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Abstract
We propose a Simultaneous Localization and Mapping (SLAM)-based Integrity
Monitoring (IM) algorithm using GPS and fish-eye camera to compute the pro-
tection levels while accounting formultiple faults in GPS and vision.We perform
graph optimization using GPS pseudoranges, pixel intensities, vehicle dynam-
ics, and satellite ephemeris to simultaneously localize the vehicle, GPS satellites,
and key image pixels in the world frame. We estimate the fault mode vector by
analyzing the temporal correlation across pseudorange residuals and spatial cor-
relation across pixel intensity residuals. To isolate the vision faults, we develop
a superpixel-based piecewise random sample consensus. For the estimated fault
mode, we compute the protection levels by performing worst-case failure slope
analysis on the batch realization of linearizedGraph-SLAM formulation.We per-
form real-world experiments in an alleyway in Stanford, California and a semi-
urban area in Champaign, Illinois. We demonstrate higher localization accuracy
and tighter protection levels as compared to GPS-only SLAM-based IM.

1 INTRODUCTION

Integrity serves as a key performancemeasure in assessing
the correctness of the estimated position (Ochieng et al.,
2003). In urban environments, GPS systems receive fewer
measurements due to degraded satellite visibility. They
also suffer from received signal faults caused by multipath
and satellite faults caused by anomalies in the broadcast
navigation message. To address the above-mentioned
challenges, one possible solution is to incorporate addi-
tional redundancy through the sensor fusion of GPS and
vision. Vision sensor performs well in urban areas due to
the feature-rich surroundings (Hol, 2011). Sensor fusion
(Krishnaswamy, 2008) integrates measurements from
multiple sensors to improve the accuracy of the vehicle
and provide robust performance. Individual sensors,
such as GPS and camera, have inherent limitations in
operability that are reliably corrected by combining these
complementary sensors in a sensor fusion framework.
In particular, occlusion and illumination variations in

multiple pixel intensities induce data association errors
across images, thereby termed as vision faults (Miro,
Zhou, & Dissanayake, 2006). Therefore, there is a need
for the development of multi-sensor Integrity Monitoring
(IM) techniques that account for multiple faults in both
GPS and vision.

1.1 Related work

The concept of ReceiverAutonomous IntegrityMonitoring
(RAIM) (Hewitson &Wang, 2006) has been initially devel-
oped in the aviation sector for executing safety-critical
applications. However, extending the concept of integrity
from aviation to urban transportation is not entirely
straightforward (Zhu,Marais, Bétaille, & Berbineau, 2018).
This is because, as mentioned earlier, the sensors operat-
ing in urban areas face additional challenges (Joerger &
Spenko, 2017) due to static infrastructure, such as build-
ings and thick foliage, dynamic obstacles, such as traffic
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and pedestrians, and environmental conditions, such as
shadows, sunlight, and weather. Research (Joerger &
Spenko, 2017; Pullen, Walter, & Enge, 2011a) describes the
initial parallels between the established integrity require-
ments in aviation and the early safety standards followed
in the transportation sector. Based on this, the standard-
ized integrity requirements in aviation are found to be too
conservative for urban applications.
A collection of earlier works (Binjammaz, Al-Bayatti, &

Al-Hargan, 2013) adapted the traditional snapshot RAIM
techniques, which were originally developed for aviation
industry, to urban context. Salós, Martineau, Macabiau,
Bonhoure, and Kubrak (2013) studied the RAIM availabil-
ity in the context of electronic toll collection by design-
ing amodified weighted Least-Squares (LS) residual-based
RAIM that considers a constant mis-detection probabil-
ity. Another work (Zhang, Li, Cui, & Liu, 2017a) proposed
an adaptive RAIM by characterizing the position errors
and measurement residuals as a chi-squared distribution.
However, the limitation of this approach is that all pseu-
dorange measurements are considered to have the same
error variance, which is not a realistic assumption in an
urban scenario.
Prior literature on GPS-based IM for urban naviga-

tion addresses the insufficient availability of GPS mea-
surements by incorporating multiple GNSS constellations
(Borio & Gioia, 2016) and characterizing the measurement
errors associated with the Non-Line-Of-Sight (NLOS)
satellite signals (Groves & Jiang, 2013). However, due to
the dense building infrastructure, the geometry of satel-
lites is skewed, which still degrades the confidence in the
estimated integrity bounds. In this context, Zhang, Li, Cui,
and Liu (2017b) proposed an adapted-RAIM approach that
accounts for the satellite geometry in deciding whether
to include or exclude a potential multipath-affected mea-
surement. Santa, Úbeda, Toledo, and Skarmeta (2006)
and Pullen, Walter, and Enge (2011b) analyzed the exist-
ing infrastructure of Ground-Based Augmentation System
(GBAS) and Satellite-Based Augmentation System (SBAS)
for use by non-aviation users. However, these augmenta-
tion systems have selected coverage and comply with the
aviation integrity standards, which limits their applicabil-
ity in the urban transportation sector.
In addition to the above-mentioned snapshot algo-

rithms, a rich literature exists on utilizing sequential
approaches for RAIM analysis in urban areas. In Le Marc-
hand, Bonnifait, Ibañez-Guzmán, Peyret, and Bétaille
(2008), the authors developed a Kalman Filter (KF)-based
Fault Detection and Exclusion (FDE) algorithm where
the measurement residuals were independently compared
against a threshold to be flagged as either faulty or reliable.
Tominaga and Kubo (2019) proposed a KF approach where
the measurement noise covariance matrix is adaptively

estimated, and thereafter, the position error bounds are
estimated as being proportional to the state uncertainty.
Tran and Lo Presti (2019) designed a KF-based Solution
Separation (SS) RAIM methodology for urban navigation
that combines the smoothness and higher accuracy of KF
with the flexible framework of SS RAIM. Zhu et al. (2018)
and Margaria and Falletti (2016) summarize the existing
state-of-the-art techniques for IM in urban contexts and
also point out several open research issues in this field.
Some existing works rely on external information

sources to perform urban GPS-based IM. In Velaga, Qud-
dus, Bristow, and Zheng (2012), the authors developed
a sequential map-aided IM technique that checks for
outliers in position and Geographic Information Sys-
tem (GIS) using traditional RAIM (Walter, Blanch, Enge,
Pervan, & Gratton, 2008) and weight-based topological
map-matching process, respectively. Another paper (Bin-
jammaz et al., 2013) developed three phases of integrity
checks that include assessing the position quality via tra-
ditional RAIM, speed integrity via GPS Doppler, and map-
matching accuracy via fuzzy inference system. However,
these approaches have practical limitations because the
offline map database is not always available, and its accu-
racy cannot be guaranteed due to the dynamic changes in
the urban surroundings. Another line of prior work (El-
Mowafy & Kubo, 2017; Li, Bonnifait, Ibanez-Guzman, &
Zinoune, 2017; Toledo-Moreo, Bétaille, & Peyret, 2009) uti-
lizes the odometry information obtained from other sen-
sors, such as inertialmeasurement units, speedometer, and
camera, to perform GPS integrity analysis. But the draw-
backs of these approaches are that they do not account
for the faults in the external sensors and the simultaneous
occurrence of multiple faults.
Nowadays, research onmulti-sensor navigation inurban

areas using GPS and vision has received great attention
(Bonin-Font, Ortiz, &Oliver, 2008;Won et al., 2014). Dusha
and Mejias (2012) and Chen, Hu, Zhang, Shi, and Li (2018)
proposed a visual-GPS methodology, wherein the GPS
measurements are utilized to estimate the scale ambigu-
ity in visual odometry while the camera images aid in atti-
tude estimation. Won, Yun, Lee, and Sung (2012) propose
an integration of GPSwith amonocular camera to improve
the navigation performance. In Shepard and Humphreys
(2014), the authors proposed a Simultaneous Localiza-
tion and Mapping (SLAM) framework to estimate high-
precision position and attitude using carrier-phase GPS
measurements and feature-based visual odometry (Klein
& Murray, 2007). While the existing literature addresses
the notion of position accuracy, none of the state-of-the-
art techniques provide any safety guarantees for the multi-
sensor estimated navigation solution.
We leverage the generalized and flexible platform devel-

oped in our prior work (Bhamidipati & Gao, 2018), which
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F IGURE 1 Characteristics of Graph-SLAMusing GPS-only measurements; (a) Graph-SLAM framework utilizes GPS pseudoranges, vehi-
clemotion inputs, and satellite ephemeris to localize both vehicle andGPS satellites; advantage of localizingGPS satellites during faults, namely,
(b) broadcast anomalies and (c) multipath effects [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com
and www.ion.org]

is Simultaneous Localization and Mapping (SLAM)-based
Fault Detection and Isolation (FDI), as the basis for assess-
ing the multi-sensor integrity. This paper is based on our
recent ION GNSS+ 2019 conference paper (Bhamidipati &
Gao, 2019b). Another extension of the SLAM-based FDI
platform, described in our prior work (Bhamidipati &
Gao, 2019a), assesses the integrity of cooperative localiza-
tion using a network of receivers. SLAM (Cadena et al.,
2016), a well-known technique in robotics, utilizes sen-
sor measurements to estimate the landmarks in a three-
dimensional (3D) map while simultaneously localizing
the robot within it. Analogous to this, our prior work
(Bhamidipati & Gao, 2018) on SLAM-based FDI combines
the sequential data of GPS pseudoranges, vehicle motion
model, and satellite broadcast ephemeris in a graph frame-
work to simultaneously localize the robot, which is the
GPS receiver, landmarks in the map, which are the GPS
satellites. A key feature of this platform is that it utilizes
graph optimization techniques (Latif, Cadena, & Neira,
2014) and, therefore, does not require any prior assumption
regarding the distribution of states. As seen in Figure 1(a),
given that we localize the landmarks as well, our SLAM-
based FDI does not require any prior information regard-
ing the surrounding 3D maps.

Utilizing GPS satellites as landmarks is especially
fruitful during faults, namely broadcast anomalies and
multipath effects. As seen in Figure 1(b), the location of
GPS satellites estimated via satellite ephemeris is incor-
rect during broadcast anomalies and during multipath;
as seen in Figure 1(c), the received GPS pseudoranges
have additional bias. In both scenarios, the conventional
residual-based FDI module (Joerger, Chan, & Pervan,
2014) flags the measurements as faulty and excludes them
from navigation solution estimation. However, excluding
the faulty ones lower the total number of measurements
available for navigation. In contrast, our SLAM-based FDI
utilizes the sequential data of vehicle motion inputs and
GPS pseudoranges to estimate the position of GPS satel-
lites’, thereby mitigating the effect of broadcast anomalies.
Also, during multipath, instead of estimating the GPS
satellite location that agrees with the broadcast ephemeris,
our framework intelligently localizes the landmark to
a virtual location that complies with the received GPS
pseudorange. The concept of estimating virtual satellite
location, which corresponds to the reflection of an actual
GPS satellite across a building surface, has been demon-
strated in existing literature (Ng & Gao, 2016). Therefore,
unlike traditional GPS algorithms, the flexibility provided
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by our SLAM-based FDI in localizing the GPS satellites
improves the number of reliable measurements available
for navigation. A real-world experimental validation that
demonstrates an improved vehicle positioning accuracy
by utilizing our SLAM-based FDI framework is shown
later in Figures 11(a) and 11(b).

1.2 Key contributions

We propose the SLAM-based IM algorithm using GPS and
fish-eye camera to compute the error bounds, termed as
protection levels, of the Graph-SLAM estimated navigation
solution. In the graph framework, we consider global land-
marks as the GPS satellites and additional local landmarks
as the key image pixels in the world frame. We constrain
the graph via GPS pseudoranges, vision pixel intensities,
vehicle dynamics, and satellite ephemeris.
To obtain vision pixel intensities, we opt for a fish-eye

camera mounted on a vehicle and point it upwards for the
following reasons: firstly, given its wide (≥ 180◦) Field-Of-
View (FOV), the image pixels are spatially spread out in dif-
ferent directions with respect to the vehicle, thereby, com-
pensating for the restricted spatial geometry of the limited
global landmarks, i.e., GPS satellites. Secondly, given that
the camera is pointing upwards, the unstructured skyline
of the buildings aids in resolving the attitude of the vehicle.
Thirdly, the fish-eye image captures the open-sky section
with respect to the vehicle that is used to distinguish the
Line-Of-Sight (LOS) GPS satellites from that of the NLOS
ones (Shytermeja, Garcia-Pena, & Julien, 2014).
The main contributions of this paper are listed as

follows:

1. We design a Graph-SLAM framework using GPS and
fish-eye camera that simultaneously estimates the vehi-
cle, GPS satellites, and key image pixels and also
accounts for multiple faults in both GPS and vision.

2. To detect and isolate GPS faults, we evaluate the
deviation in each pseudorange residual against its cor-
responding empirical Cumulative Distribution Func-
tion (CDF), which represents the measurement errors
in non-faulty conditions.

3. We develop a superpixel based piecewise Random Sam-
ple Consensus (RANSAC) (Conte & Doherty, 2009; Li
& Chen, 2015) technique that performs spatial voting
across pixel intensity residuals to detect and isolate
vision faults.

4. Utilizing the fault mode vector estimated frommultiple
FDI, we derive the protection levels by applying worst-
case failure mode slope analysis (Joerger et al., 2014;
Salós et al., 2013) to the batch realization of the lin-
earized Graph-SLAM formulation.

5. We have conducted two real-world experiments using a
ground vehicle, one in an alleyway in Stanford, Califor-
nia and the other in a semi-urban area in Champaign,
Illinois. We have demonstrated the successful detection
of multiple measurement faults in GPS and fish-eye
camera. We have also validated tighter protection levels
and lower localization errors achieved via the proposed
algorithm as compared to SLAM-based IM that utilizes
only GPS measurements.

The rest of the paper is organized as follows: Section II
describes our SLAM-based IM that utilizes GPS and
fish-eye camera; Section III experimentally validates
the detection of multiple faults in both GPS and vision,
lower localization accuracy, and tighter protection levels
via the proposed algorithm as compared to GPS-only
SLAM-based IM; Section IV concludes the paper.

2 SLAM-BASED IMUSING GPS AND
FISH-EYE CAMERA

In thiswork,we focus on themeasurement faults related to
GPS and vision that frequently occur in urban areas.While
the formulation of the proposed algorithm is capable of
addressing other faults, for simplicity, we consider nomea-
surement faults associated with the receiver motionmodel
and satellite broadcast ephemeris. For reference, our prior
work (Bhamidipati &Gao, 2018) describes details on utiliz-
ing SLAM-based FDI to account for broadcast anomalies,
described earlier in Figure 1(b).
In Figure 2, we outline the architecture of the proposed

multi-sensor SLAM-based IMusingGPS and fish-eye cam-
era, which is summarized as follows:

1. During initialization, we create a 3D world map via
the estimated Position, Velocity, and Time (PVT) of the
receiver and satellites computed from an existing GPS
algorithm (Lashley, Bevly, &Hung, 2010). We also com-
pute a series of camera images to compute the intrin-
sic and extrinsic camera parameters. Further details
regarding the initialization are given in Section 3.2.

2. We pre-process the raw image obtained from the fish-
eye camera using our hybrid sky detection algorithm to
distinguish the sky pixels from the non-sky pixels. The
detected sky pixels are used to distinguish the LOS and
NLOS satellites. This information is thereafter used in
formulating the GPS measurement covariance.

3. We consider the non-sky pixels along with GPS pseu-
doranges and carrier-to-noise density (𝐶∕𝑁0) values,
receiver motion model, and satellite orbital model as
inputs to our algorithm.We combine themeasurements
in an extended graph optimization module to estimate
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F IGURE 2 Architecture of our SLAM-based IM
algorithm using GPS and fish-eye camera [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

the overall state vector, which consists of the state vec-
tor of the vehicle, GPS satellites, and key image pix-
els using an M-estimator based Levenberg Marquardt
algorithm (Lourakis et al., 2005; Shevlyakov, Morgen-
thaler, & Shurygin, 2008).

4. We independently analyze the measurement residuals
against an empirical Normal distribution to detect and
isolate GPS faults.We develop a superpixel-based piece-
wise RANSAC to perform spatial voting for the detec-
tion and isolation of vision faults. Based on the esti-
mated fault status of the measurements, we formulate
the measurement fault mode, which has binary entries,
such that 0 indicates non-faulty and 1 represents faulty.

5. Utilizing the estimated fault mode and overall state vec-
tor, we formulate the batch realization of linearized
Graph-SLAM formulation and, subsequently, compute
the protection levels using worst-case failure mode
slope analysis (Joerger et al., 2014; Salós et al., 2013).

The proposed SLAM-based IM algorithm using GPS and
fish-eye camera consists of three main modules, namely
measurement pre-processing, extended graph optimiza-
tion, and IM for Graph-SLAM. We describe the details
as follows.

2.1 Pre-processing the measurements

We consider the following measurements as inputs to our
SLAM-based IM algorithm: GPS pseudoranges and 𝐶∕𝑁0

values from the GPS receiver, pixel intensities from the
fish-eye image, motion input obtained from the vehicle
motion model, and satellite ephemeris decoded from the
navigation message.

2.1.1 Vision module

We pre-process the raw image obtained from the fish-
eye camera using our hybrid sky detection algorithm

to distinguish the sky-pixels from the non-sky pix-
els. The pipeline of our hybrid sky detection is seen
in Figure 3(a). Our hybrid sky detection takes into
account not only the pixel intensities but also prior
knowledge regarding the spatial location of the sky
pixels.
We convert the raw image to gray scale and then per-

form the median blur operation. The median blur (Wang,
Li, Yang, & Gong, 2010) is a nonlinear filter that reduces
the noise in the image while keeping the edges rela-
tively sharp. Next, we compute the gradient by com-
bining the magnitude obtained via two Sobel operations
(Gao, Zhang, Yang, & Liu, 2010), one executed in hor-
izontal and the other in vertical direction. An example
of the image obtained from the fish-eye camera oper-
ating in urban areas and pointing upwards is seen in
Figure 3(b).
We observe that the probability of sky is highest

close to the center and exponentially decreases outwards
(Haque, Murshed, & Paul, 2008). Therefore, the corre-
sponding location-based sky probability, denoted by 𝑝𝑙𝑜𝑐 is
given by

𝑝𝑙𝑜𝑐(𝒖) = exp
(
−
2‖𝒖 − 𝒄𝑙𝑜𝑐‖|Π|

)
, (1)

where 𝒖 is the two-dimensional (2D) image coordinates,
such that 𝒖 ∈ Π, Π represents the pre-defined domain of
the image coordinates. |⋅| denotes the cardinality of the
image domain, and ‖⋅‖ denotes the 2-norm residual. 𝒄𝑙𝑜𝑐 ⊂
𝒖 ∈ Π denotes the pre-defined center coordinates in the
2D image frame.
Combining the location probability with Otsu’s method

of intensity thresholding (Moghaddam, Cheriet, &Adotsu,
2012), we compute the hybrid optimal border, seen in
Figure 3(c), that separates the sky region, represented
by subscript sky, from that of the infrastructure, denoted
by subscript 𝑖𝑛𝑓. We minimize the variance of sky and
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F IGURE 3 An example showing the pipeline of pre-processing the fish-eye image in the vision module [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and www.ion.org]

infrastructure to estimate the Otsu’s intensity threshold
𝐼𝑜𝑡𝑠𝑢 as

𝐼𝑜𝑡𝑠𝑢 = argmin
𝑘∈ 𝑰

(
𝜔𝑠𝑘𝑦(𝑘)𝜎

2
𝑠𝑘𝑦

(𝑘) + 𝜔𝑖𝑛𝑓(𝑘)𝜎
2
𝑖𝑛𝑓

(𝑘)
)

from (Moghaddam, Cheriet, & Adotsu 2012), (2)

where

– I denotes the intensity vector that stacks all the
pixel intensities in the fish-eye image, such that 𝑰 =
{𝐼(𝒖) |𝒖 ∈ Π}, where 𝐼(𝒖) ∶ Π → ℝ denotes the inten-
sity of any 2D pixel coordinates 𝒖;

– 𝜔𝑠𝑘𝑦(𝑘) and 𝜔𝑖𝑛𝑓(𝑘) denote the weights associated with
the sky and building infrastructure, respectively, such
that 𝜔𝑠𝑘𝑦(𝑘) =

1|Π| ∑𝒖∈|Π| 𝟙{𝐼(𝒖) < 𝑘} and 𝜔𝑖𝑛𝑓(𝑘) =

1|Π| ∑𝒖∈|Π| 𝟙{𝐼(𝒖) > 𝑘};

– 𝜎2
𝑠𝑘𝑦

(𝑘) and 𝜎2
𝑖𝑛𝑓

(𝑘) denote the variance of the pixel
intensities associated with the sky and building infras-
tructure.

Utilizing Equations (1) and (2), we compute the hybrid
sky probability, denoted by 𝑝𝑠𝑘𝑦 at any 2D image coordi-
nate 𝒖, 𝒖 ∈ Π as

𝑝𝑠𝑘𝑦(𝒖) = exp
⎛⎜⎜⎝
−
|||𝐼(𝒖) − 𝐼𝑜𝑡𝑠𝑢

||||||𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
|||
⎞⎟⎟⎠ 𝑝𝑙𝑜𝑐(𝒖), (3)

where 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the maximum and minimum
intensity values in the fish-eye image, such that 𝐼𝑚𝑎𝑥 =

max𝒖∈Π 𝐼(𝒖) and 𝐼𝑚𝑖𝑛 = min𝒖∈Π 𝐼(𝒖), respectively. Con-

sidering 𝜂 as the pre-defined sky threshold, if 𝑝𝑠𝑘𝑦(𝒖) >
𝜂, it is categorized as sky pixel and non-sky pixel other-
wise. The sky-enclosed area in the fish-eye image is seen in
Figure 3(d). The value of 𝜂 is set during initialization and
explained later in Section 3.2.
Using the non-sky detected pixels, we describe the vision

measurement model of an omni-directional fish-eye cam-
era in Eq (4), which is formulated via direct image align-
ment (Caruso, Engel, & Cremers, 2015) and semi-dense
inverse depth map estimation (Engel, Schöps, & Cremers,
2014). Instead of utilizing standard algorithms (Klein &
Murray, 2007; Mur-Artal, Montiel, & Tardos, 2015) that
rely on feature detection and extraction, we perform direct
image alignment that directly processes the pixel intensi-
ties of keyframe and current image frame to estimate the
relative change in position and orientation of the vehicle.
The selected pixels of the key frame, termed as key pix-
els, refer to the ones that exhibit a high intensity gradient.
Details regarding the keyframe selection are explained in
the existing literature (Engel et al., 2014).

𝐼𝑘𝑓(𝒖) = 𝐼𝑡(𝜋(𝑤(Δ𝝁𝑡, 𝒖))) + 𝜂𝑣𝑖𝑠(𝒖)

from (Engel et al., 2014), (4)

with 𝜂𝑣𝑖𝑠(𝒖) is pixel noise and from Caruso et al. (2015),

𝑤(Δ𝝁, 𝒖) = R(Δ𝝁) 𝜋−1
(
𝒖, 𝑑𝑘𝑓(𝒖)

)
+ t(Δ𝝁),

𝜋(𝐩) =

⎡⎢⎢⎢⎣
𝑓𝑥

𝑝𝑥
𝑝𝑧 + ‖𝐩‖𝜉

𝑓𝑦
𝑝𝑦

𝑝𝑧 + ‖𝐩‖𝜉
⎤⎥⎥⎥⎦ +

[
𝑐𝑥
𝑐𝑦

]
,
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𝜋−1(𝒖, 𝑑) =
1

𝑑

⎛⎜⎜⎝
𝜉 +

√
1 + (1 − 𝜉)2(�̂�2 + 𝑣2)

�̂�2 + 𝑣2 + 1

⎡⎢⎢⎣
�̂�2

𝑣2

1

⎤⎥⎥⎦ −
⎡⎢⎢⎣
0

0

𝜉

⎤⎥⎥⎦
⎞⎟⎟⎠,

where the subscript 𝑘𝑓 refers to keyframe,

– 𝐼𝑘𝑓(𝒖) ∶ Π𝑘𝑓 → ℝ denotes the intensity of any 2D pixel
coordinates 𝒖 in the reference keyframe, and Π𝑘𝑓 ⊂ ℝ2

denotes the image domain of keyframe;
– 𝐼𝑡(𝒖) ∶ Π𝑛𝑠 → ℝ denotes the intensity of any 2D pixel
coordinates𝒖 in the current frame, andΠ𝑛𝑠 ⊆ Π denotes
the image domain consisting of non-sky pixels;

– 𝜋 ∶ ℝ3 → Π𝑛𝑠 denotes the mapping function of any 3D
world position coordinates 𝐩 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧] to a 2D pixel
in the image frame;

– 𝑤(Δ𝝁, 𝒖) denotes the 3D warp function that unprojects
the pixel coordinates 𝒖 and transforms it by a relative
state vector Δ𝝁. The relative state vector Δ𝝁 indicates
the difference between the current vehicle pose, denoted
by 𝝁𝑡 = [𝐱, 𝝍]𝑡 with respect to that of the keyframe,
denoted by 𝝁𝑘𝑓 , such that Δ𝝁 = 𝝁𝑡 − 𝝁𝑘𝑓; here, 𝐱 =

[𝑥, 𝑦, 𝑧] denotes the 3D vehicle position and 𝝍 denotes
the 3D orientation with respect to the world frame; R ∈

SO(3) and t ∈ ℝ3 denotes the rotation matrix and trans-
lation vector of Δ𝝁, respectively;

– 𝜋−1 ∶ Π𝑛𝑠 × ℝ+ → ℝ3 denotes the inverse mapping
of 2D pixel coordinates to 3D world coordinates via
an inverse distance represented by 𝑑. Here, �̂� = (𝑢 −

𝑐𝑥)∕𝑓𝑥 and 𝑣 = (𝑣 − 𝑐𝑦)∕𝑓𝑦 denotes the transformed 2D
pixel coordinates. The intrinsic camera parameters are
estimated during initialization and are denoted by 𝑓𝑥,
𝑓𝑦 , 𝑐𝑥, 𝑐𝑦 and 𝜉;

– 𝑑𝑘𝑓(𝒖) denotes the inverse distance of the pixel coordi-
nates in the keyframe.

Direct image alignment accounts for the similarity in
urban building infrastructure by preserving the spatial
context of the image. We compute a semi-dense map that
estimates the inverse-depth of key pixels in the keyframe
by executing a short-temporal baseline matching across
images. This vision measurement model is utilized later
in our extended graph optimization to formulate the
corresponding vision odometry-based component of the
cost function.

2.1.2 GPS module

In the GPS module, considering 𝑁 visible satellites, we
describe the GPS measurement model as

𝜌𝑘 = ‖𝐲𝑘 − 𝐱‖ + (
𝑐𝛿𝑡 − 𝑐𝛿𝑡𝑘

)
+ 𝜂𝑘, (5)

where 𝐱 and 𝐲𝑘 denotes the 3D position of the vehicle
and 𝑘𝑡ℎ satellite, respectively; 𝑐𝛿𝑡 and 𝑐𝛿𝑡𝑘 represents the
receiver clock bias and 𝑘𝑡ℎ satellite clock bias corrections,
respectively; 𝜂𝑘 represents the measurement noise related
to 𝑘𝑡ℎ satellite.
We also formulate the measurement covariance of 𝑘𝑡ℎ

satellite via the measured 𝐶∕𝑁0 values and the sky area
detected via Equation. (3) in the vision pre-processing
module. Note that the classification of the satellite as either
LOS or NLOS depends on the unknown state vector of
the vehicle and 𝑘𝑡ℎ satellite. Therefore, the measurement
covariance of 𝑘𝑡ℎ satellite is given by

(
𝜎𝑘
(
𝒙𝑡, 𝒚

𝑘
𝑡

))2
=

√
𝑏𝑘 + 𝑎𝑘

1

(𝐶∕𝑁0)𝑘

from (Shytermeja et al., 2014), (6)

where

– 𝒙𝑡 denotes the vehicle state vector at 𝑡𝑡ℎ time instant
comprising of 3D position, 3D velocity, clock bias,
clock drift, and 3D attitude, respectively, such that 𝒙𝑡 =
[𝐱, 𝑐𝛿𝑡, �̇�, 𝑐�̇�𝑡, 𝝍]𝑡;

– 𝒚𝑖𝑡 denotes the state vector of 𝑖
𝑡ℎ satellite comprising of

its 3D position, 3D velocity, clock bias, and clock drift
corrections, such that 𝒚𝑘𝑡 = [𝐲𝑘, 𝑐𝛿𝑡𝑖, �̇�𝑘, 𝑐𝛿�̇�𝑘]𝑡, 𝑖 ∈

{1, … ,𝑁};
– 𝑏𝑘 and 𝑎𝑘 are the vision coefficients, such that 𝑏𝑘 =

𝑏𝐿𝑂𝑆
𝑝𝑠𝑘𝑦(𝜋(𝐲𝑘))

and 𝑎𝑘 =
𝑎𝐿𝑂𝑆

𝑝𝑠𝑘𝑦(𝜋(𝐲𝑘))
when 𝑝𝑠𝑘𝑦(𝜋(𝐲𝑘)) >

𝜂 and 𝑏𝑘 =
𝑏𝑁𝐿𝑂𝑆

𝑝𝑠𝑘𝑦(𝜋(𝐲𝑘))
and 𝑎𝑘 =

𝑎𝑁𝐿𝑂𝑆
𝑝𝑠𝑘𝑦(𝜋(𝐲𝑘))

other-

wise; 𝜂 is the pre-defined threshold explained in Equa-
tion (3); 𝑏𝐿𝑂𝑆 , 𝑏𝑁𝐿𝑂𝑆 , 𝑎𝐿𝑂𝑆 and 𝑎𝑁𝐿𝑂𝑆 are constant pre-
determined coefficients, which are set during initial-
ization and explained later in Section 3.2, and 𝜋(𝐲𝑘)

denotes the projection of the state vector of 𝑘𝑡ℎ satellite
in the image frame.

2.2 Extended graph optimization

In our extended graph optimizationmodule, our cost func-
tion consists of four error terms, namely GPS pseudor-
anges, non-sky pixel intensities, receiver motion model,
and satellite orbital model, as follows:

𝑒𝑡 (𝛉𝑡) =

𝑁∑
𝑘=1

Λ
(((

𝑟𝑘𝑡 + 1
)
𝜎𝑘𝑡
)−1 |||𝛒𝑘𝑡 − ℎ

(
𝐱𝑡, 𝐲

𝑘
𝑡

)|||)

+

𝑁∑
𝑘=1

Λ

((
𝛀
𝑘

𝑡

)−1 ‖‖‖‖𝐲𝑖𝑡 − 𝑓
(
𝐮𝑘𝐲,𝑡, �̄�

𝑘
𝑡−1

)‖‖‖‖
)
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+ Λ

((
�̄�𝑡 + 𝚺𝑡

)−1 ‖‖‖𝐱𝑡 − 𝑔
(
𝐮𝐱,𝑡, �̄�𝑡−1

)‖‖‖
)

+
∑

𝐮∈Πns

Λ
(
((𝑠𝑡−1 (𝐮) + 1) 𝜔𝑡 (𝐮))

−1|𝐈kf (𝐮)
− 𝐈𝑡 (𝜋 (𝑤 (Δ𝛍𝑡, 𝐮))) |) , (7)

where

– 𝜽𝑡 denotes the overall state vector comprising of the state
vector of the vehicle, GPS satellites, and key pixels in
the world frame, given by 𝜽𝑡 = [𝒙𝑡, 𝒚

1
𝑡 , … , 𝒚𝑁𝑡 , 𝒑

𝑗
𝑡 ∀𝑗 ∈

{1, … , |Π|𝑘𝑓}] and is unknown to be estimated via graph
optimization;

– Λ denotes the M-estimator function of weighted residu-
als, where M-estimator (Shepard & Humphreys, 2014)
represents a robust regression method that accounts
for data containing outliers, extreme observations, or
that does not follow a normal distribution. Here, Λ(⋅)
is a symmetric, positive-definite function with a unique
minimum at zero. For instance, the conventional least-
squares is a special case of M-estimator, where Λ(Δ𝑧) =
(Δ𝑧)2. The choice of M-estimator for this work is given
in Section 3.2;

– 𝑟𝑘𝑡−1 denotes the estimated fault status of the received
GPS pseudorange from 𝑘𝑡ℎ satellite at the past time
instant; similarly, 𝑠𝑡−1(𝒖) denotes the estimated vision
fault status of any 2D pixel 𝒖 ∈ Π𝑘𝑓 at the previous time
instant; the GPS and vision fault status are estimated
later in Section 2.3.1;

– ℎ denotes the GPS measurement model obtained from
Equation (5), such that ℎ(𝒙𝑡, 𝒚𝑘𝑡 ) = ‖𝐲𝑘 − 𝐱‖ + (𝑐𝛿𝑡 −

𝑐𝛿𝑡𝑘); 𝑔 denotes the motion model of the receiver and 𝑓
denotes the satellite orbital model; �̄�𝑡−1 and �̄�𝑘𝑡−1 denote
the estimated state vector of the vehicle and 𝑘𝑡ℎ satellite,
respectively, at the previous time instant; 𝒖𝒙,𝑡 and 𝒖𝑘𝒚,𝑡
denote the motion control inputs of the vehicle and 𝑘𝑡ℎ
satellite, respectively; later in Section 3.2, we describe
the choice of vehicle motion model and satellite orbital
model used to validate our algorithm;

– �̄�𝑡 and �̄�𝑘
𝑡 denote the estimated covariance matrices

of the vehicle state vector and 𝑘𝑡ℎ satellite state vector.
For simplicity, we estimate the state covariances via a
statistical process known as propagation of uncertainty
(Engel et al., 2014);

– �̄�𝑡 denotes the integrity vector comprising of protection
levels associated with each term in the vehicle state vec-
tor 𝒙𝑡. Details regarding estimating the covariances and
protection levels are explained later in Section 2.3;

– 𝜎𝑘𝑡 denotes themeasurement covariance of the 𝑘
𝑡ℎ satel-

lite and is estimated from Equation (6); similarly, 𝜔𝑡(𝒖)
denotes the covariance associated with the intensity of

non-sky pixel 𝒖 and is estimated based on existing liter-
ature (Eckenhoff, Geneva, & Huang, 2019).

The first three terms in the cost function 𝐞𝑡 given in
Equation (7) correspond to the residuals associated with
the GPS pseudoranges, satellite ephemeris, and vehicle
state vector. These terms are equivalent to the terms con-
sidered in our prior work on GPS-only SLAM-based FDI
(Bhamidipati & Gao, 2018). The last term represents the
summation of intensity residuals across non-sky pixels
based on the vision measurement model explained in
Equation (4). In particular, we perform sub-graph opti-
mization at each instant, as seen in Equation (8), where the
cost function is formulated using the past history of mea-
surements.

𝜽𝑇 = argmin
𝜽𝑡−𝑇,…,𝜽𝑡

(
𝑡∑

𝑠=𝑡−𝑇

𝑒𝑠(𝜽𝑠)

)
, (8)

where 𝑇 denotes the number of time instants utilized in
the sub-graph optimization thread and 𝜽𝑇 = [𝜽𝑡−𝑇, … , 𝜽𝑡]

⊤

denotes our SLAM-based IM estimate of the overall state
vector computed during the sub-graph optimization. We
estimate the key pixels in the world frame, represented by
𝒑
𝑗
𝑡 , via inverse-mapping defined in Equation (4).
In addition to sub-graph optimization,which is executed

at each instant, we also periodically perform full-graph
optimization, which optimizes the entire graph and binds
the overall drift errors in our 3D world map. In this work,
when a new reference keyframe is chosen, we perform full-
graph optimization to compute its corresponding semi-
dense inverse depth map. This occurs at a slower update
rate as compared to sub-graph optimization so as to reduce
the overall computational complexity.We referred to Engel
et al. (2014) for executing the full-graph optimization.

2.3 IM for multi-sensor Graph-SLAM
framework

By expressing our extended graph optimization, explained
earlier in Section 2.2, as a nonlinear weighted LS problem,
we compute the protection levels of the estimated vehi-
cle position using worst-case failure mode slope analysis
(Joerger et al., 2014). For this, we refer to the existing rich
literature (Joerger et al., 2014; Salós et al., 2013) on worst-
case failure mode slope analysis for a linear LS estimator.
The formulation of our extended graph optimization as a
nonlinear WLS problem is shown later in Section 2.3.2.
However, there are challenges involved in applying worst-
case failure slope analysis for the protection-level compu-
tation of Graph-SLAM framework. The challenges and our
design solutions are listed as follows:
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1. The worst-case failuremode slope is derived for a linear
measurement model, but the cost function associated
with the Graph-SLAM is nonlinear. So, we linearize the
formulation of the cost function at the estimated overall
state vector.

2. The Graph-SLAM is a sequential method, whereas the
worst-case failure mode slope falls under the category
of snapshot IM technique. Therefore, we formulate a
batch realization of the linearized Graph-SLAM that
incorporates not only themeasurements received at the
current time instant, but also the past time history. This
incorporates the temporal aspect of Graph-SLAM in
computing the protection level.

3. Our Graph-SLAM framework consists of a large num-
ber of states and measurements. However, evaluating
all possible measurement fault modes is computation-
ally cumbersome. Therefore, using multiple FDI mod-
ules, we directly estimate one fault mode, which is a
binary vector, such that an element of the fault mode
is one if the corresponding measurement is flagged as
faulty and zero if otherwise.

2.3.1 Multiple FDI

Based on the estimated overall state vector from the
extended graph optimization explained in Section 2.2, we
independently compute themeasurement residuals associ-
ated with GPS pseudoranges and non-sky pixel intensities.
In our multiple FDI module, we evaluate the GPS resid-
uals by analyzing them against the temporal correlation
of their non-faulty error distribution and vision residuals
using spatial correlation across image pixels.
GPS faults: To detect and isolate GPS faults in pseu-

doranges, we evaluate each residual against an empirical
Normal distribution, which represents the measurement
error distribution during non-faulty conditions. This is jus-
tified because the GPS measurements follow a Gaussian
distribution during non-faulty conditions (Bhamidipati &
Gao, 2018). We empirically compute the non-faulty distri-
bution of GPS measurements during initialization, which
is described later in Section 3.2. Thereafter, deviation of the
measurement residual, denoted by Δ𝜌𝑘, from the CDF of
its empirical distribution, denoted byΦ𝑘

Δ𝜌, is categorized as
a fault and the corresponding fault status 𝑟𝑘𝑡 is computed in
Equation (9). The formulation of fault status is explained
in our prior work (Bhamidipati & Gao, 2019a).

𝑟𝑘𝑡 = 4
(
Φ𝑘
Δ𝜌(Δ𝜌

𝑘) − 0.5
)2

∀ 𝑘 ∈ {1, … ,𝑁}. (9)

Vision faults: Unlike GPS faults, vision faults caused
by data association errors exhibit a high spatial correla-

tion across image pixels and low temporal correlation.
This is justified because the vision faults are localized
to a group of neighboring pixels and are not isolated
to a stand-alone pixel. We developed a superpixel-based
piecewise RANSAC that performs spatial voting across
pixel intensity residuals to detect and isolate vision faults.
RANSAC (Conte &Doherty, 2009), a popular outlier detec-
tionmethod in image processing, estimates the optimal fit-
ting parameters of a model via random sampling of data
containing both inliers and outliers.
The steps involved in the superpixel-based piecewise

RANSAC are described as follows: first, we segment
the image into clusters, known as superpixels, based
on the color similarity and space proximity between
image pixels using superpixel segmentation (Li & Chen,
2015). During initialization, which is described later in
Section 3.2, we pre-define the number of superpixels into
which the non-sky pixels are segmented to be Γ. For each
non-sky superpixel, we denote the pixel intensity vector
as 𝑰𝑗 ∀𝑗 ∈ {1, … , Γ}, which stacks the pixel intensities of
each superpixel. We represent as a 2D plot the expected
and received intensities, which are associated with the
pixels of the current image and keyframe, respectively.
The mapping between the key pixels and pixels of the
current image was estimated earlier during extended
graph optimization. Next, we estimate the fitted line using
RANSAC that passes through the optimal set of inliers
and, thereafter, compute the fraction of outliers in the
superpixel, which is defined by 𝜈

𝑗
𝑗
. Then, utilizing the

estimated model parameters of the fitted line, we evaluate
the corresponding fraction of outliers at all the other
non-sky superpixels, denoted by 𝜈

𝑗

𝑘
∀𝑘 ∈ {1, … , Γ} − 𝑗.

Finally, the fault status at each superpixel is computed as
the product of all the estimated outlier fractions, as seen
in Equation (10), and the same fault status is assigned to
all the pixels within that superpixel. This procedure is
repeated for all the non-sky superpixels to compute the
fault status of all the non-sky pixels in the keyframe. Our
algorithm considers an underlying assumption that there
is a sufficient number of superpixels to reach a common
consensus. If the number of superpixels associated with
non-sky pixels is less, such as in a open-sky setting, a
pre-defined penalty is assigned to the vision fault status.

𝑠𝑡(𝒖) = 𝜈
𝑗
1 ⋯𝜈

𝑗
Γ ∀𝒖 ∈ 𝑰𝑗. (10)

2.3.2 Protection-level computation

In accordance with the design solutions listed earlier,
we linearize the sub-graph optimization framework,
seen in Equations (7) and (8), using the Taylor-series
expansion (Shepard & Humphreys, 2014). Using measure-
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ment equations described in Equations (4) and (5), we
derive the batch realization of linearized Graph-SLAM in
Equation (11), which is based on the formulation of batch
realization derived for a linear LS estimator in Joerger
and Pervan (2013). Batch realization refers to stacking the
measurement equations obtained across the desired time
history.

Δ𝒛𝑇 = 𝑪𝑇Δ𝜽𝑇 + 𝜼𝑇 + 𝒇𝑇, (11)

where

– Δ𝒛𝑇 denotes the overall measurement vector of sub-
graph optimization, such that Δ𝒛𝑇 = [Δ𝑧𝑡−𝑇, … , Δ𝑧𝑡]

⊤

where Δ𝑧𝑡 denotes the measurement vector at 𝑡𝑡ℎ time
and concatenates theGPS pseudoranges, vehiclemotion
input, satellite ephemeris, and keyframe pixel inten-
sities; similarly, 𝜼𝑇 denotes the overall measurement
noise;

– 𝑪𝑇 denotes the linearized overall measurement model
that represents the sub-graph optimization, such that
𝑪𝑇 = 𝑑𝑖𝑎𝑔{𝐶𝑡−𝑇, … , 𝐶𝑡}. Here, 𝐶𝑡 denotes the measure-
ment model at 𝑡𝑡ℎ time that vertically stacks the Jaco-
bian associated with the GPS pseudoranges, denoted by
𝐻, vehicle motion model and satellite orbital model,
denoted by 𝐴 and non-sky pixel intensities, denoted by
𝐵, such that 𝐶𝑡 = [𝐻,𝐴, 𝐽]⊤𝑡 ;

– 𝒇𝑇 denotes the overall fault vector associated with the
overall measurement vector and, thereby, stacks mea-
surement faults obtained from individual sensor sources
and across time instants from 𝑡 − 𝑇 to 𝑡.

Re-writing Equations (7) and (8), we express our M-
estimator-based Graph-SLAM formulation that is solved
via Levenberg-Marquardt (Ranganathan, 2004) algorithm,
as a weighted nonlinear LS problem in Equation (12).

Δ𝜽𝑇 = 𝑲𝑇Δ𝒛𝑇, (12)

where

– 𝑲𝑇 denotes the overall estimation matrix, such
that 𝑲𝑇 = 𝑑𝑖𝑎𝑔{𝐾𝑡−𝑇, … , 𝐾𝑡}. Here, 𝐾𝑡 denotes
the estimation matrix at 𝑡𝑡ℎ time, such that
𝐾𝑡 = [𝑉𝑡𝐻

⊤
𝑡 𝑆

−1
𝑡 , 𝑉𝑡𝐴

⊤
𝑡 𝑅

−1
𝑡 , 𝑉𝑡𝐽

⊤
𝑡 𝑃

−1
𝑡 ] and 𝑉

denotes the pseudo-inverse matrix, such that 𝑉𝑡 =

(𝐻⊤
𝑡 𝑆

−1
𝑡 𝐻𝑡 + 𝐴⊤

𝑡 𝑅
−1
𝑡 𝐴𝑡 + 𝐽⊤𝑡 𝑃

−1
𝑡 𝐽𝑡 + 𝛽 𝑑𝑖𝑎𝑔(𝐻⊤

𝑡 𝐻𝑡 +

𝐴⊤
𝑡 𝐴𝑡 + 𝐽⊤𝑡 𝐽𝑡))

−1;
– 𝛽 denotes the damping factor of the LMalgorithm that is
set during initialization, which is described later in Sec-
tion 3.2.

– 𝑆𝑡, 𝑅𝑡, 𝑃𝑡 denotes the M-estimator-based weight func-
tions for the GPS pseudoranges, motion models of vehi-

cle and satellites, and non-sky pixel intensities, respec-
tively, and evaluated at 𝜽 = 𝜽𝑡. Details regarding the
weight function of anM-estimator are explained later in
our prior work (Bhamidipati & Gao, 2018);

Next, we define the overall test statistic, denoted by 𝜁,
as the summation of the weighted squared residuals across
all themeasurements. We consider an assumption that the
overall test statistic is the chi-square distributed, denoted
by 𝜒2

𝑘
under non-faulty conditions, and non-central chi-

squared, denoted by 𝜒2
𝑘,𝜆
, under the presence of GPS faults

or vision faults or both.

𝜁 =
(
Δ𝒛𝑇 − 𝑪𝑇Δ𝜽𝑇

)⊤(
Δ𝒛𝑇 − 𝑪𝑇Δ𝜽𝑇

)
, (13)

with

𝜁 =

⎧⎪⎨⎪⎩
𝜒2
𝑘

𝐟𝑇 = 𝟎 ornon − faulty,

𝜒2
𝑘,𝜆

otherwise,

(14)

where 𝑘 denotes the number of redundant measurements,
i.e., the difference between the number of overall mea-
surements, denoted by 𝑛 and overall states, denoted by 𝑙,
such that 𝑘 = 𝑛 − 𝑙. 𝜆 indicates the non-centrality param-
eter associated with the overall test statistic during faulty
conditions.
According to the worst-case failure mode slope anal-

ysis (Salós et al., 2013), as seen in Figure 5, the protec-
tion level is calculated as the projection in the position
domain of the measurement faults that would generate a
non-centrality parameter 𝜆 = 𝜆𝑡ℎ in the overall test statis-
tic 𝜁 with the maximum slope. In particular, the non-
centrality parameter 𝜆𝑡ℎ is estimated from the false-alarm,
denoted by 𝑝𝐹𝐴 and mis-detection rates, denoted by 𝑝𝑀𝐷 ,
which are set according to the pre-defined integrity
requirements.
We formulate the overall measurement fault mode,

denoted by 𝒃𝑇 , where 𝒃𝑇 = [𝒃𝑡−𝑇, … , 𝒃𝑡]
⊤. Here, 𝒃𝑡 is the

measurement fault mode, which is estimated in Equa-
tion (15) using GPS and vision fault status obtained via
Equations (9) and (10). For this, we consider a pre-defined
fault threshold, denoted by 𝜅, such that if the fault status is
above 𝜅, the measurement is flagged as faulty in the com-
putation of protection levels. Given that we consider mea-
surement faults in only GPS and vision, the fault status of
receiver and satellite motion models is set to zero. How-
ever, the corresponding fault vector, which comprises of
the exactmeasurement fault magnitudes, is still unknown.
According to Salós et al. (2013), for a given fault mode, the
worst-case fault direction that maximizes the integrity risk
is the one that maximizes the failure mode slope, which is
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F IGURE 4 Pipeline for superpixel-based
piecewise RANSAC that is used to estimate
the fault status of vision-based superpixels
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]

F IGURE 5 Protection levels computed as the intersection of
worst-case failure mode slope and non-centrality parameter (Salós
et al., 2013) [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

seen in Figure 5 and is denoted by 𝑔𝒃.

𝐛𝑡 =
[
𝟙{𝑟1𝑡 >𝜅}

, … , 𝟙{𝑟1𝑡 >𝜅}
, 𝟎, 𝟙{𝑠(𝐮)𝑡>𝜅}

∀𝐮 ∈ Πkf
]
𝑡
. (15)

In Equation (16), we define the square of failure mode
slope, denoted by 𝑔2

𝒃
, as the ratio of squared state estima-

tion error in the vehicle position, which is denoted by 𝝐,
over the squared overall test statistic, which is denoted by
𝜁. Using the linearized equations seen in Equations (11)-
(13), we derive the failure slope for the sub-graph optimiza-
tion framework in terms of the unknown fault vector. For
this, we consider 𝑪𝑇𝑲𝑇𝑪𝑇 is negligible, which is a valid
approximation after the iterative convergence of the graph
optimization at any time instant since 𝛽 << 1. Consider-
ing 𝑛𝒃 to be the number of non-zero entries in the fault
mode 𝒃𝑇 estimated viamultiple FDImodule, we define the

fault matrix, denoted by 𝐵𝒃, as 𝐵𝐛 = [I𝑛𝐛×𝑛𝐛 , 𝟎(𝑛−𝑛𝐛)×𝑛𝐛]
𝑇 ,

where I𝑛𝐛×𝑛𝐛 is an identity matrix of size 𝑛𝐛 × 𝑛𝐛 and
𝟎(𝑛−𝑛𝐛)×𝑛𝐛 is a zero matrix of size (𝑛 − 𝑛𝒃) × 𝑛𝒃. Note
that I is different from the intensity vector I defined ear-
lier in Equation (2). We re-arrange the rows of the 𝑚𝜖

and 𝑀𝜁 matrices, such that the faulty measurements are
stacked first. Thereafter, we define a transformed fault vec-
tor, denoted by 𝒇𝜁 , such that 𝒇𝑇 = 𝐵𝒃𝑀𝜁𝒇𝜁 . Based on the
above-mentioned steps, we describe the failure slope for-
mulation of Graph-SLAM framework in Equation (16).

𝑔2
𝐛
=

𝛆𝑇𝛆

𝜁
=

(
Δ𝛉𝑇 − Δ�̄�𝑇

)⊤ (
Δ𝛉𝑇 − Δ�̄�𝑇

)
(
Δ𝐳𝑇 − 𝐂𝑇Δ�̄�𝑇

)⊤ (
Δ𝐳𝑇 − 𝐂𝑇Δ�̄�𝑇

) ,
=

𝐟⊤𝑇

[(
𝛼⊤𝐊𝑇

)⊤ (
𝛼⊤𝐊𝑇

)]
𝐟𝑇

𝐟 ⊤𝑇

[
(I − 𝐂𝑇𝐊𝑇)

𝑇
(I − 𝐂𝑇𝐊𝑇)

]
𝐟𝑇

,

=
𝐟⊤
𝜁
𝑀𝑇

𝜁
𝑚𝛆𝑚

⊤
𝛆 𝑀𝜁𝐟𝜁

𝐟 ⊤
𝜁
𝐟𝜁

, (16)

where 𝛼 extracts a state of interest from the overall state
vector 𝜽, such that 𝛼𝑇 = [𝟎1×(𝑙−1−𝑙𝑎), 1, 𝟎1×𝑙𝑎 ] where 𝑙𝑎
indicates the number of states before the state of interest.
𝑀𝜁 denotes the residual matrix, such that 𝑀𝜁 = (𝐵𝑇

𝐛
[(I −

𝐂𝑇𝐊𝑇)
𝑇(I − 𝐂𝑇𝐊𝑇)]𝐵𝐛)

−1∕2 and 𝑚𝝐 represents the state
gain matrix, such that𝑚𝛆 = 𝐵𝑇

𝐛
(𝛼𝑇𝐊𝑇)

𝑇
.

Referring to Joerger et al. (2014), for a given fault mode
but unknown fault vector, the worst-case failure slope
equals the maximum eigenvalue of the corresponding fail-
ure slope formulation. Therefore, we express the worst-
case failure slope of the Graph-SLAM framework as

�̄�2
𝒃
= 𝑚𝑇

𝝐 𝑀𝜁𝑀
𝑇
𝜁
𝑚𝝐. (17)
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Next, we compute protection level �̄�𝑡 for the state of
interest considered in 𝛼𝑇 , seen in Equation (18), as the
y-coordinate that corresponds to the integrity metric 𝜆𝑡ℎ
along the line passing through the origin and with slope
given by �̄�2

𝒃
.

�̄�𝑡 =
√
𝜆𝑡ℎ�̄�

2
𝒃
. (18)

3 EXPERIMENT RESULTS

We analyze the performance of the proposed multi-
sensor SLAM-based IM algorithm that utilizes a GPS
receiver and a fish-eye camera. In particular, we vali-
date the improved localization accuracy and tighter pro-
tection levels obtained via the proposed multi-sensor
SLAM-based IM as compared to GPS-only SLAM-based
IM.

3.1 Experimental Setup

We utilize a ground vehicle to perform two real-world
experiments: one in the alleyway of Stanford, California
and the other in the semi-urban area of Champaign, Illi-
nois. Our experimental setup comprises of a UBLOXNEO-
M8U GPS receiver that is connected to a roof-mounted
patch antenna. We also have an upward-facing ELP USB
camera with 8 mega pixel resolution and fitted with a 180◦
FOV fish-eye lens. In addition, we utilize the navigation
solution estimated by a high-fidelity RTK-GNSS Trimble
BD940-INS receiver equipped with a Zephyr antenna as
the ground truth reference. We utilize the Robot Operat-
ing System (ROS) to publish the measurements obtained
from the GPS receiver and fish-eye camera. We record the
data in rosbag files, which are later post-processed to vali-
date the proposed algorithm.We choseROS as our data col-
lection platform because it provides an easy-to-implement
interface to obtain measurements from varied sensors and
synchronize them to a common UNIX epoch time. The
frame transformations between the body frame of GPS
receiver, fish-eye camera, and ground truth is measured
before the start of the experiment and is given as a user-
defined input during the initialization of our SLAM-based
IM algorithm.

3.2 Implementation details

Before we post-process the experimental data, we refer
to the existing work (Scaramuzza, Martinelli, & Siegwart,
2006) on omni-directional cameras for executing the cal-
ibration procedure. In particular, we capture a multiple

images of the checkerboard taken from different view-
points, to estimate the intrinsic parameters of the fish-eye
camera, namely 𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦, 𝜉, which are defined earlier
in Equation (4). These intrinsic parameters map the image
plane to a 3D camera frame, where the origin of the camera
frame is at its optical center, 𝑥 and 𝑦 axes are aligned with
the image plane. This process also undoes the distortion
caused in the images because of its wide FOV.
As explained earlier in Section 2, we perform initial-

ization in two stages: one in open-sky and the other in
an urban setting. In the first stage of open-sky initializa-
tion, we create a 3D world map using the PVT of receiver
and GPS satellites, which are estimated via weighted LS
(Salós et al., 2013). Here, world frame represents the Earth-
Centered Earth-Fixed (ECEF) frame in which the GPS
operates. We also empirically analyze the pseudorange
residuals to independently compute the non-faulty Gaus-
sian distribution of all visible GPS satellite signals. We
estimate the vehicle motion inputs by added simulated
measurement noise to the ground truth velocity measure-
ments. This is justified because, as explained earlier, in
this work, we consider no faults/anomalies in the vehi-
cle motion model and satellite ephemeris. However, for
readers interested in accounting for faults in the vehicle
motion model, the motion inputs can be extracted from
an IMU sensor and the fault mode vector 𝒃𝑡, described
in Equation (15), can be modified accordingly. The second
stage of initialization is executed after the vehicle enters
the semi-urban/urban surroundings. We process multiple
instances of short-temporal baseline images to select a ref-
erence keyframe. Based on the keyframe, we compute the
extrinsic parameters, i.e., frame transformation from the
camera to world frame.
We utilize a combination of Huber M-estimator (Huber,

2004) and Tukey bisquare M-estimator (Hoaglin, 2003)
to formulate the cost function. The justification regard-
ing our choice of M-estimator is explained in our prior
work (Bhamidipati & Gao, 2018). During initialization and
when the total number of landmarks are ≤ 15, we uti-
lize Huber M-estimator to ensure convergence and in all
the other conditions, we opt for a bisquare M-estimator
to achieve better accuracy. Detailed explanation regarding
the M-estimator equations and the corresponding weight
functions are discussed in our prior work (Bhamidipati &
Gao, 2018). Based on heuristic analysis, we set the param-
eters of different modules in the proposed multi-sensor
SLAM-based IM as follows: vision coefficients as 𝑏𝐿𝑂𝑆 = 2,
𝑏𝑁𝐿𝑂𝑆 = 3, 𝑎𝐿𝑂𝑆 = 5 and 𝑎𝑁𝐿𝑂𝑆 = 50, number of super-
pixels as Γ = 50, damping factor of LM algorithm as 𝛽 =

0.02. To minimize mis-detection rates, we set a conser-
vative value of 𝜂 = 0.7 for the pre-defined sky threshold
described in Equation (3). Also, the fault status threshold
of our multi-sensor SLAM-based IM is set as 𝜅 = 0.65.
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F IGURE 6 Route taken by a ground vehicle during the first experiment conducted for 45 s. For 𝑡 < 8 s, which is highlighted in magenta,
the vehicle operates in open-sky conditions. Between 𝑡 = 8 − 25 s, which is indicated by the red highlighted region, the vehicle passes from
under an overhead bridge and suffers from severely degraded satellite visibility. For 𝑡 > 25 s, which is highlighted in blue, the vehicle operates
in the semi-urban region with tall buildings that block a section of the sky [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

3.3 Experiment-1: Alleyway in Stanford,
California

The first set of experiments are conducted in an alleyway
in Stanford, California where the ground vehicle drove
along the street for a duration of 45 s. As seen in Figure 6,
the entire duration of the experiment can be divided into
three urban contexts: first is the magenta highlighted
region during 𝑡 < 8 s that represents relatively open-sky
conditions, second is the red highlighted region between
𝑡 = 8 − 25 s that represents the region where the ground
vehicle passes from under an overhead bridge, and third
is the blue highlighted region for 𝑡 > 25 s that indicates
a semi-urban setting with feature-rich visual surround-
ings. The aim of these experiments is to analyze the
convergence trend of the proposed multi-sensor SLAM-
based IM algorithm and its performance in the presence
of different urban challenges.
In Figure 7, we demonstrate an improved performance

of the proposed algorithm that utilizes the GPS and fish-
eye camera. Our first and second stage of initialization,
explained earlier in Section 3.2, is carried out till 𝑡 = 2 s.
We observe that the weighted LS approach using GPS-
only shows large localization errors both when the ground
vehicle passes from under the overhead bridge and also
when surrounded by tall buildings.Unlike the LS approach
that shows a mean of 19.51 m and standard deviation of
9.12 m, the proposed multi-sensor SLAM-based IM algo-

rithm demonstrates a low mean of 6.14 m and standard
deviation of 0.97 m. We also demonstrate robust protec-
tion levels that accurately bind the localization errors for
the entire duration. The convergence of our protection lev-
els is achieved at around 𝑡 ≈ 7 s. The size of the protection
level shows a low mean of 6.9m and standard deviation of
2.44m. Here, the size of the protection level is indicated in
Figure 7 by the gap between the black line, which denotes
the protection level and blue line, which denotes the local-
ization error of SLAM-based IM.

3.4 Experiment-2: Semi-urban area of
Champaign, Illinois

The second set of experiments are conducted in the semi-
urban area of Champaign, Illinois for a duration of 100 s.
During 𝑡 = 0 − 70 s, the ground vehicle operates in open-
sky conditions, thereby experiencing noGPS faults but less
visual features. In Figure 8, the blue highlighted region
suffers from vision challenges, namely illumination vari-
ations due to sunlight and shadows, that cause data asso-
ciation errors across images. Similarly, the red highlighted
region is enclosedwith tall buildings that lead tomultipath
effects in the GPS measurements. For instance, at 𝑡 = 78 s,
we showcase the true overlap of the GPS satellite positions
over the fish-eye image, where three out of the seven visi-
ble satellites are likely to be affected by multipath.
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F IGURE 7 Comparison of the localization errors obtained via multi-sensor SLAM-based IM that utilizes GPS and fish-eye camera, which
is plotted in blue, with that of the traditional least squares, which is plotted in red. Tight protection levels are also achieved via multi-sensor
SLAM-based IM that accurately binds the localization errors for the entire duration [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

F IGURE 8 Route taken by a ground
vehicle during the experiment conducted for
100 s. Between 𝑡 = 70 − 100 s, the vehicle
experiences GPS faults due to multipath and
vision faults due to illumination variations.
At 𝑡 = 78 s, the overlap of the skyplot of GPS
satellites with the fish-eye image shows the
multipath-affected GPS measurements [Color
figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com
and www.ion.org]

Figure 9 shows the average fault status of GPS pseu-
doranges and vision superpixels, as indicated in red and
blue, respectively. Given that the ground vehicle navigates
in open-sky conditions for 𝑡 < 70 s, the average GPS fault
status estimated via our multiple FDI module is low,
whereas the average vision fault status is high due to the
feature-less surroundings. As the vehicle passes through
the red highlighted region shown in Figure 8 that repre-
sents the semi-urban area, the average fault status of vision
is low but that of the GPS increases due to multipath.
Next, we further analyze the performance of our multiple
FDI modules in the challenging semi-urban area, i.e., for
𝑡 > 70 s during which the ground vehicle experiences GPS

and vision faults. Figure 10(a) plots that the individual GPS
fault status of three out of the seven visible satellites with
PRNs 6, 12, and 2. In accordance with the skyplot shown
in Figure 8, our proposed SLAM-based IM algorithm
successfully flags the satellites with PRN 6 and 12 as faulty
while accurately estimating the high-elevation satellite
with PRN 2 as non-faulty. A key point to note is that we
consider fault status to simply indicate the confidence in
the reliability of the landmark-measurement pair. Based
on our earlier discussion related to Figure 1, the fault sta-
tus doesn’t flag the measurement based on whether its a
reflected signal or not, but on the relevance of information
provided by the measurement. During the same duration,
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F IGURE 9 Performance of ourmultiple FDImodule via average fault status of GPS pseudoranges, indicated in red, and vision superpixels,
indicated in blue. When the ground vehicle navigates through the semi-urban region, i.e., for 𝑡 > 70 s, the average fault status associated with
GPS is high due to multipath, whereas vision is low due to rich features [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

F IGURE 10 Estimated fault status of (a)GPSmeasurements and (b) vision superpixels during 𝑡 = 70 − 100 s, i.e., when the ground vehicle
navigates through the semi-urban area. In (a), our multiple FDI module successfully detects satellites with PRN 6, 12 as faulty while accurately
estimating the PRN 2 as non-faulty. In (b), where eachmarker indicates a superpixel, the trend of fault status associated with superpixels is low
given the rich features but, later, increases due to illumination changes [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

we also analyze the vision fault status associated with the
superpixels. In Figure 10(b), at each time instant, we plot
the top four fault statuses of the superpixels, such that each
marker represents a superpixel. We observe that in the
urban region, the value of the associated vision fault status
decreases due to feature-rich tall buildings in urban areas.
However, when the vehicle enters the blue highlighted
region seen in Figure 10(b), the illumination variations
induced by the bright sunlight causes the fault status
associated with certain superpixels to show an increasing
trend.

We demonstrate the improved performance of the
SLAM-based IM algorithm that utilizes GPS and fish-
eye camera seen in Figure 11(a), as compared to the
SLAM-based IM algorithm that utilizes GPS-only seen in
Figure 11(b). By utilizing GPS and fish-eye camera, we
demonstrate higher localization accuracy, with a mean of
8.8 m and standard deviation of 1.73 m, as compared to
employingGPS-only that shows amean of 16.2mand stan-
dard deviation of 2.86 m. We also validate that a lower
mean size of protection levels are estimated using GPS
and fish-eye camera, i.e., 6.5 m than using GPS-only, i.e.,
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F IGURE 11 Comparison of SLAM-based IM in Champaign, Illinois: (a) using GPS and fish-eye camera; (b) using GPS-only. Lower local-
ization errors and tighter protection levels are achieved via GPS and fish-eye camera as compared to GPS-only [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

10.5 m thereby, achieving tighter protection levels. Here,
the size of the protection level denotes the gap between the
black line, which indicates the protection level, and blue
line, which indicates the localization error associated with
SLAM-based IM.
In Figure 11(a), we also compare the localization

accuracy of the proposed multi-sensor SLAM-based IM,
indicated by the blue line, with that ofmulti-sensor SLAM-
based IM that excludes GPS satellites as landmarks, indi-
cated by the green line. To perform this analysis, instead of
considering the GPS satellite state vector 𝒚𝑘 as unknown
in the overall state vector 𝜽, we consider this to be known
information that is computed via satellite ephemeris. We
observe that by excluding GPS satellites as landmarks,
we achieve localization errors that are better than GPS-
only Graph-SLAM but equal or worse than multi-sensor
Graph-SLAM. This is justified because, as explained
earlier in Section 1.1, not considering GPS satellites as
landmarks potentially lowers the available measurement
redundancy in the presence of multipath effects.

4 CONCLUSIONS

We proposed a Simultaneous Localization and Map-
ping (SLAM)-based Integrity Monitoring (IM) algorithm
using a GPS and fish-eye camera that estimates the
protection levels of the Graph-SLAM framework while
accounting for multiple faults in GPS and vision. We
developed a hybrid sky detection algorithm to distinguish
the non-sky and sky pixels, which are later used in graph
optimization and GPS measurement covariance, respec-
tively. By utilizing the GPS pseudoranges, non-sky pixel
intensities and receiver and satellite motion models, we
performed graph optimization via the M-estimator-based
Levenberg Marquardt algorithm. We simultaneously

estimated the state vector of the vehicle, GPS satellites,
and key image pixels in the world frame. We estimated
the fault mode vector by independently evaluating the
measurement residuals against an empirical Normal
distribution for GPS faults and using our developed
superpixel-based piecewise RANSAC for vision faults. We
computed the protection levels via the worst-case failure
slope analysis that estimates the maximum eigenvalue
associated with the failure slope formulation for the batch
realization of the linearized Graph-SLAM framework.
We conducted two real-world experiments using a

ground vehicle: one in an alleyway in Stanford, California
and the other in a semi-urban area in Champaign, Illinois.
In the first set of experiments, we demonstrated the robust
performance of the proposed SLAM-based IM algorithm
under different urban conditions, namely open-sky,
overhead bridge, and dense building infrastructure. In the
second set of experiments, we successfully detected and
isolated multiple measurement faults in GPS and vision.
We demonstrated higher localization accuracy using our
proposed algorithm with a mean of 8.8 m and standard
deviation of 1.73 m, as compared to GPS-only that shows
a mean of 16.2 m and standard deviation of 2.86 m. We
also validated that the mean size of protection levels are
estimated using GPS and fish-eye camera, i.e., 6.5 m is
lower than using GPS-only, i.e., 10.5 m.
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