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Abstract
In this paper, we propose a machine-learning-based approach to automatically
detect a satellite oscillator anomaly. Amajor challenge is to differentiate an oscil-
lator anomaly from ionospheric scintillation. Although both scintillation and
oscillator anomalies cause phase disturbances, their underlying physics are dif-
ferent and, therefore, show different carrier-frequency dependency. By using
triple-frequency signals, distinct features are extracted from the disturbed signals
and applied to the radial basis function (RBF) support vector machine (SVM)
classifier to identify an oscillator anomaly. The results show that the proposed
RBF SVM displays superior performance and outperforms several other classifi-
cationmethods. The proposed approach is applied to an extensiveGNSSdatabase
to conduct automatic satellite oscillator anomaly detection. Preliminary detec-
tion results validate the effectiveness of the proposed method. On average, one-
to-three satellite oscillator anomaly events are detected daily at each receiver
location.

KEYWORDS
globalmonitoring system, kernel trick,machine learning, phase scintillation, satellite oscillator
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1 INTRODUCTION

Global navigation satellite systems (GNSS) have been play-
ing an essential role in everyday life, and reliable sig-
nal quality is the foundation of many critical applications
(Fernholz, 2018). Thus, signal-quality monitoring is an
important task to provide timely correction and warning
to GNSS users (U.S. Department of Defense, 1993). Various
aspects of the signal, including signal power, cross correla-
tion, carrier-phase anomaly, excessive acceleration, signal
deformation, etc. (Houston, Liu, & Brenner, 2001; Naviga-
tion Systems Panel [NSP], 2016; RTCA DO-253D, 2017; US
DOT, 2009), need to be monitored to ensure a guaranteed
level of performance. Among the various signal parame-

ters, carrier-phase anomaly could lead to service disconti-
nuity, loss of correction service coverage, or even service
outage, especially for high-accuracy/integrity applications
(Vary, 2012). A satellite oscillator anomaly is one of the
causes of carrier-phase disturbances and affects all users
that rely on its signal integrity (Weiss, Shome, & Beard,
2006). Therefore, it is important to monitor it and broad-
cast warnings of the potential anomalies.
A satellite oscillator anomaly has been observed in sev-

eral past studies (e.g., Benton & Mitchell, 2012, 2014).
In Benton and Mitchell (2012), a GPS L1 signal from
PRN 13 was observed to have pulses of rapid phase vari-
ations caused by a satellite oscillator anomaly. In Ben-
ton and Mitchell (2014), satellite oscillator anomaly events
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were observed from a modern block IIF satellite (PRN 1).
However, these satellite oscillator anomaly events were
observed by visual inspections of carrier-phase measure-
ments. This is obviously impractical for a global satellite
oscillator anomaly monitoring system. Furthermore, an
oscillator anomaly usually needs to be alerted in a timely
manner for the most stringent requirements of safety-
critical services, such as aircraft navigation (Vioarsson,
Pullen,Green,&Enge, 2001;Weiss, Shome,&Beard, 2010).
Ground-based satellite operator solutions to this problem
have difficulty alerting users of the anomaly in a timely
manner. Thus, automatic detection is desired.
In Heo, Cho, and Heo (2012), the authors proposed to

use the Teager Energy operator to detect sudden changes
caused by oscillator anomalies. The method assumes
that the ionospheric effect can be removed by either
using dual-frequency measurements or the Klobuchar
model. However, these assumptions are not valid. The
ionosphere-free dual-frequency combination can only
remove the first-order ionospheric refraction effect
(McCaffrey & Jayachandran, 2017). Ionospheric scintil-
lation is typically due to a combination of refraction and
scattering or diffraction of the signal propagating through
plasma structures. The diffractive contribution introduces
additional disturbance and cannot be removed by the
dual-frequency measurements or ionospheric models
(Carrano, Groves, McNeil, & Doherty, 2013; McCaffrey
& Jayachandran, 2019; Morton et al., 2020). Therefore,
this approach will not be effective. Even in the absence of
ionospheric scintillation, the dual-frequency differencing
approach cannot distinguish satellite oscillator anomalies
from receiver oscillator anomalies. To address these
issues, the authors in (Ramesh, Ugazio, & van Graas,
2017) proposed using two nearby receivers to detect the
satellite oscillator anomaly. The distance between the
two receivers should be close enough to have a common
view of the same satellite in the sky, but far enough to
ensure that environmental errors are decorrelated. A
satellite oscillator anomaly is then identified when both
receivers observe the same anomaly. A major shortcoming
of this approach is that the requirement of two receivers
makes it difficult to be deployed on existing monitoring
systems and any updates to this existing system will be
costly.
In this paper, we propose a machine-learning-based

approach to detect satellite oscillator anomalies using
triple-frequency measurements from a single receiver.
It involves a three-step process. First, phase disturbance
events are detected by using the linear support vec-
tor machine (SVM)-based machine-learning algorithm
presented in Jiao, Hall, and Morton (2017). The triple-
frequency carrier-phase measurement segments are iden-
tified based on the linear SVM detection outputs. Then,

features are extracted from triple-frequency signals and
applied to a radial basis function (RBF) SVM to distinguish
between ionospheric scintillation and oscillator anomaly.
Finally, the anomaly will be classified as a receiver oscilla-
tor anomaly if the detected oscillator anomaly is presented
on measurements from multiple satellites in view.
Otherwise, it is classified as a satellite oscillator anomaly.
The rest of the paper is organized as follows: Section

2 introduces the linear and RBF SVM-based machine-
learning concepts, followed by the proposed satellite oscil-
lator anomaly detection approach in Section 3. Section 4
evaluates the performance of oscillator anomaly detection.
Preliminary detection results are presented in Section 5.
Finally, concluding remarks and futurework are presented
in Section 6. Note that we use the terms scintillation and
phase scintillation interchangeably in this paper, where
both terms refer to carrier-phase scintillation.

2 SUPPORT VECTORMACHINE

SVM is a supervised learning algorithm that deals with
classification problems (Bishop, 2006; Cortes & Vapnik,
1995; Jiao et al., 2017). It is known to be one of the best algo-
rithms for solving classification tasks that are not linearly
separable. Suppose that we have a training dataset with𝑚

samples 𝐷 = {(𝒙(1), 𝑦(1)), (𝒙(2), 𝑦(2)), … , (𝒙(𝑚), 𝑦(𝑚))},
where 𝒙(𝑖) ∈ ℝ𝑛, 𝑖 = 1, … , 𝑚 denotes the feature vector
and 𝑦(𝑖) ∈ ℝ, 𝑖 = 1, … , 𝑚 is the corresponding label. The
primal form of the SVM objective function is

min
𝝃,𝝎,𝑏

1

2
‖𝝎‖2 + 𝐶

𝑚∑
𝑖=1

𝝃𝑖 (1)

subject to 𝑦(𝑖)(𝝎𝑇𝒙(𝑖) + 𝑏) ≥ 1 − 𝝃𝑖, 𝑖 = 1, … ,𝑚,

𝝃𝑖 ≥ 0, 𝑖 = 1, … ,𝑚,

where 𝝎 ∈ ℝ𝑛 and 𝑏 ∈ ℝ are the weight and bias, respec-
tively. 𝜉𝑖 ∈ ℝ, 𝑖 = 1, … ,𝑚 are the slack variables for each
sample in the training dataset, and 𝐶 is a hyperparam-
eter that determines the importance of the second term
in the objective function. The hyperparameter’s value is
set before the training process begins. Usually the opti-
mal hyperparameter can be obtained by cross-validation
(Bishop, 2006). In general, the objective of training an SVM
classifier is to find a hyperplane that maximizes the dis-
tances to the nearest sample points on each label (first term
in Equation (1)) and minimizes the misclassified samples’
distances (second term in Equation (1)) (Bishop, 2006).
By solving this objective function, the optimal variables
𝝎∗, 𝑏∗, 𝝃 ∗

𝑖
, 𝑖 = 1, … ,𝑚 can be obtained. To make a deci-

sion on an unseen sample with features 𝒙′, we can run the
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F IGURE 1 An illustration of the kernel trick. The data is not linearly separable in the original 2D feature space (left), but is linearly
separable in the mapped 3D space (right) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

decision function

𝑦̂′ = 𝒘∗𝑇 𝒙′ + 𝑏∗. (2)

A positive label is assigned when 𝑦̂′
≥ 0 and vice versa.

The decision function in Equation (2) is linear and, thus,
may behave poorly if the problem is not linearly separable.
To overcome this, the convex property of SVM is utilized to
transform the primal form of the objective function (Equa-
tion (1)) to an equivalent dual form:

max
𝜶

𝑚∑
𝑖=1

𝜶𝑖 −
1

2

𝑚∑
𝑖,𝑗=1

𝑦(𝑖)𝑦(𝑗)𝜶𝑖𝜶𝑗⟨𝒙(𝑖), 𝒙(𝑗)⟩, (3)

subject to 0 ≤ 𝜶𝑖 ≤ 𝐶, 𝑖 = 1, … ,𝑚,

𝑚∑
𝑖=1

𝜶𝑖 𝑦
(𝑖) = 0,

where ⟨⋅, ⋅⟩ is the inner product and 𝜶 ∈ ℝ𝑚.
As a property of convexity, the primal form and dual

form are equivalent and the solution of one form can be
derived from the solution of the other (Boyd & Vanden-
berghe, 2004). As a result, we could find the decision func-
tion via Equation (3) rather than Equation (1). This gives
us an equivalent decision function as

𝑦̂′ =

𝑚∑
𝑖=1

𝜶𝑖𝑦
(𝑖)⟨𝒙(𝑖), 𝒙′⟩ + 𝑏, (4)

where the bias 𝑏 can be derived from 𝜶 (details can be
found in Bishop, 2006). This decision function is equiv-
alent to Equation (2) as the Karush-Kuhn-Tucker con-
dition (Boyd & Vandenberghe, 2004) shows that 𝝎 =∑𝑚

𝑖=1
𝜶𝑖𝑦

(𝑖)𝒙(𝑖) . With this equivalent decision function, a
kernel trick can be played on this dual form by replacing
the inner product with a kernel operation:

⟨𝒙(𝑖), 𝒙(𝑗)⟩ = 𝜙
(
𝒙(𝑖)

)𝑇
𝜙
(
𝒙(𝑗)

)
, (5)

where 𝜙(⋅) is a feature mapping function. For instance, the
original decision function uses a linear feature mapping
function 𝜙 (𝒙) = 𝒙.
The introduction of the kernel trick in the inner prod-

uct maps the original features onto a higher dimensional
feature space. This mapping could potentially transform
a non-linearly separable problem to a linearly separable
problem. Let us assume that we have a non-linearly sepa-
rable problem in a 2D feature space as shown in Figure 1a.
Each dot/circle represents a data sample, and the color of
the sample represents its label. In the feature space, each
sample is represented by a feature vector 𝒙 = (𝒙1, 𝒙2) ∈

ℝ2. It is clear that this is a non-linearly separable problem
because it’s impossible to find a straight line to separate
these two classes. A polynomial kernel can be applied by
using a feature mapping function 𝜙 (𝒙) = (𝒙1, 𝒙2, 𝒙1𝒙2)

to map each sample to a 3D space as shown in Figure 1b.
In this 3D feature space, the problem is linearly separable,
shown by the gray hyperplane.
In practice, it is not straightforward to design an optimal

polynomial kernel for a specific task. To tackle the non-
linearly separable problem, a commonly used kernel is the
RBF kernel:

⟨𝒙(𝑖), 𝒙(𝑗)⟩ = exp

(
−
‖𝒙(𝑖) − 𝒙(𝑗)‖2

𝛾

)
, (6)

where 𝛾 is a hyperparameter and ‖ ⋅ ‖ is the Euclidean
norm. In theory, this kernel maps the original feature
space with limited dimensions to a feature space with
infinite dimensions. This gives the SVM the ability to
classify samples in an infinite dimensional feature space,
which offers better separation between classes. There-
fore, an RBF kernel could be applied to improve the
classification performance. In a subsequent section, we
will show that oscillator anomaly detection is a non-
linearly separable problem. Hence, the RBF kernel can be
applied.
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F IGURE 2 Satellite oscillator anomaly detection block diagram [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

3 SATELLITE OSCILLATOR ANOMALY
DETECTION

To identify a satellite oscillator anomaly event, three stages
are involved. First, a linear SVM (SVM #1) is implemented
to detect phase disturbances. Second, an RFB SVM (SVM
#2) is applied to the detected phase disturbances to identify
an oscillator anomaly. Finally, the differentiation between
satellite oscillator anomaly and receiver oscillator anomaly
is conducted. A block diagram is shown in Figure 2 to illus-
trate the process.

3.1 Stage 1: Phase disturbance detection

This first stage aims to identify phase disturbance events
in phase measurements. To do so, the SVM #1 using fre-
quency domain features of the L1 signal is employed. Read-
ers are referred to Jiao et al. (2017) for a thorough descrip-
tion and performance analysis of the phase disturbance
detection.Note that the phasemeasurement data is divided
into three-minute windows to ensure there are sufficient
samples to capture the phase oscillation. Therefore, each
detected phase disturbance event is also three minutes
long. Subsequent visual inspections will identify the actual
disturbance duration from the collection of three-minute
long events.

3.2 Stage 2: Oscillator anomaly
detection

As both oscillator anomaly and ionospheric scintillation
cause phase disturbances, the phase disturbance detection
in the first stage will capture both types of events. The sec-
ond stage aims to differentiate oscillator anomalies from

ionospheric scintillation events. It achieves the goal by first
applying feature engineering to obtain suitable features
for the machine-learning algorithm. Then, an RFB-based
SVM is employed as the classifier.

3.2.1 Feature engineering

Feature engineering is the process of using domain
knowledge of the data to create features that make
machine-learning algorithms feasible. Here, features that
reflect the difference between oscillator anomaly and scin-
tillation are desired. Although both types of events cause
phase disturbance, their underlying physics are different.
The phase deviation caused by an oscillator anomaly is
proportional to the carrier frequency, while ionospheric
scintillation is the result of combined refractive and
diffractive effects as the signal propagates through iono-
spheric plasma irregularities (Carrano et al., 2013). The
magnitude of the ionospheric-phase scintillation is approx-
imately inversely proportional to the carrier frequency
for weak and moderate scintillation events (diffractive
contribution dominates in strong scintillation and thus
breaks the inverse proportion relationship) (McCaffrey
& Jayachandran, 2019). These different characteristics of
phase disturbances at different carrier frequencies can
be utilized as features to distinguish the two types of
events.
When triple-frequency signals are available, the ratios

of phase deviations between different signal bands can be
obtained as distinct features. For example, a scatter plot
of L1 vs. L2 phase deviations at the same time is shown
in Figure 3. In this work, L2 denotes the L2C signal. The
phase deviations caused by an oscillator anomaly are
proportional to the frequency, as indicated by the black
line with a slope of 0.7792. The phase deviations caused
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F IGURE 3 Scatterplot of L1 vs. L2 phase deviations; an example
of oscillator anomaly is shown as black circles; the ratio of phase devi-
ations for an oscillator anomaly event is 𝑓𝐿2

𝑓𝐿1

= 0.7792 (black line); an
example of scintillation is shown as red crosses. The ratio of phase
deviation for a scintillation event is approximately 𝑓𝐿1

𝑓𝐿2

= 1.2833 (red
line) [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com and www.ion.org]

by ionospheric scintillation are approximately inversely
proportional to the frequency, so it should follow the red
line whose slope is 1.2833. Thus, this slope (or ratio) can be
used as a feature to distinguish between oscillator anomaly
and scintillation. Here, we assume that the receiver tracks
each frequency band independently. If L1-aided tracking
is applied on L2 and L5, additional variations on L2
and L5 phase deviations may be introduced to obscure
the dynamics of scintillation or oscillator anomaly, and
thus may break the frequency dependence (McCaffrey,
Jayachandran, Langley, & Sleewaegen, 2018). To compute
the ratio, we place the dual-frequency phase deviations
with the corresponding time as in Figure 3 and perform
a linear fit. The slope of the fitted line is obtained as the
ratio.
To fully make use of frequency diversity, three ratios are

used as features: L1 vs. L2, L1 vs. L5, and L2 vs. L5. In
this paper, three feature sets are proposed. We can also
use dual-frequency measurement to achieve the objective.
We expect sub-optimal performances from dual-frequency
measurements due to their reduced observability com-
pared to triple-frequency measurements. In this study,
high-rate carrier-phase measurement data at 100 Hz is
used for the training and testing of the algorithms. A com-
prehensive performance evaluation using dual- and triple-
frequency measurements as well as lower rate data is the
subject of an on-going project, and the results will be pre-
sented in a subsequent paper.
Feature set #1: All three ratios of the triple-frequency

signals are directly used as features.
Feature set #2: Direct computation of the ratios may be

affected by the presence of noise. Although each event is

oscillator anomaly

noise noise

F IGURE 4 Illustration of phase deviations of an oscillator
anomaly event. The oscillator anomaly only shows up for ∼10 sec-
onds; the rest only contains noise [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

three minutes long, the actual event may only be present
for ten seconds. The remaining time contains only noise,
which does not follow the frequency dependency relation-
ship. An example is shown in Figure 4. To mitigate this
noise impact, phase deviations below a certain threshold
are considered noise and excluded from the ratio calcula-
tion. In this feature set, a cutoff threshold of 0.05 cycles
is used. The cutoff threshold can be applied to either fre-
quency bands. For instance, we could apply the threshold
to L1 or L2 when computing the ratio between L1 and L2.
To fully utilize all information, we applied the threshold to
both frequency bands, resulting in six ratios: L1 vs L2 with
a threshold on L1, L1 vs L2 with a threshold on L2, L1 vs L5
with a threshold on L1, L1 vs L5 with a threshold on L5, L2
vs L5 with a threshold on L2, and L2 vs L5 with a threshold
on L5.
Feature set #3: Similar to feature set #2, a lower cutoff

threshold of 0.02 cycles is used to calculate the ratios.

3.2.2 Support vector machine #2

The above features are used as an input of the SVM #2
to detect the oscillator anomaly. Ideally, the features
are linearly separable as there is a notable discrepancy
between the ratios of these two events. For instance,
Figure 5 shows the locations of ideal scintillation (black
diamond) and oscillator anomaly (black star) in a 2D
feature space. Here, only two features out of six are shown
for the purpose of illustration. It’s very straightforward
to draw a hyperplane to separate these two classes if the
real samples are clustered around the corresponding ideal
locations. In reality, however, the scintillation events may
not follow the inverse proportion relationship. Noise in
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F IGURE 5 Demonstration of scintillation and oscillator
anomaly in feature space. Here, threshold = 0.02 is applied to
compute the ratios. For illustration purposes, two ratios are pre-
sented here (L1 vs L5 with a threshold on L1 and L1 vs L5 with
a threshold on L1). Ideal locations of scintillation and oscillator
anomaly in the feature space are shown as a black diamond and
black star, respectively. Examples of locations of real scintillation
and oscillator anomaly samples are indicated as blue and orange
circles, respectively [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

the signal and effects due to other processes and error
sources introduce randomness and lead to deviations of
measurements from the relationship. In addition, strong
scintillationmay lead to loss-of-lock and carrier-cycle slips
and produce non-physical phase deviations in the phase
measurements. These deviations make the detection
problem more challenging. It is clear from Figure 5 that
scintillation events are not only located on the upper right
side of the oscillator anomaly but also extend to the lower
left side. This makes the classification a non-linearly
separable problem. Even with a 6D (instead of 2D) feature
space, it’s still a non-linearly separable problem. That is
the reason why we need to use an RBF kernel in SVM #2
to tackle this non-linearly separable problem.

3.3 Stage 3: Satellite oscillator anomaly
detection

The oscillator anomaly detected through the stage 2 algo-
rithm can be due to either satellite or receiver oscillator
anomalies. This third stage aims to differentiate satellite
oscillator anomaly from a receiver oscillator anomaly. A
receiver oscillator anomaly should simultaneously show
up on measurements from multiple satellites in view,
while a satellite oscillator anomaly is only present on the

measurements from that particular satellite. As a result,
measurements from multiple satellites are employed. A
receiver oscillator anomaly is identified if multiple satel-
lites simultaneously observe the oscillator anomaly; other-
wise, it is a satellite oscillator anomaly. Of course, we can
further confirm a satellite oscillator anomaly if it is simul-
taneously observed by multiple receivers (Ramesh et al.,
2017).

4 PERFORMANCE EVALUATION OF
STAGE ALGORITHMON OSCILLATOR
ANOMALY DETECTION

Extensive performance evaluation of phase disturbance
detection (stage 1) can be found in Jiao et al. (2017). It has
a reported accuracy of 92%. The differentiation between
satellite and receiver oscillator anomalies (stage 3) is a triv-
ial process. Therefore, we focus on the performance eval-
uation of the oscillator anomaly detection (stage 2) in this
section.

4.1 Dataset description and evaluation
method

In this work, we used measurements from GPS PRN1 and
PRN25 collected at multiple stations around the world
(Alaska, Ascension Island, Greenland, Hong Kong, Peru,
Puerto Rico, Singapore) to construct the datasets. This is
because these two satellites broadcast triple-frequency sig-
nals. Septentrio PolaRx5S receivers are deployed to collect
100 Hz phase measurements as the observables. The phase
measurements are partitioned into three-minute sequen-
tial blocks without overlap, where each block is considered
as one event (Jiao et al., 2017). In total, we detected 602
scintillation events and 126 oscillator anomalies from the
dataset. In this study, the detected event labels are identi-
fied by visual inspection.
To evaluate the performance, 70% of samples in the

dataset are randomly selected for training, and the rest are
used for testing. The best hyperparameters are obtained via
cross-validation (Bishop, 2006). It should be noted that the
randomness in training/testing data selection also has an
impact on the performance. To mitigate this impact, ten
different arrangements for training/testing data splits are
obtained and evaluated individually. The mean and stan-
dard deviation of the accuracy over these ten trials are used
as the evaluation metric. The following metrics are also
obtained for thorough performance assessments:

∙ True positive rate (TPR). TPR measures the percentage
of actual positive samples (oscillator anomaly in our
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TABLE 1 Performance evaluation of the proposed RBF SVM.
Ten different training/testing splits are used. The mean and
standard deviation (SD) of the metrics are shown. TPR denotes true
positive rate; FPR denotes false positive rate; PPV denotes positive
predictive value

Algorithm Proposed RBF SVM
Feature Set #1 #2 #3
Accuracy Mean 98.0% 94.6% 98.4%

SD 1.0% 1.1% 0.5%
TPR (recall) Mean 91.5% 86.5% 93.8%

SD 3.8% 4.7% 3.6%
FPR Mean 0.7% 3.6% 0.7%

SD 0.8% 1.4% 0.8%
PPV (precision) Mean 96.8% 83.8% 97.1%

SD 4.1% 5.8% 3.6%
𝐹1 score Mean 94% 84.9% 95.3%

SD 2.8% 2.7% 1.6%

case) that are correctly classified as positive. TPR is also
known as the recall.

∙ False positive rate (FPR). FPR measures the proportion
of non-anomaly samples that are incorrectly classified as
an anomaly.

∙ Positive predictive value (PPV). PPV measures the pro-
portion of predicted positive samples that are actual pos-
itive samples. PPV is also known as precision.

∙ 𝐹1 score. It is a metric that combines TPR (recall) and
PPV (precision) and is defined as the harmonic mean of
both terms:

𝐹1 = 2∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
.

𝐹1 score reaches its best value at one and worst at zero.
It conveys the balance between recall and precision and
is usually used to evaluate the model performance given
an imbalanced dataset, as is the case in this study.

4.2 Performance evaluation of proposed
RBF SVM

In Table 1, the detection performance using the proposed
RBFSVM (SVM#2)with different feature sets is presented.
Feature set #3 shows the best performance for all metrics.
Feature set #1 has a slightly worse performance compared
to feature set #3 because #3 employs a reasonable cutoff
threshold to mitigate the noise impact on ratio calculation.
The larger cutoff threshold used by feature set #2 dramati-
cally degrades the detection performance. This is because a
large cutoff threshold also excludes useful information for
ratio calculation.

For feature set #3, an average detection accuracy of 98.4%
is obtained. The corresponding standard deviation is 0.5%,
indicating that the algorithm performance is very stable
under different training/testing splits. This also corrobo-
rates that the dataset is large enough to offer a robust per-
formance. The TPR is 93.8%, which shows that the prob-
ability of missed detection of clock anomaly is 6.2%. The
FPR is 0.7%, which demonstrates a very low probability
of false alarm. The PPV is 97.1%, indicating that 2.9% of
detected clock anomalies are actually scintillation events.
Finally, the 𝐹1 score is 95.3%, showing a good classification
performance in this imbalanced dataset.

4.3 Performance comparison

The proposed RBF SVM is also compared to the thresh-
old method, the linear SVM, the threshold voting, and the
logistic regression. A brief summary of these four methods
is listed below:

1. Threshold Method: This method uses the ratio of
phase deviations between L1 and L2 with a threshold
on L1 as the only feature. A threshold is set such that
any events with a ratio above the threshold are iden-
tified as scintillation and vice versa. In the training
stage, a brute-force search algorithm is used to find
the optimal threshold. Here, the optimal threshold is
the one that gives the best performance in the training
dataset. Thereafter, data in the testing dataset is classi-
fied based on this optimal threshold. Note that only the
ratio between L1 and L2 in the proposed feature set is
used.

2. Linear SVM: This method uses a linear kernel for
SVM. Its decision boundary is linear.

3. Threshold Voting: The threshold method in 1) only
applies the threshold on a single ratio. Threshold voting
applies the threshold on all six ratios, where six inde-
pendent classifications are conducted by applying the
threshold method on each ratio. The final decision is
made by majority voting. Tie is broken randomly.

4. Logistic Regression: This method uses a logistic func-
tion to conduct binary classification tasks. The decision
boundary is also linear.

As shown in Table 2, the threshold method performs
the worst in general. This is because the threshold method
only utilizes the information from a single ratio and hence
fails to benefit from ratio diversity. Based on the metric of
accuracy, linear SVM, threshold voting, and logistic regres-
sion perform equally well. However, logistic regression has
the lowest probability ofmissed detection of clock anomaly
(highest TPR), followed by linear SVM. Threshold voting
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TABLE 2 Performance comparison between the proposed RBF SVM, linear SVM, threshold method, threshold voting, and logistic
regression. Ten different training/testing splits are used. The mean and standard deviation (SD) of the metrics are shown. TPR denotes true
positive rate; FPR denotes false positive rate; PPV denotes positive predictive value

Algorithm
Threshold
Method

Linear
SVM

Threshold
Voting

Logistic
Regression

Proposed
RBF SVM

Feature Set #1 #3 #3 #3 #3
Accuracy Mean 87.9% 95.1% 94.5% 95.5% 98.4%

SD 2.8% 1.2% 1.6% 1.0% 0.5%
TPR (recall) Mean 89.3% 91.0% 77.1% 94.8% 93.8%

SD 5.0% 4.1% 6.5% 3.9% 3.6%
FPR Mean 12.3% 4% 1.8% 4.4% 0.7%

SD 2.8% 1% 1.0% 1.3% 0.8%
PPV (precision) Mean 60.6% 82.9% 90.3% 82.1% 97.1%

SD 7.8% 3.7% 4.6% 3.1% 3.6%
𝐹1 score Mean 71.9% 86.7% 82.9% 87.9% 95.3%

SD 6.2% 2.7% 3.7% 2.1% 1.6%

has the worst performance on missed detection of clock
anomaly. In return, it has the best FPR (1.8%) and PPV
(90.3%). These observations demonstrate that threshold
voting has a smaller number of false positives (scintilla-
tion events that are wrongly classified as clock anomaly)
given the same number of samples to be classified. If
a lower false alarm rate is desired, threshold voting is
preferred.
Finally, the proposed method RBF-based SVM with fea-

ture set #3 shows the best performance on all metrics
except the TPR. The TPR is slightly worse than that for the
logistic regression. However, it has a better accuracy, FPR,
PPR, and F1 score with notable margins. As a result, the
proposed RBF SVM is the best classifier among these algo-
rithms.

5 PRELIMINARY DETECTION
RESULTS USING THE RBF-BASED SVM
METHODWITH FEATURE SET #3

The accurate detection performance indicates that the pro-
posed approach can be applied to automatically detect a
satellite oscillator anomaly. In this study, we apply the pro-
posed approach to a database obtained by our global net-
work of GNSSmonitoring stations in 2017 and 2018, where
Septentrio PolaRx5S receivers are deployed to collect
100 Hz phase measurements (Jiao, 2017). Station locations
include Alaska, Greenland, South Korea, Puerto Rico, and
Chile. All GPS block IIF satellites are processed, including
PRN1, PRN3, PRN6, PRN8, PRN9, PRN10, PRN24, PRN25,
PRN26, PRN27, PRN30, and PRN32. Table 3 shows the
data availability at these stations. It should be noted that
we differentiate between satellite and receiver oscillator

TABLE 3 Availability of processed data

Location Date

Number
of Days
Available

Percentage
of
Availability

Greenland 2018-01 to 2018-05 147 97%
Alaska 2018-01 to 2018-10 241 79%
South Korea 2018-05 to 2018-07 58 63%
Puerto Rico 2018-01 to 2018-12 324 88%
Chile 2017-01 to 2017-07 65 30%

anomaly by checkingwhether the same oscillator anomaly
is observed by all satellites in view at the same time. Cross-
validation by multiple nearby receivers was performed
in an earlier study and demonstrated the robustness of
the method (Liu & Morton, 2019). A more comprehensive
evaluation using cross-validation of multiple nearby
receivers will be conducted in a future work. Further-
more, the purpose of these preliminary detection results
is to demonstrate that the proposed RBF-based SVM
method is capable of automatically conducting satellite
oscillator anomaly detection given a large volume of data.
A comprehensive global characterization of GPS satellite
oscillator anomaly (including both block IIRM and block
IIF) is currently underway and is the subject of a future
publication.
An example of the detected oscillator anomaly is illus-

trated in Figure 6. Because of the frequency dependency
property, the L1 band shows the largest phase deviation,
while the L5 band shows the smallest. The maximum
phase deviation at the L1 band reaches a magnitude of
approximately 0.18 cycles.
To obtain the statistics of maximum phase deviation

at L1, a histogram for all detected oscillator anomalies is
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F IGURE 6 An example of satellite oscillator anomaly [Color
figure can be viewed in the online issue, which is available at wiley-
onlinelibrary.com and www.ion.org]

F IGURE 7 Histogram of L1 maximum phase deviation [Color
figure can be viewed in the online issue, which is available at wiley-
onlinelibrary.com and www.ion.org]

shown in Figure 7. It is clear that most of the detected
oscillator anomalies have a maximum phase deviation at
L1 of around 0.2 cycles. Given the magnitude of the maxi-
mumphase deviation, these are considered small oscillator
anomalies.
The station-by-station statistics of detected oscillator

anomaly events on GPS block IIF satellites are shown in
Table 4. There are around two daily oscillator anomaly
events observed from each station. The Alaska station has
the highest average number of observations (3.4/day), and
the South Korea and Chile stations show the lowest aver-
age number of observations (1.7/day).
To further investigate how different satellites behave,

a histogram for each satellite’s average oscillator anomaly
observations per visible day per station is shown in
Figure 8. Here, a visible day refers to a 24-hour period
during which the corresponding satellite is in view with

TABLE 4 Station-wise statistics of detected oscillator anomaly
events on GPS block IIF satellites

Station
Location

Number
of Days
Available

Number of
Detected
Oscillator
Anomaly

Average
Number
Per Day

Greenland 147 306 2.1
Alaska 241 813 3.4
South Korea 58 99 1.7
Puerto Rico 324 780 2.4
Chile 65 113 1.7

F IGURE 8 Satellite-wise average number of detected oscilla-
tor anomaly events per visible day at each station [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

elevation above 20◦ at the station. In general, the most
frequent oscillator anomaly is observed from PRN 10,
followed by PRN 26, PRN 1, PRN 3, PRN6, and PRN9.
Very few oscillator anomaly events are observed from
PRN 8, PRN 24, PRN 25, PRN 27, PRN 30, and PRN 32.
The Alaska station usually observes frequent oscillator
anomaly events from PRN1, PRN9, PRN10, and PRN 26.
In particular, approximately five oscillator anomalies per
visible day can be seen from PRN10 at Alaska.
We also investigate the time series of the satellite oscil-

lator anomaly occurrence. The oscillator anomaly daily
occurrence over Greenland is shown in Figure 9. Random
occurrence patterns are obtained from both satellites. This
observation indicates that the oscillator anomaly events do
not occur periodically.
The results above demonstrate that the proposed

method is capable of detecting small oscillator anoma-
lies. To investigate how well the method performs on
large oscillator anomaly events, we apply the proposed
method to process the data onOctober 26th, 2012, onwhich
day the authors in Benton and Mitchell (2014) observed
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F IGURE 9 Satellite oscillator anomaly daily occurrence over
Greenland. a) PRN1; b) PRN10 [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

several large satellite oscillator anomaly events. As shown
in Table 5, eight large oscillator anomaly events are
detected by our method, which matches with the obser-
vations in Benton and Mitchell (2014). An example of the
large oscillator anomaly is shown in Figure 10. The maxi-
mum phase deviation at the L1 band reaches a magnitude
of approximately 1.5 cycles. This result shows that the pro-
posed method can also detect large oscillator anomalies.
The reason that the proposedmethod can detect both small
and large oscillator anomalies is because the features are
based on the ratios of phase deviations between different
frequency bands rather than the magnitude.

F IGURE 10 An example of large satellite oscillator anomaly
observed on October 26th, 2012 from PRN1 [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

6 CONCLUSION AND FUTUREWORK

We designed an RBF SVM to differentiate the oscillator
anomaly from ionospheric scintillation in a dataset that
has carrier-phase disturbances. The RBF kernel enables
SVM to construct a nonlinear decision boundary and, thus,
shows the best performance. Three different feature sets
are proposed, and the feature set #3 shows superior perfor-
mance because it mitigates the noise impact on ratio calcu-
lation. The RBF SVM with this feature set has a detection
accuracy of 98.4%. In addition, by incorporating this RBF
SVM, the proposed approach is applied on a database to
conduct automatic satellite oscillator detection. The pre-
liminary detection results corroborate that the proposed
approach has the potential to be deployed on global satel-
lite oscillator anomaly monitoring systems.
In the future, the proposed approach can be extended

to detect the satellite oscillator anomaly on GNSS satel-
lites with dual-frequency signals and with data collected
at lower rates. Furthermore, global detection and charac-
terization of the satellite oscillator anomaly events can be
conducted.

TABLE 5 Summary of Detected Satellite Oscillator Anomaly

Max Phase Deviation
Date

Time
(UTC) PRN

Station
Observed

Duration
(seconds) L1 L2 L5

Anomaly
Type

10/26/12 13:25 1 Puerto Rico 15 1.45 1.11 1.04 large
10/26/12 14:27 1 Puerto Rico 16 1.44 1.13 1.08 large
10/26/12 14:54 1 Puerto Rico 15 1.46 1.14 1.07 large
10/26/12 15:10 1 Puerto Rico 18 1.43 1.12 1.08 large
10/26/12 15:22 1 Puerto Rico 17 1.45 1.12 1.06 large
10/26/12 15:37 1 Puerto Rico 16 1.47 1.22 1.17 large
10/26/12 15:50 1 Puerto Rico 21 1.44 1.14 1.1 large
10/26/12 16:05 1 Puerto Rico 13 1.45 1.16 1.08 large



LIU and MORTON 661

The proposed detection method in stage 2 can only dis-
tinguish between the oscillator anomaly and scintillation.
As another common error source, multipath could also
cause disturbance. An elevation mask (30◦) is applied to
mitigate multipath in this work. In the future, multipath
can be added as an additional class in the detection
method, which could distinguish among the oscillator
anomaly, scintillation, and multipath.
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