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Abstract
Long term evolution (LTE) signals have the potential for use in positioning, espe-
cially in challenging environments. The time-of-arrival (TOA)-based technique
supported by LTE is attractive due to its high positioning accuracy. However, it is
vulnerable to multipath propagation effects in typical LTE channels. This paper
will summarize several existing advanced TOA estimators for LTE signals, i.e.,
first peak detection, information theoretic criteria, super-resolution algorithm,
and delay-lock loop (DLL). Later, the paper will evaluate the TOA estimation
performances of these techniques with multipath propagation effects and vary-
ing signal conditions using simulations. For the DLL, the multipath error enve-
lope metric is assessed for different signal bandwidths. The root mean square
errors of the TOA estimations are compared to evaluate suitable TOA estima-
tors under various conditions. Finally, some other performance characteristics
of these techniques are also discussed.
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1 INTRODUCTION

Improvements in the precision of positioning and navi-
gation have been motivated by numerous location-based
applications. These would include vehicle navigation,
aviation navigation, enhanced 911 service, location-aware
communication, and asset tracking,which all demand reli-
able and accurate location information. Global Navigation
Satellite System (GNSS) receivers are widely adopted to
provide positioning and navigation results, and they gen-
erally offer a high positioning accuracy in open-sky areas
(Parkinson et al., 1996). However, in challenging envi-
ronments, such as indoors or in urban canyons, the poor
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reception of L-band satellite signals makes themmuch less
effective. Therefore, positioning and navigation in chal-
lenging environments cannot solely rely on GNSS signals.
Long term evolution (LTE)-based positioning has

emerged as a viable alternative or augmentation to GNSS
for indoor/urban navigation (Cherian & Rudrapatna,
2013; Dammann et al., 2011; Mensing et al., 2010). The
LTE standard specifies a variety of positioning methods,
e.g., assisted GNSS, enhanced cell ID, observed time-
difference-of-arrival (OTDOA), and uplink TDOA. An
extensive survey of these LTE location technologies can
be found in Cherian and Rudrapatna (2013) and del
Peral-Rosado et al. (2017). Much effort has been devoted to
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methods that rely on time-of-arrival (TOA)measurements.
Performance of the TOA-based LTE positioning method
and the impact of various factors on it have been analyzed
through theoretical analysis, computer simulations,
and experimental campaigns. For example, Shamaei et al.
(2017) evaluated and compared the positioning capabilities
of two LTE downlink signals. Several realistic propagation
channel models adopted by the LTE standard were used
for evaluating the TOA error distribution obtained with
the conventional approach (del Peral-Rosado et al., 2012c).
A software-defined radio (SDR) receiver on two low-cost
hardware platforms was tested by experiments analyzing
the received signal power and positioning accuracy (del
Peral-Rosado, Parro-Jiménez, et al., 2014). The perfor-
mance for a range of LTE signal bandwidths was discussed
in del Peral-Rosado, López-Salcedo, et al. (2014) and Xu
et al. (2016). A more detailed survey of the existing work
on assessing the LTE positioning capabilities based on
TOA measurements will be given in Section 2 of this
paper.
Studies show that the positioning reference signal (PRS)

and cell-specific reference signal (CRS) transmitted in
the LTE downlink physical layer both offer promising
positioning performances in environments without severe
multipath (del Peral-Rosado et al., 2012b; Shamaei et al.,
2017). As pointed out by Shamaei and Kassas (2018), there
are a few issues that arise from the PRS-based positioning
due to its optional transmission, network-based position-
ing, and the exploitation of signals from a single cellular
provider. Consequently, this paper focuses on the CRS-
based positioning. As TOA estimation is a special problem
of channel estimation, a popular CRS TOA estimation
technique is based on detecting the peak of the channel
impulse response (CIR) (Knutti et al., 2015). Nevertheless,
the multipath propagation effect remains as one of the
main error sources in the TOA estimations obtained with
this conventional approach, especially for indoor and
urban navigation (del Peral-Rosado et al., 2012c). Recently,
several advanced techniques using channel estimation
results have been developed to address the TOA esti-
mation accuracy issue in multipath environments. To
the best of the authors’ knowledge, there has not been a
thorough review of these advanced TOA estimators and
their performance evaluation for multipath propagation
channels under varying signal conditions.
This paper analyzes several of the advanced TOA esti-

mation techniques for the LTE CRS (Driusso et al., 2017):
the first peak detection (FPD) (Dardari et al., 2008; Guvenc
& Sahinoglu, 2005), information theoretic criteria (ITC)
(Giorgetti & Chiani, 2013), super-resolution algorithm
(SRA) (Li & Pahlavan, 2004), and delay-lock loop (DLL)
(Shamaei & Kassas, 2018). Several LTE tapped-delay line
(TDL) channel models, such as the Extended Pedestrian

A (EPA), Extended Vehicular A (EVA), and Extended
Typical Urban (ETU), are implemented to simulate
multipath propagation effects for the TOA estimation per-
formance assessment (3GPP, 2019b). The TOA estimation
errors generated by the algorithms under evaluation are
obtained for simulated propagation channel models at a
wide range of signal-to-noise power ratio (SNR) values
and different signal bandwidths. The TOA error analysis
results clearly indicate the strengths and weaknesses
of the estimation techniques. These results can be used
to guide the selection of suitable TOA estimators based
on the propagation channels and specific LTE signal
conditions.
The rest of the paper is organized as follows. Section

2 reviews the performance of the TOA-based positioning
using LTE signals. Section 3 describes the LTE frame
structure and the mathematical models of multipath
propagation channels. Section 4 covers the channel
estimation process in the LTE receiver. Section 5 describes
each advanced TOA estimator with performance results
evaluated under different channel types and signal condi-
tions. Section 6 offers a comparison and discussion for the
considered algorithms. Section 7 provides a summary.

2 REVIEWOF PERFORMANCE
ANALYSIS OF THE TOA-BASED
POSITIONING USING LTE SIGNALS

This section provides a review of the existing literature on
the TOA-based positioning and performance evaluations
using LTE signals. Either downlink signals transmitted by
multiple eNodeBs or uplink signals transmitted by user
equipment (UE) can be exploited for positioning (Cherian
& Rudrapatna, 2013). Here, the downlink LTE signals are
used to produce the TOA measurements. In the following
discussion, we mainly focus on the TOA estimation algo-
rithm, specific LTE downlink signal, and how to conduct
performance analysis in each literature.

2.1 Theoretical bound analysis

The theoretical Cramer-Rao lower bound (CRLB) is
commonly used to indicate the maximum achievable
accuracy of an unbiased estimator under moderate to
high SNR conditions. In Wang and Fattouche (2010), the
CRLB for the TOA estimation with generic orthogonal
frequency division multiplexing (OFDM) signals in an
additive white Gaussian noise (AWGN) environment was
derived based on an approximation of the mean square
bandwidth of the OFDM signal and was compared to that
of a pseudo-random noise (PRN) signal. It was proven
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that the required SNR of the OFDM signal is 4.8 dB lower
than the PRN signal to achieve the same ranging accuracy
in the asymptotic region. In the presence of AWGN
plus a zero-mean complex Gaussian process modeled
interference, a closed-form CRLB expression of the TOA
estimation was studied for OFDM systems (Karisan et al.,
2011). The CRLB and Ziv-Zakai bound for characterizing
the TOA estimation performance of realistically modeled
OFDM signals, e.g., those in the third-generation part-
nership project (3GPP) LTE specification, in the AWGN
channel were derived in Driusso et al. (2014). These
bounds were then used to analyze the TOA estimation
behavior in both the asymptotic and threshold regions
considering two sets of subcarrier power distributions.
The analysis revealed the specific strategy for subcarrier
power distribution to achieve a satisfactory asymptotic or
threshold performance. In del Peral-Rosado et al. (2012b)
and Gentner, Sand, et al. (2012), the CRLB expression in
Wang and Fattouche (2010) was extended for analyzing
the theoretical limits of the TOA estimation accuracy with
LTE pilot signals. The impact of inter-cell interference in
the LTE network and the effectiveness of inter-cell inter-
ference coordination techniques were also analyzed in del
Peral-Rosado et al. (2012b) by computing the equivalent
signal-to-interference plus noise ratio in the AWGN chan-
nel. A more rigorous CRLB for the TOA estimation with
LTE signals in theAWGNchannelwas provided in Xu et al.
(2016) without exploiting the approximation of the mean
square bandwidth. A comparison of the CRLBs derived
from several LTE pilots or a combination of these pilots
was given.
For multipath channels, the closed-form expression of

the Fisher information matrix for all the channel param-
eter estimations in OFDM systems was derived (Wang
et al., 2013). Based on this, the effects of signal and channel
parameters on the ranging accuracy were then quantified
in multipath channels. Researchers in del Peral-Rosado
et al. (2018) calculated the CRLBs for several channel
estimation models, i.e., the periodic-tap model, hybrid-tap
model, and arbitrary-tap model. These theoretical expres-
sions can be used to deduce the achievable accuracy of
several joint maximum likelihood (ML) time-delay and
channel estimators developed from these channel esti-
mation models in static multipath channels. The CRLBs
for the TOA estimation using the PRS with 5G radio
access were derived considering a multipath channel with
AWGN, carrier frequency offset, and Wiener phase noise
(Luan, 2017). The effects of flexible bandwidth, subcarrier
spacing, and power allocation on the TOA estimation
accuracy were investigated to guide the PRS redesign for
5G-based positioning. However, it should be noted that no
theoretical CRLB exists for varying multipath channels
(Xu et al., 2016).

2.2 Error modeling

In general, the TOA measurements may be corrupted by
many error sources, such as thermal noise, non-line-of-
sight (NLOS) propagation, multipath effects, clock drift,
and receiver motion. Empirical or theoretical error models
for the TOA or TDOAmeasurements in LTE systems have
been established for a variety of scenarios. Ameasurement
campaign was performed in an indoor scenario (Gentner,
Muñoz, et al., 2012) during which the receiver generated
the TOA estimation by detecting the first correlation peak
above a heuristic threshold using the synchronization
signals with scattered pilots. An approximate Gaussian
distributed TDOA error model was then built through
statistical analysis. In Kong and Kim (2016), the analytical
expressions for the probability density function (PDF)
of the TOA errors caused by the scattering environment,
multipath effects, and thermal noise were derived, respec-
tively. Note that the TOA estimation was related to the
resolved first arrival path measured from the PRS. A
Gaussian scatter distribution model was assumed and
both the Rician and Rayleigh channels were considered
for representing outdoor multipath environments. The
overall TOA and TDOA error distributions were then
obtained by integrating all the error PDFs due to a variety
of factors. Specifically, for a low LTE signal bandwidth,
the TOA errors introduced by multipath channels were
modeled as a skew-t distribution (Müller et al., 2016). The
parameters of the skew-t distribution were obtained by fit-
ting training data of the TOA errors obtained from several
types of TDL channel models. It was demonstrated that
the application of these error models in the positioning
algorithm yielded an improved positioning accuracy.

2.3 Computer simulations

Various channelmodels have been specified by the 3GPP to
characterize the multipath fading propagation conditions
present in typical LTE channels. Through a large num-
ber of channel realizations, computer simulations can be
implemented to statistically test the LTE positioning capa-
bilities in complex propagation channels.
It was not until the end of 2009 that the dedicated PRS

devoted to the OTDOA technique had been introduced by
the 3GPP in Release 9 (3GPP, 2010; Sven, 2014). Before that,
some pioneering work was done using synchronization
signals and scattered pilot signals in the 3GPP LTE. In
Mensing et al. (2007), two symbol timing synchronization
approaches for OFDM systems, i.e., the Schmidl-Cox
algorithm and the Minn algorithm, were examined with
respect to their positioning capabilities using the scattered
pilot signals in the WINNER C2 wide area channel model.
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To combat the inter-cell interference, an interference
cancellation scheme combined with the conventional
correlation-based timing estimation algorithm was devel-
oped in Mensing et al. (2009b). Mensing et al. (2009a)
further integrated a data feedback approach using already
decided data symbols into the method in Mensing et al.
(2009b) to overcome the limited number of pilot sym-
bols. These two algorithms were tested with the second
synchronization signal (SSS) considering both an AWGN
channel and a typical urban multipath channel. The
authors in Benedetto et al. (2011) applied a parabolic inter-
polation around the maximum of the correlation function
obtained with the primary synchronization signal (PSS) to
refine the TOA estimation with performance evaluation
in an AWGN channel. However, this algorithm has been
shown to be vulnerable to harsh multipath conditions
where the first arriving path is severely attenuated and a
few close-in multipaths exist (Gadka et al., 2019).
The correlation-based peak or FPD algorithms are

currently widely used for LTE-based positioning. In del
Peral-Rosado et al. (2012c), the accuracy of the conven-
tional ML estimator based on the time-domain correlation
results using the PRS was evaluated for severe multipath
scenarios represented by the TDL channel models and
geometric-based stochastic channel models. The multi-
path resolution capabilities for a range of LTE PRS band-
widths were also characterized. The effect of multipath on
the first peak estimator using the PRS was then assessed in
del Peral-Rosado et al. (2012a) for the TDL channel models
in a noisy environment. In addition, the joint impact of
inter-cell interference and multipath was also analyzed.
Another first arriving path detection method with two
threshold settings on the basis of the time-domain correla-
tion results was proposed in Huang and Xu (2013) and Xu
et al. (2016). Their estimation performances with the PRS
or CRSwere analyzed using simulations for the TDL chan-
nel models. In Rydén et al. (2015), the horizontal and ver-
tical indoor positioning performances of the LTE OTDOA
technique using the first peak-based TOA estimator
were evaluated with 3D multiple-input, multiple-output
(MIMO) channel models. Two simulation scenarios of
outdoor-only and outdoor-indoor network deployments
were under consideration. The results indicated that the
indoor LTE positioning accuracy could be enhanced by
deploying more small cells indoors and outdoors.
Some other TOA estimation algorithms have also

emerged for coping with LTE signals. In Panchetti et al.
(2013), the phase information of the cross-correlation
product between the channel frequency response (CFR)
estimations obtained at two adjacent OFDM symbols con-
taining the PRS was extracted for the TOA estimation. Per-
formance analysis of this approach in both the AWGN and
TDL multipath channels was carried out by simulations.

According to a hybrid-tap model, which includes equally
spaced taps plus an arbitrary tap within the first two taps, a
jointML time-delay and channel estimation techniquewas
proposed by solving the corresponding two-dimensional
optimization problem (del Peral-Rosado, Parro-Jiménez,
et al., 2014). The performance improvement of this
two-dimensional estimator over the one-dimensional
one based on a periodic-tap model using the PRS was
demonstrated by simulations for a combined multipath
propagation andAWGNchannel. An iterative TOA estima-
tion algorithm, which excluded the contribution of already
detected paths in the CIR at each iteration, was developed
in Rydén et al. (2016) to overcome the poor accuracy and
complex parameter tuning in the threshold-based nonit-
erative method. The performance was evaluated using an
International Telecommunication Union (ITU) Macro 3D
channel model and outdoor-indoor network deployment
scenario. Chen et al. proposed a novel OTDOA technique
for three-dimensional positioning in LTE systems (Chen
& Wu, 2016). A compressive sensing channel estimation
method exploiting the inherent sparsity of the CIR was
used for the TOA estimation. The positioning perfor-
mance was assessed in a simulation scenario considering
the EPA and ETU channel models. Simulation results
showed that 90% of the position errors provided by the
proposed scheme were less than 7 m. The estimation of
signal parameters by the rotational invariance technique
(ESPRIT) was used in Dan et al. (2018) for joint TOA and
direction of arrival (DOA) estimation with the CRS consid-
ering a UE equipped with two antennas. The positioning
performance was only evaluated for static multipath
channels.

2.4 Experiment testing

Another straightforwardway is to conduct experiments for
evaluating the LTE positioning capabilities. The common
FPD approach was employed in Medbo et al. (2009) for
producing the ranging measurements, which detected the
first arriving signal by the first occurrence of a signal level
above a−30 dBdetection threshold relative to the strongest
peak in the power delay profile (PDP). Provided with the
real channel datameasured by a channel sounder using the
PRS, the received signal strengths and positioning errors
were analyzed. For the LTE-based indoor positioning sys-
tem developed in Gentner, Munoz, et al. (2012), the TOA
was estimated by detecting a correlation peak before the
maximum peak with a threshold of 8 dB below the maxi-
mumpeak. The ranging and positioning accuracy obtained
with this system was evaluated through a measurement
campaign for an outdoor to indoor scenario. Shamaei et al.
developed an SDR LTE positioning receiver using four
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main stages for timing estimation: cell acquisition, system
information extraction, signal tracking, and timing infor-
mation extraction (Shamaei et al., 2018b). At the last stage,
the TOA was measured from the CRS by a first peak esti-
mator, which computes an adaptive threshold according to
the varying noise level and a constant false alarm rate. The
positioning performance obtained with this SDR receiver
was examined by field tests conducted with an unmanned
aerial vehicle (UAV) and a ground vehicle. The authors
in Gadka et al. (2019) proposed two peak detection strate-
gies for low and high bandwidths of LTE downlink signals.
Simulated and experimental results were used for obtain-
ing an adaptive threshold criterion based on SNR values.
The estimation accuracy was assessed through a measure-
ment campaign carried out based on a real LTE network
in an urban scenario. The LTE-based navigation perfor-
mance was tested using an LTE SDR made up of a univer-
sal software radio peripheral (USRP) B200mini radio front-
end and an open source software implementation of a UE
(Ikhtiari, 2019). Only the cell acquisition approachwith the
PSS and SSS was used to estimate the TOA. Through the
experiments conducted in both mild and severe multipath
conditions, the authors claimed that the biggest contribu-
tor of positioning error was the UE clock drift. A few solu-
tions for combating the clock drift issue were discussed.
Another category of LTE signal TOA estimator makes

use of the SRA, e.g., ESPRIT, based on the channel fre-
quency measurements (Li & Pahlavan, 2004). In Driusso
et al. (2017, 2016), a TOA estimation algorithm, named the
ESPRIT and Kalman filter for time-of-Arrival Tracking
(EKAT), using the CRS, was proposed to increase the
robustness to multipath effects. Signal combination in
multiple domains, i.e., time, frequency, spatial, and cell
ID domains, was adopted for performance enhancement.
Live data of commercial LTE signals were gathered in
different propagation environments to demonstrate the
advantage of the ranging accuracy provided by the pro-
posed algorithm over other existing methods in Benedetto
et al. (2011), Dardari et al. (2008), Giorgetti and Chiani
(2013), and Knutti et al. (2015). The EKAT algorithm was
also used in Pittino et al. (2017) to evaluate the positioning
performance with real collected LTE data in both outdoor
and indoor testing environments.
One disadvantage of the SRA is the high computational

cost, which motivates the application of the computa-
tionally efficient closed-loop approaches. The SDR LTE
positioning receivers presented in del Peral-Rosado, Parro-
Jiménez, et al. (2014) and del Peral-Rosado et al. (2013)
implemented a tracking architecture based on a DLL and
a phase-lock loop (PLL) using the CRS for time and fre-
quency synchronization. They employed a Fitz estimator
and aML estimator for TOA estimation in theDLL, respec-
tively. An experimental testbed based on an emulated LTE

network with a static UE was built. The real LTE signals
generated in the testbed were captured by a USRP plat-
form for performance validation of the SDR receiver in del
Peral-Rosado et al. (2013). The positioning results obtained
from the SDR receiver in del Peral-Rosado, Parro-Jiménez,
et al. (2014) with two low-cost hardware platforms, i.e., a
USRP platform and a digital video broadcasting-terrestrial
(DVB-T) dongle, were compared. In Shamaei et al. (2018a),
the authors assessed the ranging accuracy for only using
the signal tracking stage based on the SSS in Shamaei et al.
(2018b) by experimental results of a ground vehicle. Field
tests were conducted in Shamaei et al. (2017) to compare
the LTE positioning accuracy obtained with the CRS-
based receiver (Shamaei et al., 2018b) and the SSS-based
receiver (Shamaei et al., 2018a). In Shamaei and Kassas
(2018), another SDR LTE positioning receiver architecture
was presented with two main stages, i.e., acquisition and
tracking. Provided with the initial TOA estimation from
the ESPRIT algorithm, a PLL-aided DLL was developed to
track the LTE CRS. The effectiveness of this SDR receiver
was verified by experiments on a ground vehicle in an
urban environment. The pseudorange accuracy of the two
SDR receivers proposed by Shamaei and Kassas (2018)
and Shamaei et al. (2018b) was also compared with several
state-of-the-art algorithms.
In addition, an iterative TOA estimation algorithm with

multi-access interference mitigation using the PSS was
developed and examined by a generic OFDM-based posi-
tioning testbed (Staudinger & Gentner, 2011; Staudinger
et al., 2011).With the same collected data as inDriusso et al.
(2017), the performance of another TOA estimator aiming
at rejecting NLOS measurements was evaluated in Knutti
et al. (2015). Several peaks exceeding a predefined thresh-
old were detected in the CIR estimation obtained from the
CRS. The TOAmeasurementwould be discarded if the first
peak is not the highest among all detected peaks. Labora-
tory experiments were carried out in del Peral-Rosado et al.
(2018) to evaluate the ranging performances of several joint
ML time-delay and channel estimators. A controlled sce-
nario only with the effects of multipath and noise was con-
sidered by correcting the tracked receiver clock offset.

2.5 Other related work

Different frommitigating themultipath effects on the TOA
estimation, another strategy is to exploit multipath signals
for assisting positioning. Such an algorithm for LTE signals
was provided inUlmschneider andGentner (2016) through
estimating and tracking the parameters of all the arriving
multipath components. An experimental sitewith a special
scattering object was carefully chosen to demonstrate its
effectiveness.
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F IGURE 1 Time-frequency grid of an
LTE signal for one slot and mapping of CRS
pilot tones to resource elements [Color figure
can be viewed in the online issue, which is
available at wileyonlinelibrary.com and
www.ion.org]

There are a number of TOA estimation algorithms for
generic OFDM signals (Abrudan et al., 2013; Babich et al.,
2017; Noschese et al., 2017, 2018; Wang et al., 2015; Yang
et al., 2012) or other OFDM-based signals, e.g., WiFi signal
(Lee et al., 2018), ultra-wideband (UWB) signal (Saberinia
& Tewfik, 2008; Xu et al., 2008), and narrowband Internet-
of-Things (NB-IoT) (Hu et al., 2019; Radnosrati et al.,
2017). The channel estimation approaches for OFDM sys-
tems (Liu et al., 2014) also incorporate the TOA estimation
required by the position determination. It is worth noting
that these algorithms may also be applicable to LTE signal
TOA estimation for positioning.
The above survey shows that a number of advanced

TOA estimation algorithms for LTE signals aiming at
counteracting multipath effects have been developed and
evaluated by experiments with relatively mild multipath
propagation conditions. Nevertheless, their performance
assessment and comparison under complex multipath
propagation conditions are not available in the literature.
Hence, this paper aims to fill this gap.

3 LTE FRAME STRUCTURE AND
MULTIPATH PROPAGATION CHANNELS

LTE downlink data transmission is achieved based on
OFDMmodulation (3GPP, 2019a). With the assumption of
a frequency division duplexing (FDD) scheme and normal
cyclic prefix (CP), the downlink physical layer of the LTE
system is organized by 10-ms radio frames. Each frame
can be divided into 20 slots with a slot duration of 0.5 ms.
Figure 1 shows the time-frequency grid of an LTE signal for
one slot, composed of 𝑁RB resource blocks (RBs). One RB
includes 𝑁sc = 12 subcarriers and 𝑁symb = 7 symbols. The
subcarrier index 𝑘 and symbol index 𝑖 are associated with
a resource element (RE) 𝑌𝑖[𝑘]. The subcarrier spacing is
Δ𝑓 = 15 kHz, leading to a symbol interval 𝑇symb = 66.67 μs.

Among various signals transmitted in the downlink physi-
cal layer, this paper focuses on exploiting the CRS for TOA
estimation. Figure 1 also highlights the mapping of CRS to
the REs by cyan grids. It is transmitted in symbol 𝑖 ∈ {0, 4}
with the subcarrier spacing between two adjacent CRS
pilot tones of ΔCRS = 6.
During OFDM transmission, the total 𝑁𝑟 = 𝑁RB 𝑁sc

frequency-domain samples for each symbol are first zero-
padded to 𝑁𝑐 to form a guard band. Next, an inverse
discrete Fourier transform (IDFT) operator is adopted to
obtain the time-domain discrete signal. This is then fol-
lowed by adding CP at the beginning of each symbol.
Finally, the digital-to-analog conversion and carrier mod-
ulation are performed to generate the transmitted radio-
frequency signal.
For a multipath propagation channel, the CIR can be

modeled as (Driusso et al., 2017)

ℎ [𝑛] =

𝐿−1∑
𝑙=0

𝛼𝑙𝛿 (𝑛 − Δ𝜏𝑙) , (1)

where 𝐿 is the channel length; {𝛼𝑙} denote the complex-
valued path amplitudes; and {Δ𝜏𝑙} are themultipath delays
relative to the first arriving path. Note that the multipath
delay is normalized by the sampling interval. The corre-
sponding CFR is a harmonic model expressed by

𝐻 [𝑘] =

𝐿−1∑
𝑙=0

𝛼𝑙𝑒
−𝑗
2𝜋

𝑁𝑐
𝑘Δ𝜏𝑙
. (2)

In this paper, we consider several TDL channel models
mentioned in the LTE technical specification (3GPP,
2019b) for performance evaluation. They are EPA, EVA,
and ETU models, representing channels with a small,
medium, and large delay spread, respectively. These chan-
nel models correspond to mixed line-of-sight (LOS)/NLOS
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TABLE 1 Typical multipath propagation channel models in LTE technical specification and related multipath parameters

Channel
model

Channel
length Path delays [m] Path averaged powers [dB]

MaximumDoppler
frequency [Hz]

NLOS
probability

EPA 7 0, 9, 21, 27, 33, 57, 123 0.0, −1.0, −2.0, −3.0, −8.0, −17.2,
−20.8

5 26.0%

EVA 9 0, 9, 45, 93, 111, 213, 327,
519, 753

0.0, −1.5, −1.4, −3.6, −0.6, −9.1,
−7.0, −12.0, −16.9

70 27.2%

ETU 9 0, 15, 36, 60, 69, 150,
480, 690, 1500

−1.0, −1.0, −1.0, 0.0, 0.0, 0.0,
−3.0, −5.0, −7.0

300 56.1%

F IGURE 2 Block diagram of the channel estimation process

scenarios (del Peral-Rosado et al., 2018). To quantify the
NLOS probability in each model, we implement 2,000
random channel realizations each for the 5-ms period
and identify a channel realization as a NLOS case if the
power of the first arriving path is at least 9 dB weaker
than the total channel power over the 5-ms period (Del
Peral-Rosado et al., 2016). Table 1 provides the specific
multipath parameters of these models. Each model is
characterized by a fixed number of channel paths with
fixed relative delays and averaged powers. The amplitude
of each path is a Rayleigh-distributed random variable
with a Jakes Doppler spectrum (del Peral-Rosado et al.,
2012c). The maximum Doppler frequencies used in the
simulations are also given in Table 1 by considering the
dynamic condition of each channel model. The EPA
model has the lowest NLOS probability, and the ETU
model has the highest NLOS probability. It has to be
pointed out that the specific NLOS probability might vary
with different LOS/NLOS identification approaches and
threshold settings (Benedetto et al., 2007; Chen et al., 2014;
Del Peral-Rosado et al., 2016).

4 CHANNEL ESTIMATION

Channel estimation is essential for the OFDM system and
can be achieved by exploiting the CFR measurements
(Liu et al., 2014). The TOA estimation can then be easily
extracted from the channel estimation results for the
purpose of positioning. Figure 2 shows the block diagram
of the channel estimation process in an LTE receiver
(Shamaei & Kassas, 2018). We assume that the coarse

symbol timing estimation is available, so it is feasible to
remove the CP. The symbol timing error is assumed to be
introduced by the physical channel and is equivalent to
the TOA of the first arriving signal 𝜏0 (Yang et al., 2000).
In the following, unless otherwise specified, the TOA is
related to the first arriving signal. The receiver can thus
transform the remaining 𝑁𝑐 received samples 𝑟[𝑛] for the
𝑖th symbol into the frequency domain by a discrete Fourier
transform (DFT). The CFR �̂�𝑖[𝑚], 0 ≤ 𝑚 ≤ 𝑀 − 1 can be
obtained bymultiplying the DFT output and the conjugate
transmitted signal 𝑌∗

𝑖
[𝑘] at the subcarriers allocated to the

CRS.𝑀 = 𝑁𝑟∕ΔCRS is the total number of CRS pilot tones
for each symbol. To improve the estimation performance,
the two CFR sequences, �̂�0[𝑚] and �̂�4[𝑚], obtained using
the CRS transmitted in symbols 𝑖 = 0 and 4 are merged
into a 2𝑀-length CFR as (Driusso et al., 2017)

�̂� ={[
�̂�0 [0] , �̂�4 [0] , … , �̂�0 [𝑀 − 1] , �̂�4 [𝑀 − 1]

]𝑇
𝜗0 < 𝜗4[

�̂�4 [0] , �̂�0 [0] , … , �̂�4 [𝑀 − 1] , �̂�0 [𝑀 − 1]
]𝑇
𝜗0 > 𝜗4

,

(3)

where 𝜗𝑖 ∈ {0, … , 5} denotes the frequency-domain shift
of the CRS transmitted in the 𝑖th symbol, satisfying|𝜗0 − 𝜗4| = 3.
After this time-frequency combination, the CFR estima-

tion for each slot can be written as (Wang &Morton, 2020)

�̂� [𝑚] =

𝐿−1∑
𝑙=0

𝛼𝑙𝑒
−𝑗
2𝜋

𝑁𝑐
�̄�𝜏𝑙
+ 𝑊 [𝑚] , (4)
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where {𝜏𝑙} = 𝜏0 + {Δ𝜏𝑙} are the TOAs of all the received sig-
nal components and𝑊[𝑚] is the noise term. According to
the subcarrier allocation specified in theLTE system (3GPP
2019a), the parameter �̄� can be expressed by

�̄� =

{
𝑚ΔCRS∕2 + 𝜗 − 𝑁𝑟∕2 0 ≤ 𝑚 ≤ 𝑀 − 1

𝑚ΔCRS∕2 + 𝜗 − 𝑁𝑟∕2 + 1 𝑀 ≤ 𝑚 ≤ 2𝑀 − 1
, (5)

where 𝜗 = min{𝜗0, 𝜗4} ∈ {0, 1, 2}.
The CIR can be obtained by applying an IDFT operator

to the CFR as (Wang & Morton, 2020)

ℎ̂ [𝑛] = IDFT
{
�̂� [𝑚]

}
≈
1

2𝑀

𝐿−1∑
𝑙=0

𝛼𝑙𝑒
−𝑗
2𝜋

𝑁𝑟

(
𝜗−
𝑁𝑟

2

)
𝜏′
𝑙

2𝑀−1∑
𝑚=0

𝑒
𝑗
2𝜋

2𝑀
𝑚
(
𝑛−𝜏′

𝑙

)

+𝑤 [𝑛] (6)

for 𝑛 = 0,… , 2𝑀 − 1, where 𝜏′
𝑙
= 𝜏𝑙 𝑁𝑟∕𝑁𝑐 and 𝑤[𝑛] is

the time-domain noise term. The approximation in Equa-
tion (6) assumes that 𝑒−𝑗2𝜋𝜏𝑙∕𝑁𝑐 ≈ 1 by considering 𝜏𝑙 ≪
𝑁𝑐. Then, the modulus square of the CIR, known as the
PDP �̂�[𝑛], is computed.
Theoretically, under multipath propagation conditions,

there exists multiple peaks in the CIR with time indices
{𝑛𝑙} = {𝜏𝑙} 𝑁𝑟∕𝑁𝑐. This statement ideally assumes that
all the multipath components are resolvable in the delay
domain and their TOAs can be exactly converted to inte-
ger time indices. If the conventional CIR peak detection
method is applied, the TOA estimation may easily deviate
from its true value due to either a noise contribution or
other delayed signals with stronger powers. This motivates
the development of advanced TOA estimators capable of
enhancing TOA estimation accuracy in complexmultipath
propagation channels discussed below.

5 ADVANCED TOA ESTIMATION
TECHNIQUES

In this section, we introduce several advanced TOA esti-
mators with respect to their basic procedures and per-
formance evaluation results. These methods may exploit
one of the aforementioned channel estimation results. To
increase the robustness in the presence of thermal noise,
the channel estimation results within 𝑁slot slots can be
integrated as

�̂� [𝑚] =

𝑁slot−1∑
𝑛slot=0

�̂�𝑛slot [𝑚] , (7)

where �̂�𝑛slot [𝑚] can be the CFR, CIR, or PDP estimation
for the 𝑛slotth slot. In the simulations, the TOA value for

the first arriving path 𝜏0 is fixed at 285 m to avoid inter-
symbol interference. This TOA value is randomly chosen
without loss of generality. For each propagation channel
model listed in Table 1, 2,000 channel realizations are con-
ducted to obtain the statistical performance. The perfor-
mance analysis for these techniques is also carried out for
a simulated SNR range of −15 to 5 dB and the number
of RBs 𝑁RB at 25, 50, and 100. All the methods use an
integration time of 10 slots, i.e., 5 ms. It should be clari-
fied that the effect of an extended integration time on the
TOAestimation accuracy is equivalent to an increased SNR
value and thus will not be discussed in the following. The
design parameter values used for performance evaluation
are determined by extensive simulations for the FPD tech-
nique and according towhatwere used in the relevant liter-
ature for the SRA andDLL. Formore details on the param-
eter selection process for the FPD technique, the interested
reader can refer to theAppendix. In addition, the TOA esti-
mation error is in units of meters.

5.1 First peak detection technique

A simple, yet efficient method, which compares the PDP
to a predefined threshold, is referred to as the FPD tech-
nique. The index of the first threshold-exceeding PDP sam-
ple is chosen as �̂�TOA. The TOA estimation can then be
computed as �̂�0 = �̂�TOA 𝑁𝑐∕𝑁𝑟. This technique is suscep-
tible to the threshold settings. Thus, two specific threshold
criteria are considered here for evaluating the TOA estima-
tion performance.

5.1.1 Threshold Criterion 1

Threshold criterion 1 is based on a normalized adaptive
threshold as (Guvenc & Sahinoglu, 2005)

𝑇1 = 𝑇norm
(
max

{
�̂� [𝑛]

}
−min

{
�̂� [𝑛]

})
+min

{
�̂� [𝑛]

}
,

(8)

where 𝑇norm is the normalized threshold. max{⋅} and
min{⋅} denote the maximum and minimum operators,
respectively. Due to the involvement of the maximum
value of �̂�[𝑛], the threshold𝑇1 is tightly related to the chan-
nel properties.
Figure 3 shows the cumulative distribution function

(CDF) of the TOA estimation errors provided by the FPD
technique based on threshold criterion 1 for different chan-
nel models and SNR values when 𝑁RB = 100. The errors
with absolute values higher than 200 m are truncated to
200 m for a clearer display. There, 𝑇norm = 0.4 is assumed.
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F IGURE 3 CDF of the TOA estimation
errors provided by the FPD technique based
on threshold criterion 1 for different channel
models and SNR values when𝑵𝐑𝐁 = 100
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]

TABLE 2 RMS of the TOA estimation errors (m) provided by the FPD technique based on threshold criterion 1 for different channel
models and SNR values when NRB= 100. The numbers in the bracket (⋅⋅) indicate the RMS for LOS and NLOS scenarios

SNR (dB) EPA EVA ETU
−15 83.76 (77.99 | 98.38) 95.70 (93.58 | 101.16) 108.52 (109.81 | 107.50)
−10 24.93 (22.72 | 30.38) 32.21 (22.26 | 49.90) 27.22 (16.59 | 33.25)
−5 11.52 (9.01 | 16.74) 32.95 (20.83 | 53.20) 28.29 (16.49 | 34.85)
0 11.50 (8.92 | 16.82) 33.16 (20.27 | 54.25) 28.99 (17.80 | 35.37)
5 11.62 (9.11 | 16.84) 33.34 (20.86 | 54.05) 29.55 (18.29 | 36.00)

Table 2 lists the root mean square (RMS) values of the TOA
estimation errors for all the simulation conditions. Under
each condition, we further separated LOS and NLOS sce-
narios. TheRMS values for the two scenarios are listed next
to the combined RMS values in the bracket (⋅⋅). This same
format of presenting the RMS values for overall and sepa-
rate LOS and NLOS scenarios will be used in the following
tables and figures.

As can be observed from Figure 3 and Table 2, the
estimation accuracy degrades obviously for SNR=−15 dB.
This is due to a high probability of early estimations in the
presence of high noise. For SNR values higher than−10 dB,
the technique yields a nearly constant accuracy level. The
high positive TOA estimation errors are due to the channel
NLOS conditions, i.e., the first arriving signal experiences
a much deeper fading compared to other later arriving
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F IGURE 4 CDF and RMS of the TOA
estimation errors provided by the FPD
technique based on threshold criterion 1 for
different channel models and numbers of
RBs when SNR = 0 dB [Color figure can be
viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

signals. Under each condition, the estimation accuracy in
NLOS scenarios is degraded compared to LOS scenarios.
The technique can be improved to better mitigate the
noise effects by using a larger normalized threshold. It
should be pointed out that if the normalized threshold is
too large, it would cause late estimations for the NLOS
cases. The step-shape cumulative probability shown in
Figure 3 is caused by the discrete TOA estimations.
Figure 4 displays the effect of 𝑁RB (equivalent to signal

bandwidth) on estimation performance of the FPD tech-
nique based on threshold criterion 1, considering three
channel models and a fixed SNR of 0 dB. The RMS value of
the overall TOA estimation errors and those for LOS and
NLOS scenarios are also given in the legend of Figure 4.
Understandably, a larger 𝑁RB implies a smaller sampling
period and an improved multipath resolution capability.
Therefore, for most scenarios, a higher signal bandwidth
is beneficial for improving the estimation accuracy. One
exceptional case is that for the ETU model, where the
RMS is slightly larger when increasing𝑁RB from 50 to 100.
This is because the strong later arriving paths in the ETU

model become distinguishable for 𝑁RB = 100. One of the
later arriving paths may be mistaken as the first arriving
path when the real first arriving path experiences a deep
fading, leading to large estimation errors.

5.1.2 Threshold Criterion 2

Another criterion to determine a threshold is based on
a fixed early detection probability. As the noise-only bin
in PDP follows a central 𝜒2 distribution with ν = 2𝑁slot
degrees-of-freedom (DOF), the early detection probability
can be modeled as (Dardari et al., 2008)

𝑃ed = 1 +
(1 − 𝑞noise)

𝑁TOA − 1

𝑁TOA𝑞noise
, (9)

where 𝑁TOA is the number of possible TOA values, which
should be set empirically for practical implementation.
𝑞noise is the probability of a noise-only PDP sample above a
threshold 𝑇2 and can be computed as (Giorgetti & Chiani,
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F IGURE 5 CDF of the TOA estimation errors provided by the
FPD technique based on threshold criterion 2 for different channel
models and SNR values when𝑵𝐑𝐁 = 100 [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

2013; Torrieri, 2005)

𝑞noise = exp

(
−
𝑇2
2𝜎2

) ν∕2−1∑
𝑞=0

1

𝑞!

(
𝑇2
2𝜎2

)𝑞
, (10)

where 𝜎2 is the noise variance for the real or imaginary
part of the noise component𝑤[𝑛] in the CIR estimation for
each slot. Therefore, the threshold𝑇2 can be determined in
terms of a preset 𝑃ed according to Equations (9) and (10).

The CDF of the TOA estimation errors obtainedwith the
FPD technique based on threshold criterion 2 for different
channel models and SNR values when 𝑁RB = 100 is illus-
trated in Figure 5. The number of the TOA estimations and
RMS values of the TOA estimation errors for all the sim-
ulation conditions are summarized in Table 3. 𝑃ed is set
to 10−6, and 𝑁TOA is computed based on a possible TOA
range of 0 to 300 m. The noise variance in the PDP is also
assumed to be available.
This threshold criterion does not involve the signal

strength information and thus is not related to the channel
properties. In case of low SNR conditions, no threshold-
crossing may occur. This enhances the capability of noise
resistance, but yields less measurements. As can be seen
from Table 3, the RMS of the TOA estimation errors first
decreases when increasing the SNR as the number of high
positive estimation errors is reduced. However, if the SNR
further increases, the RMS increases instead. This can be
explained by the fact that the TOAs of the received sig-
nals may not correspond to discrete time indices in the
CIR according to {𝑛𝑙} = {𝜏𝑙} 𝑁𝑟∕𝑁𝑐. The spectral leakage
effect occurs in the IDFT operation for estimating the CIR,
but is not taken into account in the threshold criterion 2.
The leaked signal energy in the noise-only bins becomes
stronger and thus causes more early estimation results for
higher SNR signals as shown in Figure 5. Similarly, for the
same SNR value (≥ −5 dB), the EPA model with stronger
power distributed at the short-delay paths yields a higher
probability of early estimation results and a larger RMS
value in comparison with the other two models. From this
point of view, a smaller early detection probability should
be set to alleviate early estimations.Meanwhile, this would
decrease the number of measurements in low SNR condi-
tions or yield wrong estimation results for channel realiza-
tions with strong, later arriving signals.
Figure 6 shows the CDF and RMS of the TOA estimation

errors provided by the FPD technique based on threshold
criterion 2 for different channel models and numbers of
RBs when SNR = 0 dB. It can be clearly seen that a larger
number of RBs enhances the estimation accuracy due to
the higher timing resolution. Moreover, as the technique

TABLE 3 Number of the TOA estimations and RMS of the TOA estimation errors (m) provided by the FPD technique based on threshold
criterion 2 for different channel models and SNR values when NRB= 100. The numbers in the bracket (⋅⋅) indicate the RMS for LOS and NLOS
scenarios

EPA EVA ETU
SNR (dB) # RMS (m) # RMS (m) # RMS (m)
−15 1720 12.30 (9.79 | 18.02) 1620 53.77 (43.18 | 76.43) 1518 75.18 (67.30 | 80.68)
−10 1978 8.29 (6.23 | 12.44) 2000 19.47 (11.34 | 32.40) 2000 10.66 (2.97 | 13.99)
−5 2000 13.32 (12.55 | 15.31) 2000 7.37 (7.14 | 7.95) 2000 2.00 (1.67 | 2.23)
0 2000 31.78 (30.20 | 35.92) 2000 18.73 (19.11 | 17.66) 2000 6.67 (8.86 | 4.23)
5 2000 72.29 (68.43 | 82.29) 2000 46.34 (46.45 | 46.05) 2000 21.41 (22.59 | 20.45)
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F IGURE 6 CDF and RMS of the TOA estimation errors pro-
vided by the FPD technique based on threshold criterion 2 for differ-
ent channel models and numbers of RBs when SNR = 0 dB [Color
figure can be viewed in the online issue, which is available at wiley-
onlinelibrary.com and www.ion.org]

is susceptible to the spectral leakage effect, the LOS cases
with a stronger first arriving path lead to a higher RMS
value relative to the NLOS cases.

5.2 Information theoretic criteria
technique

The ITC technique was initially intended to provide a TOA
estimation for UWB signals based on the statistical prop-
erties of the energy detector outputs (Giorgetti & Chiani,
2013). It is also applicable to LTE signals by using the
underlying statistical characteristics of the PDP.
Unlike the integration operation in Equation (7) for

other techniques, the PDP estimations over 𝑁slot slots are
arranged in a 𝑁slot-by-2𝑀 matrix 𝐏 for the ITC method.
Theoretically, the noise-only bin in 𝐏 follows a central 𝜒2
distribution, whereas the signal-plus-noise bin follows a
non-central 𝜒2 distribution with a non-centrality param-
eter depending on the path gain. There are two implemen-
tation schemes for this technique in Giorgetti and Chiani
(2013). Here, we only elaborate the ITC technique based
on early bins for the reader’s convenience. The three main
steps of the ITC technique are illustrated as follows:

1. Build the averaged PDP vector �̄� by computing the
mean of each column in 𝐏 and find the index 𝑚max of
themaximum in �̄�. The first𝑚max + 1 columns in𝐏 and
�̄� are regarded as 𝐏𝐸 and �̄�𝐸 , respectively.

2. The cost function values for all the possible model
orders 𝑘 = 1,… ,𝑚max are computed. For the 𝑘thmodel,
the first 𝑘 columns in 𝐏𝐸 correspond to noise-only bins,
while the remaining columns correspond to signal-
plus-noise bins. �̄�𝐸 contains the information to calcu-
late the distribution parameters for each bin in 𝐏𝐸 .
The log-likelihood of each element in 𝐏𝐸 is then eval-
uated. The cost function is computed using all the log-
likelihood values and the penalty function associated
with the 𝑘th model.

3. The TOA estimation is �̂�0 = �̂� 𝑁𝑐∕𝑁𝑟, where �̂� is the
model order which minimizes the cost function.

Note that the detailed equations used in the above steps
can be found in Giorgetti and Chiani (2013). As suggested
in Driusso et al. (2017), a windowing operation is applied
to the PDP to reduce the biasing effect of sidelobes. The
central chi-square approximation is used in computing
the log-likelihood, and the efficient detection criteria is
used for the penalty function. The CDF and statistical
results of the TOA estimation errors obtained with the
ITC algorithm for different channel models and SNR
values when 𝑁RB = 100 are given in Figure 7 and Table 4,
respectively.
Figure 7 indicates that the technique generates early

estimation results in most of the channel realizations for
SNR higher than −10 dB. This is caused by the high
sensitivity to the spectral leakage effect occurring in the
CIR. Because of this, the RMS value for LOS cases in the
EVA/ETU channel is even higher than that for NLOS cases
as shown in Table 4. Nevertheless, when SNR = −15 dB,
the technique provides poor estimation accuracy owing to
the large positive estimation errors. This is because the
detected PDP bin with maximum energy is far from that
of the first arriving signal in the presence of high noise.
Somenoise-only bins exist between the bins containing the
first arriving signal and with maximum energy, failing to
comply with the PDP bin classification in Step 2 of the ITC
algorithm. Thus, as can be observed from Table 4, the esti-
mation accuracy first becomes better when increasing the
SNR, but then becomes worse with further increase of the
SNR. Overall, this technique is robust to the harsh multi-
path conditions for medium SNR values.
Figure 8 shows the estimation performance provided by

the ITCmethod for different𝑁RB values and three channel
models when SNR = 0 dB. Since the ITC approach gener-
ates discrete TOA estimations like the FPD technique does,
it provides an improved estimation accuracy if a higher
𝑁RB is used in the LTE system.
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F IGURE 7 CDF of the TOA estimation errors provided by the
ITC algorithm for different channel models and SNR values when
𝑵𝐑𝐁 = 100 [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

5.3 Super-resolution algorithm

Because the CFR for a multipath propagation channel in
Equation (2) is a harmonic signal model, the TOA estima-
tion problem is equivalent to the spectral estimation prob-
lemby exchanging the time and frequency variables. Based
on this, the application of an SRA to frequency-domain
channel measurements was investigated for TOA estima-
tion in Li and Pahlavan (2004).
Here, we adopt the ESPRIT as a representative of SRAs

for illustration. This algorithm has been well documented

F IGURE 8 CDF and RMS of the TOA estimation errors pro-
vided by the ITC method for different channel models and numbers
of RBs when SNR = 0 dB [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and www.ion.org]

in Driusso et al. (2017) and Shamaei and Kassas (2018). We
only summarize the key steps as follows:

1. Construct a 𝑃-by-(2𝑀 − 𝑃 + 1) frequency-domain data
matrix using the CFR and perform singular value
decomposition (SVD) of the data matrix.

2. Estimate the channel length by the minimum descrip-
tion length (MDL) criterion using the singular values
obtained in Step 1.

3. Construct the ESPRIT rotational matrix and compute
its eigenvalues.

4. Compute the delay estimations for all the detected
paths using the phase information in the eigenvalues
obtained in Step 3. The smallest delay estimation is con-
sidered as �̂�0.

TABLE 4 RMS of the TOA estimation errors (m) provided by the ITC algorithm for different channel models and SNR values when
NRB= 100. The numbers in the bracket (⋅⋅) indicate the RMS for LOS and NLOS scenarios

SNR (dB) EPA EVA ETU
−15 573.58 (474.85 | 790.17) 417.79 (383.32 | 498.46) 270.61 (191.42 | 319.25)
−10 12.75 (12.37 | 13.78) 17.88 (13.15 | 26.70) 19.58 (4.16 | 25.89)
−5 24.22 (23.24 | 26.82) 15.88 (15.99 | 15.58) 6.37 (7.29 | 5.55)
0 43.67 (42.37 | 47.19) 31.57 (32.05 | 30.24) 15.51 (16.77 | 14.45)
5 67.57 (66.08 | 71.65) 53.18 (53.32 | 52.82) 34.20 (35.40 | 33.23)
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F IGURE 9 CDF of the TOA estimation errors provided by the
SRA for different channel models and SNR values when 𝑵𝐑𝐁 = 100
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

According toYang et al. (2000),we can reasonably adjust
the true TOA to be a positive value after coarse symbol
synchronization during the TOA estimation. Owing to this
intrinsic constraint, the results with negative �̂�0 are dis-
carded. Figure 9 illustrates the CDF of the TOA estima-
tion errors using the SRA for different channel models and
SNR values when 𝑁RB = 100. The number of the TOA
estimations and RMS values of the TOA estimation errors
for all the simulation conditions are given in Table 5. The
design parameter𝑃 is assumed to be𝑀 (Driusso et al., 2017;
Shamaei & Kassas, 2018).

The algorithm’s performance is tightly related to the
channel length estimation, which is in turn dependent on
the SNR condition. Asmentioned in Driusso (2016), Liavas
et al. (1999), and Via et al. (2006), our simulations also
indicate that the MDL criterion tends to underestimate or
overestimate the channel length for relatively low or high
SNR values, resulting in a large number of invalid negative
TOA estimations. Accordingly, the number of estimations
is sharply reduced, especially for the ETU channel with
SNR=−15 or 5 dB. Moreover, the RMS of the TOA estima-
tion errors increases with the decreasing SNR. Contrary to
other techniques, the TOA estimations obtained with the
SRA are not confined to discrete values. Overall, the SRA
performs well in a wide range of SNR conditions and sev-
eral channel types due to its promising time-domain res-
olution of the channel response. This algorithm, however,
also has a high computational cost, making it impractical
for real-time implementation.
Figure 10 shows the statistical results of the TOA estima-

tion errors using the SRA in case of three 𝑁RB values for
three channel models and a fixed SNR of 0 dB. The CDF
curves and RMS values demonstrate the improvement in
the estimation accuracy with a larger 𝑁RB value and the
better accuracy in LOS scenarios.

5.4 Delay-lock loop

The DLL with a block diagram shown in Figure 11 takes
advantage of a closed-loop architecture to estimate the
TOA. With consideration of the OFDM modulation in the
LTE signal, the correlation process is performed in the fre-
quency domain. At the beginning of each loop updating
period, the integer and fractional parts of the TOA esti-
mation �̂�0 are used to control the DFT window position
and perform phase rotation, respectively. Next, the correla-
tion results in early and late branches are obtained by shift-
ing the CRS sequence with ξ and −ξ samples, respectively.
Then, a discriminator exploits the early and late correla-
tion results to calculate the residual in the TOA estima-
tion. Finally, the filtered residual is used to adjust the TOA
estimation for the next updating period. The TOA can be

TABLE 5 Number of the TOA estimations and RMS of the TOA estimation errors (m) provided by the SRA for different channel models
and SNR values when NRB= 100. The numbers in the bracket (⋅⋅) indicate the RMS for LOS and NLOS scenarios

EPA EVA ETU
SNR (dB) # RMS (m) # RMS (m) # RMS (m)
−15 1934 12.46 (10.21 | 17.38) 1926 41.64 (36.01 | 54.03) 757 124.09 (155.35 | 89.69)
−10 1992 9.95 (8.25 | 13.67) 1993 15.73 (11.49 | 23.58) 1882 79.59 (69.51 | 86.74)
−5 1993 6.71 (4.31 | 11.00) 1992 7.53 (5.10 | 11.79) 1989 20.59 (18.24 | 22.26)
0 1990 5.84 (4.30 | 8.86) 1946 6.62 (6.01 | 8.03) 1940 11.26 (9.90 | 12.22)
5 1993 5.64 (4.56 | 7.96) 1485 4.30 (2.85 | 6.77) 1325 8.22 (6.91 | 9.11)
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F IGURE 10 CDF and RMS of the TOA estimation errors pro-
vided by the SRA for different channel models and numbers of RBs
when SNR = 0 dB [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

tracked in a locked status when the energies in early and
late branches are close to each other.
The main weakness of the DLL for tracking LTE signals

is its narrow pull-in range in the delay domain (Shamaei &
Kassas, 2018; Yang et al., 2000). This implies that an accu-
rate TOA estimationmust be provided by other techniques
for initializing the DLL. However, as shown by the previ-
ous simulation results, there is still a high probability of
large TOA estimation errors in complex multipath propa-
gation channels. If an inaccurate initial estimation is used,

the DLL may track one of the later arriving signals instead
and yield an unacceptable estimation error.
In the multipath propagation channel, the multipath

effect is the dominant factor of the tracking error in the
DLL (Yang et al., 2000). Following the common metric
for analyzing the multipath mitigation performance of a
closed-loop architecture (Townsend et al., 1995), Figure 12
presents themultipath error envelope provided by theDLL
for different NRB values. A two-path model with a fixed
multipath to direct signal power ratio (MDR) of −1 dB
is used, and a noise-free environment is assumed in the
simulations. The correlator spacing 𝜉 is set to 0.5 sam-
ples (Shamaei & Kassas, 2018; Yang et al., 2000). The two
curves for each NRB value correspond to in-phase and out-
of-phase multipath cases. As can be seen, the DLL suf-
fers from a TOA tracking bias, depending on themultipath
parameters and signal bandwidth. A higher signal band-
width brings a considerable reduction in the TOA tracking
bias.

6 COMPARISON AND DISCUSSION

This section first provides comparisons in terms of accu-
racy and complexity among these advanced algorithms
and then discusses the key characteristics of each algo-
rithm in detail.

6.1 Accuracy comparison

To allow an intuitive comparison, Figure 13 compares the
RMS values of the TOA estimation errors as a function of
SNR for different channel models obtained with the afore-
mentioned advanced algorithms except for the DLL when
𝑁RB = 100. It demonstrates that in cases of medium SNR
values, all the advanced algorithms provide comparable
TOA estimation accuracy in these multipath propagation
channels.

F IGURE 11 Block diagram of the DLL for tracking the LTE signal TOA
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F IGURE 1 2 Multipath error envelope
provided by the DLL for different numbers of
RBs and a fixed MDR of −1 dB [Color figure can
be viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

F IGURE 13 RMS of the TOA estimation
errors versus SNR for different channel models
obtained with several advanced TOA estimators
when𝑵𝐑𝐁 = 100 [Color figure can be viewed in
the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

Nevertheless, in cases of relatively low and high SNR
values, the performance differences among these meth-
ods are notable. If only the statistical accuracy is taken
into account, Table 6 summarizes the preferred algo-
rithms under different conditions. The FPD technique

with threshold criterion 1 can be used for the EPA chan-
nel in a high SNR condition. The FPD technique based on
threshold criterion 2 is preferred for low SNR values. The
SRA is a promising method except for the ETU channel
with a low SNR value.
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TABLE 6 Preferred algorithms under different channel models
and SNR conditions

Channel model SNR Preferred algorithms
EPA Low FPD-Th2, SRA

High FPD-Th1, SRA
EVA Low FPD-Th2, SRA

High SRA
ETU Low FPD-Th2

High SRA

6.2 Complexity comparison

In this subsection, we analyze and compare the computa-
tional complexity associated to the number of multiplica-
tions involved in the aforementioned techniques. Since all
techniques require the CFR estimation, we only examine
the signal processing procedures after the CFR estimation
for generating one TOA estimation in the following
analysis.
The FPD and ITC techniques both exploit the PDP esti-

mations over 𝑁slot slots. For each slot, the IDFT operation
for the CIR estimation requires 𝑂(2𝑀log(2𝑀)) multipli-
cations. The PDP estimation is then obtained by a mod-
ulus square operation with 𝑂(2𝑀) multiplications. The
remaining procedures in the FPD technique incorporate a
few times of peak finding in the integrated PDP. For the
ITC, the PDF of central chi-square distributions for dif-
ferent distribution parameters can be stored in a look-up
table. The evaluation of the log-likelihood for calculating
the cost functions can thus be achieved by table look-up
operations, leading to a significantly decreased complex-
ity. The final step is to find the model order, which min-
imizes the cost function. The computational cost of these
operations is negligible compared to the calculation of the
PDP estimations. Therefore, the total numbers of multipli-
cations required by the FPD and ITC approaches can both
be approximated as 𝑂([2𝑀log(2𝑀) + 2𝑀]𝑁slot).
For the SRA, the most demanding procedures are

those matrix operations. The SVD of the frequency-
domain data matrix requires 𝑂(𝑃2𝐾) multiplications.
Computing the MDL criterion requires many fewer
multiplications than the SVD operation. The number
of multiplications to calculate the ESPRIT rotational
matrix is 𝑂(𝑃2�̂� + 2(𝑃 − 1)𝑃�̂� + 2�̂�3 + 2(𝑃 − 1)�̂�2). The
eigenvalue decomposition of the ESPRIT rotational
matrix requires 𝑂(�̂�3) multiplications. Therefore, the
total number of multiplications used by the SRA can be
expressed by 𝑂(𝑃2(𝐾 + �̂�) + 2(𝑃 − 1)(𝑃 + �̂�)�̂� + 3�̂�3). In
our simulations, we have 𝑃 = 𝑀, 𝐾 = 𝑀 + 1, and �̂� ≪ 𝑀.
Thus, the number of multiplications can be approximated
as 𝑂(𝑀3 + 2𝑀2�̂�).

The main computational complexity of the DLL comes
from the correlation process. To compute an early and a
late correlation result, the DLL consumes 𝑂(4𝑀)multipli-
cations.
Therefore, the complexity of SRA is much higher than

those of other techniques. The DLL is the most computa-
tionally efficient one. The complexities of the FPD and ITC
algorithms are in the same order of magnitude if we ignore
the large number of table loop-up operations required by
the ITC algorithm.

6.3 Discussion for each algorithm

The FPD method largely depends on the predefined
threshold to achieve a desirable performance. Two thresh-
old criteria are examined to assess its performance. Crite-
rion 1 computes an adaptive threshold using themaximum
and minimum values of the channel estimation result and
a preset normalized threshold. This criterion leads to a
number of early estimations and thus a poor TOA esti-
mation accuracy for low SNR values. A high, normalized
threshold would be beneficial to enhance noise resistance.
However, late estimations may occur when using a high,
normalized threshold for the propagation condition if the
first arriving path ismuchmore attenuated than other later
arriving paths. Hence, the normalized threshold in this cri-
terion should be chosen carefully based on the propagation
channel and SNR condition.
Criterion 2 used for the FPD method determines the

threshold according to a fixed early detection probability.
The threshold is thus irrelevant to the channel properties.
It should be noted that the spectral leakage effect in the
CIR estimation introduces an increased number of early
estimations in this technique for a higher SNR condition.
Moreover, this technique eliminates the early estimations,
but also reduces the number of measurements for a low
SNR value. Therefore, both the measurement availability
and estimation accuracy need to be considered for choos-
ing a reasonable early detection probability.
The ITC technique is also highly sensitive to the spec-

tral leakage occurring in the CIR estimation. The TOA
estimation performance obtained with the ITC algorithm
adversely deteriorates for increasing SNR values except for
very low SNR values. The technique is robust to the harsh
multipath condition for medium SNR values and does
not require a parameter tuning for different conditions.
Nevertheless, the performance would experience a drastic
degradation if the SNR value is too low or too short an
integration time is used.
The SRA has a superior multipath resolution capabil-

ity at the cost of a high computational complexity. It
incorporates a channel length estimation procedure based
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on the MDL criterion. Either an underestimated channel
length in a low SNR condition or an overestimated chan-
nel length in a high SNR condition would reduce the num-
ber of estimations. Additionally, this algorithmprovides an
improvedTOAestimation accuracy for a higher SNRvalue.
TheDLLmethod is different from the others owing to its

closed-loop architecture. It requires an accurate TOA esti-
mation provided by other techniques for initialization. An
improper initial value would lead to the DLL’s failure to
track the LTE signal TOA. In addition, it still suffers from
a notable tracking bias due to the multipath effects.

7 SUMMARY

In this paper, we first reviewed the existing literature con-
cerning the TOA-based positioning using LTE signals and
the relevant positioning performance assessment.With the
channel estimation results obtained in an LTE receiver,
we illustrated the key steps in the FPD, ITC, SRA, and
DLL techniques to generate the TOA estimation for LTE
signals. Numerous computer simulations were conducted
to evaluate their estimation performances for several real-
istic multipath propagation channels in the presence of
AWGN. Simulation results indicate that all the advanced
algorithms generate comparable and reasonable TOA esti-
mation accuracy in these multipath propagation channels
for medium SNR values. Nevertheless, they perform very
differently for relatively low and high SNR values. All of
the techniques can benefit from a higher LTE signal band-
width to statistically reduce the TOA estimation error.
In addition to estimation accuracy, some other features

of each technique should be noted. The FPD technique has
a simple implementation, but relies on a careful choice
of the threshold-related parameters. Moreover, the FPD
technique based on threshold criterion 2 may lead to a
decreased number of measurements under low SNR con-
ditions. The ITC technique needs a relatively long inte-
gration time to guarantee reliable estimations. The SRA
suffers from a high computational complexity due to the
matrix operations and needs to discard some measure-
ments if the channel length estimation is inaccurate. The
DLL is suitable for low dynamic conditions and requires an
accurate initial estimation from other techniques. In prac-
tical applications, the choice of a suitable TOA estimator
for LTE signal depends on the receiver environment and
user requirements.
We should point out that this work only investigated

a specific heuristic strategy to discriminate dynamic
LOS/NLOS channel conditions in each model for perfor-
mance assessment. However, LOS and NLOS affect the
TOA estimation differently. Hence, effectively identifying
the channel between LOS and NLOS scenarios would
be critical to improve the TOA estimation accuracy, e.g.,

by setting appropriate design parameters in the TOA
estimators. The LOS/NLOS channel identification using
real collected LTE data is under investigation and will be
the subject of a subsequent publication.
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APPENDIX
This appendix provides some representative simulation
results to clarify the parameter selection process for the
FPD technique.
Figure A1 shows the RMS values of the TOA estimation

errors obtained with the FPD technique based on thresh-
old criterion 1 as a function of the normalized thresh-
old (𝑇norm) for three channel models and two SNR values
when 𝑁RB = 100. As can be observed, for all the consid-
ered normalized threshold values, the optimal one lead-
ing to the lowest RMS depends on both the SNR condition
and channel type. For example, the optimal 𝑇norm is 0.6
for the EPA model when SNR = −10 dB, while it is 0.1 for
the ETU model when SNR = 0 dB. Overall, 𝑇norm = 0.4
is a good choice for all the considered simulation
conditions.
Figure A2 plots the RMS values of the TOA estimation

errors and the number of TOA estimations obtained with
the FPD technique based on threshold criterion 2 as a func-
tion of the early detection probability (𝑃ed). Three channel
models and two SNR values are taken into consideration,
and 𝑁RB is set to 100. Figure A2 indicates that the FPD
technique based on threshold criterion 2 can always gen-
erate TOA estimations for high SNR conditions, and thus a
smaller early detection probability is preferable for obtain-
ing a lower RMS value. While for low SNR values, a higher
early detection probability should be used to improve the
measurement availability and also the estimation accuracy.
As can be seen, 𝑃ed = 10−6 is a reasonable choice for dif-
ferent simulation conditions.
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F IGURE A1 RMS of the TOA
estimation errors versus normalized
threshold provided by the FPD technique
based on threshold criterion 1 for three
channel models and two SNR values when
𝑵𝐑𝐁 = 100 [Color figure can be viewed in the
online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

F IGURE A2 RMS of the TOA
estimation errors and number of the TOA
estimations versus early detection probability
provided by FPD technique based on
threshold criterion 2 for three channel
models and two SNR values when𝑵𝐑𝐁 = 100
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]
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