𝜋∕2

𝑨𝐃 𝝎𝑫 𝝋𝐃

𝑥 3 2𝜋∕7 2𝜋∕5

𝑦 0.03 𝜋∕3 3𝜋∕7

𝑧 0.01 𝜋∕4 𝜋∕3

TABLE 2 High wave amplitudes

𝝍′ = 𝟏𝟐𝟎◦ 𝒚 𝒓 𝒑

𝐴 11◦ 14◦ 15◦

𝜔 𝜋∕6 2𝜋∕7 𝜋∕8

𝜑 𝜋∕9 𝜋∕8 𝜋∕7

𝑨𝐃 𝝎𝑫 𝝋𝐃

𝑥 3 2𝜋∕7 2𝜋∕5

𝑦 0.03 𝜋∕3 3𝜋∕7

𝑧 0.01 𝜋∕4 𝜋∕3

angles and speed are listed in Table 2 (Kang et al.,
2014).

Case 3: The influence of undercurrent will be simu-
lated. TheAUVmoves in a circle and rotates around
itself (Liu, Wang, Deng, & Fu, 2017).

⎧⎪⎪⎨⎪⎪⎩

𝜓 =
𝜋

15
𝑡 +

𝜋

12

𝜃 = cos
(𝜋

6
𝑡
)

𝛾 = cos
(𝜋

4
𝑡
)

⎧⎪⎪⎨⎪⎪⎩
𝑉𝑥 = 2 sin(𝑡) cos(𝑡)

𝑉𝑦 = 2 cos(𝑡) sin(𝑡)

𝑉𝑧 = 0.01 cos
( 𝜋

12
𝑡
)

.

(95)

The proposed filter, called state-dependent Lie group fil-
ter (SLGF), runs for 600s. In order to display the alignment
results clearly, Figures 2–4 display the attitude errors in
three axes from 50s to 600s, and the attitude errors from 0s

to 50s are not displayed. The yaw, pitch, and roll errors are
reduced to 5.818 × 10−3, 1.45 × 10−4, and 5.82 × 10−5 after
200s in Case 1 and reduced to 6.69 × 10−3, 1.745 × 10−4,
and 5.818 × 10−5 after 200s in Cases 2 and 3. From these
figures, the robustness and the anti-interference ability
of the proposed SLGF has been verified. The simulation
shows that the proposed alignment method can achieve
better convergence speed and high accuracy, which indi-
cates that the SLGF has a great robustness in various
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F IGURE 2 Initial alignment simulation results under general condition [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

F IGURE 3 Initial alignment simulation results under high wave amplitudes condition [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

conditions. In addition, the convergence speed of the three
attitude angles is equivalent.
In Figure 5, the values in Table 1 are taken and vari-

ous misalignment angles are chosen to prove the conver-
gence. As seen in the figure, the errors for various mis-

alignment angles converge over time, though there is oscil-
lation before 100s. The smaller the misalignment angle,
the more pronounced the oscillation. The alignment accu-
racy is higher with the reduction of the misalignment
angle. When the initial error angles are 60◦, 30◦, and 10◦,
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F IGURE 4 Initial alignment simulation results under undercurrent effect [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com and www.ion.org]

F IGURE 5 Yaw errors for variousmisalignment angles [Color figure can be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]
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F IGURE 6 Installation diagram of experimental facilities and trajectory figure [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

the final alignment accuracy is approximately 1.16 × 10−3,
5.8 × 10−4, and 2.9 × 10−4, respectively.

5.2 Experiment results and analysis

TheAUV is affected by external forces such aswind, engine
rotation, wave surging, and other complex disturbances,
which make its movement very uncertain. When the AUV
is affected by water disturbances, its alignment time will
be longer, and the alignment accuracy can significantly
reduce. Due to limitations of our experimental capabili-
ties, we use a low-speed ground vehicle to simulatemotion
conditions of the AUV. In this case, the alignment accu-
racy is affected by the motion dynamics including effects
such as engine vibrations, road bumps, and vehicles’ accel-
eration/deceleration. These non-constant velocity compo-
nents of the ground vehicle motion can mimic non-static
conditions of the AUV to some extent.
We conducted an experiment at Beijing University of

Technology. Experiments were implemented using the
XW-ADU7612 attitude azimuth integrated navigation sys-
tem, which is presented in Figure 6. XW-ADU7612 has
a built-in inertial measurement unit and a dual GPS.
Through an improved integrated navigation and attitude
measurement algorithm, XW-ADU7612 can output a high-
precision attitude angle that was used as a reference. By

TABLE 3 System precision of IMU and odometer

System precision
Gyroscope 0.5◦/h

IMU Accelerometer ≤1 mg
Data update rate 100 Hz

Odometer Speed 0.02 m/s

comparing the attitude angle obtained by various align-
ment methods and the attitude angle measured by XW-
ADU7612, we can verify the advantage of the proposed
method. Table 3 shows the azimuth precision of XW-
ADU7612. In the experiment, we used the odometer to pro-
vide the velocity as the auxiliary information. The principle
of the odometer is to obtain the circumference by measur-
ing the number of turns of the wheel, and then the speed
can be calculated. Thus, the odometer measures the speed
of the body frame (𝒃 frame). DVL is an instrument that
measures velocity based on the Doppler effect of sound
waves in the water. Therefore, DVL measures the speed of
the 𝒃 frame as well. Although the odometer-based veloc-
ity accuracy is not as good as DVL, it can be used to verify
advantages and disadvantages of various attitude estima-
tion methods. In this experiment, Crossbow VG700AB is
used for the system under test. The precision of IMU and
the odometer is presented in Table 4. The trajectory of the
car is shown in Figure 6.
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TABLE 4 System precision of XW-ADU7612

System precision
Yaw 0.1◦(base length > 2 m)
Attitude 0.05◦(static) 0.1◦(dynamic)

Figure 7 compares the SLGF results with the quaternion
Kalman filter (QKF), the singular value decomposition
(SVD), and the Lie group filter (LGF) without the recon-
structed noise covariance matrix, which is taken from our
previous work. We adopt the logarithmic scale for angles
and the linear scale for the time to draw the experiment
figure. Because of the logarithmic scale, Figure 7 shows
only those parts where the error is greater than zero. The
analysis of the variance and mean of the last 100s data
under different methods are shown in Table 5. We also

TABLE 5 Attitude angle error analysis

Yaw
error/rad

Pitch
error/rad

Roll
error/rad

Mean value SVD 4.383 × 10−2 1.491 × 10−2 1.364 × 10−2

QKF 3.202 × 10−2 8.562 × 10−3 7.866 × 10−3

LGF 2.042 × 10−2 1.699 × 10−3 1.225 × 10−3

SLGF 7.505 × 10−3 1.463 × 10−4 1.163 × 10−4

Variance SVD 4.871 × 10−3 1.699 × 10−3 1.241 × 10−3

QKF 5.401 × 10−3 1.105 × 10−3 8.247 × 10−4

LGF 4.645 × 10−3 7.521 × 10−4 5.338 × 10−4

SLGF 4.303 × 10−3 3.224 × 10−4 3.237 × 10−4

present standard deviation for the steady-state region in
Table 6.
From Figure 7, QKF, LGF, SVD, and SLGF all converge

over time, but LGF and SLGF have a better performance

F IGURE 7 Compare with other methods [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]
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TABLE 6 Standard deviation for the steady-state region

Yaw
error/rad

Pitch
error/rad

Roll
error/rad

Standard
Deviation

SVD 7.928 × 10−2 4.624 × 10−2 3.825 × 10−2

QKF 7.687 × 10−2 3.628 × 10−2 3.174 × 10−2

LGF 7.217 × 10−2 3.449 × 10−2 2.463 × 10−2

SLGF 6.794 × 10−2 1.946 × 10−2 1.868 × 10−2

than QKF and SVD. As shown in Tables 5 and 6, the atti-
tude angle error and the standard deviation of SLGF and
LGF is much smaller than QKF and SVD. Meanwhile,
from Figure 7 and Tables 5 and 6, it can be seen that
the performance of SLGF is better than LGF. The time
required to reduce the yaw error to less than 1.289 × 10−2 is
180s for SLGF and is 20s faster than LGF. Compared with
LGF, SLGF improves the yaw accuracy, pitch, and roll by
1.292 × 10−2, 1.553 × 10−3, and 1.109 × 10−2, respectively.
The experiment results prove that the proposed alignment
method using SLGF improve the alignment time and accu-
racy of SINS.
In order to further test the dynamic performance of the

proposed method, we chose to drive in areas with more
curves to obtain the second set of data, which is used to ver-
ify the reliability of various methods when the yaw angle is
changing. The global trajectory and local trajectory figure
of the vehicle is shown in Figure 8. The blue curve in the
local trajectory figure corresponds to the blue curve in the
overall trajectory figure, fromwhich it can be seen that the
trajectory is roughly sinusoidal. The analysis results of the
mean value and variance of the last 100s data of different
methods are shown in Table 7. And we also show standard
deviation for the steady-state region in Table 8. Experimen-
tal results of different methods are shown in Figure 9.
As can be seen from Tables 7 and 8 and Figure 9, the

results of the second experimental dataset are basically
consistentwith the results of the first experimental dataset.

TABLE 7 Attitude angle error analysis

Yaw
error/rad

Pitch
error/rad

Roll
error/rad

Mean value SVD 4.730 × 10−2 1.580 × 10−2 1.409 × 10−2

QKF 3.658 × 10−2 9.439 × 10−3 8.571 × 10−3

LGF 2.276 × 10−2 1.991 × 10−3 1.932 × 10−3

SLGF 9.403 × 10−3 4.343 × 10−4 1.817 × 10−4

Variance SVD 8.916 × 10−3 1.784 × 10−3 1.376 × 10−3

QKF 8.184 × 10−3 1.234 × 10−3 9.118 × 10−4

LGF 6.584 × 10−3 9.441 × 10−4 6.474 × 10−4

SLGF 5.304 × 10−3 3.463 × 10−4 4.434 × 10−4

TABLE 8 Standard deviation for the steady-state region

Yaw
error/rad

Pitch
error/rad

Roll
error/rad

STD SVD 9.645 × 10−2 4.744 × 10−2 3.945 × 10−2

QKF 9.046 × 10−2 3.683 × 10−2 3.694 × 10−2

LGF 8.142 × 10−2 3.562 × 10−2 2.559 × 10−2

SLGF 7.628 × 10−2 2.691 × 10−2 2.157 × 10−2

The results can better verify that the proposed method
is effective for the in-motion alignment for SINS. From
Figure 9, the proposed state- independent Lie group filter
effectively improves the alignment accuracy and reduces
the alignment time. The time required to reduce the yaw
error to less than 1.356 × 10−2 is 180s for SLGF, which
is much less than that with other methods. Compared
with other methods, SLGF improves yaw accuracy, pitch,
and roll by 1.336 × 10−2, 1.557 × 10−2, and 1.750 × 10−2,
respectively. As shown in Tables 7 and 8, the attitude angle
error and the standard deviation of the proposed alignment
method is much smaller than that of others.
All the results of the above simulation and two exper-

iments prove that the alignment method using Lie group
representation improve the alignment time and accu-
racy of SINS. And the proposed alignment method using

F IGURE 8 Trajectory figure [Color figure can be viewed in the online issue,which is available atwileyonlinelibrary.comandwww.ion.org]
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F IGURE 9 Compare with other methods [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

state-dependent Lie group filter has the best alignment per-
formance obviously.

6 CONCLUSION

The accuracy of the initial alignment has a significant
impact on the stability and reliability of navigation. When
GPS cannot provide information to determine the veloc-
ity in the navigation frame, underwater alignment involves
the establishment of a DVL-assisted model. The model
transforms the initial alignment problem into an optimal
estimation problem.
In this paper, a complete initial alignmentmethod is pro-

posed to solve underwater in-motion SINS by using the

Lie group representation for the rotation matrix. The Lie
group filter based on the properties of the Lie group is
used to overcome the drawbacks caused by the quaternion
filter. The model constructs a special measurement equa-
tion from a pair of vectors. Because of the properties of
the Lie group, the measurement equation does not require
linearization. Simulations show that the method can
converge in cases with large initial error and can obtain
a higher accuracy. In addition, an exact representation of
the noise covariance matrix for state-dependent measure-
ment noise is constructed, which effectively improves the
accuracy of the Lie group filter. Since the application
of the Lie group in navigation is still relatively limited,
the Lie group applications will be our future research
topic.
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APPENDIX

Proposition. Let𝑨𝑖 ∈ 𝐺𝑚×𝑚 denote a basic Lie group with
Lie algebra 𝔞 and covariance matrix 𝑷𝔞

𝑘
, and let {𝒍𝑘} ∈ ℝ𝑚

denote a zero-mean white random sequence with covariance
matrix 𝑷𝑙

𝑘
. Suppose that {𝔞𝑘} and {𝒍𝑘} are statistically inde-

pendent. Let {𝒗𝑘} ∈ ℝ𝑚 be defined as

𝒗𝑘 = 𝐺(𝑎𝑘)𝒍𝑘, (A1)

where𝐺(⋅) ∶ 𝔞 → 𝑨𝑙 is the Lie algebra to Lie groupmapping.
Then, the exact expression for the covariance matrix of 𝒗𝑘 ,
denoted by 𝑷𝑣

𝑘
, is given as

𝑷𝑣
𝑘

= 𝐺 (𝔞̂𝑘) 𝑷𝑙
𝑘
𝐺(𝔞̂𝑘)

𝑇
+ Γ

(
𝑷𝑙

𝑘
⊗ 𝑷𝔞

𝑘

)
Γ𝑇, (A2)

where Γ ∈ 𝐺𝑚×𝑚𝑛 is defined as

Γ = [𝐺𝑘 (𝑒1) 𝐺𝑘 (𝑒2) ⋯ 𝐺𝑘 (𝑒𝑖)] , 𝑖 = 1, 2, … , 𝑚. (A3)

The column vector 𝑒𝑖 in Equation (100) is the standard
unit vector in ℝ𝑚, with a value of one in position 𝑖 and val-
ues of zero otherwise. Note that 𝐺𝑘(⋅) can be expressed as a
linear mapping of the components of 𝑒𝑖 for 𝑖 = 1, 2, … , 𝑚.

Remark. In the Lie group representation, the state error
and covariancematrix of the state have unique definitions,
which have been presented. The first term of Equation (99)
represents the general form of the noise covariancematrix,
and the second term includes the state error based on the
Lie group and noise.

𝑷𝑙
𝑘

⊗ 𝑷𝔞
𝑘

=

⎡⎢⎢⎢⎢⎣
𝜎𝑷𝔞

𝑘
0 ⋯ 0

0 𝜎𝑷𝔞
𝑘

⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 𝜎𝑷𝔞
𝑘

⎤⎥⎥⎥⎥⎦
. (A4)

Equation (101) combines the noise covariance matrix
with the state covariance matrix and expands the dimen-
sions to 𝑚𝑚.

Γ
(
𝑷𝑙

𝑘
⊗ 𝑷𝔞

𝑘

)
Γ𝑇 =

[𝐺𝑘 (𝑒1) 𝐺𝑘 (𝑒2) ⋯ 𝐺𝑘 (𝑒𝑖)]

×

⎡⎢⎢⎢⎢⎣
𝜎𝑷𝔞

𝑘
0 ⋯ 0

0 𝜎𝑷𝔞
𝑘

⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 𝜎𝑷𝔞
𝑘

⎤⎥⎥⎥⎥⎦
[𝐺𝑘 (𝑒1) 𝐺𝑘 (𝑒2) ⋯ 𝐺𝑘 (𝑒𝑖)]

𝑇

= 𝜎
[
𝐺𝑘 (𝑒1) 𝑷𝔞

𝑘
𝐺𝑘(𝑒1)

𝑇
+ 𝐺𝑘 (𝑒2) 𝑷𝔞

𝑘
𝐺𝑘(𝑒2)

𝑇

+ ⋯ + 𝐺𝑘 (𝑒𝑖) × 𝑷𝔞
𝑘
𝐺𝑘(𝑒𝑖)

𝑇
]
. (A5)

Here, 𝑖 = 1, 2, … , 𝑚.
According to the isomorphism principle of Lie groups,

the corresponding mapping function 𝐺𝑘(⋅) integrates the
error term for each base vector and ensures the symme-
try of the covariance matrix. Therefore, Equation (83) can
accurately express the noise covariance matrix associated
with the state on the Lie group.
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