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Abstract
The future of deep space exploration depends upon technological advance-
ment towards improving spacecraft’s autonomy and versatility. This study aims
to examine the feasibility of autonomous orbit determination using advanced
accelerometer measurements. The objective of this research is to ascertain spe-
cific sensor requirements to meet pre-defined mission navigation error bud-
gets. Traditional inertial navigation (dead reckoning and external aiding) is not
considered. Instead, measurements from pairs of advanced, highly sensitive
accelerometers (e.g., cold atom accelerometers) are used onboard to determine
gravity field gradients, which are then correlated to onboard gravity maps and
used to determine orbital information. Linear Covariance Theory helps to effi-
ciently conduct an error budget analysis of the system. This error budget anal-
ysis helps to determine the effect of specific error sources in the sensor mea-
surements, thereby providing information to rank and compare relevant sensor
parameters and determine an optimal sensor configuration for a given spacemis-
sion. The procedure is repeated to evaluate different accelerometer configura-
tions and sensor parameters.
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1 INTRODUCTION

This paper presents significant results from the PhDdisser-
tation on “Revolution in Autonomous Orbital Navigation
(RAON)” and attempts to present a case for autonomous
space exploration using onboard ultra-precision inertial
sensors (Bhatia, 2019).
Sensitivity Analysis of Precision Inertial Sensor-based

Navigation System (SAPIENS) is a study to investigate the
feasibility and requirements for an autonomous naviga-
tion that can potentially apply to all flight regimes. For
any space mission, navigation relies primarily on exter-
nal aids such as the Global Positioning Systems (GPS), the
Tracking and Data Relay Satellite (TDRSS), or the Deep
Space Network (DSN). These traditional space navigation

techniques limit the range of space exploration capability
and require specialized communication and ground-based
navigation systems to achieve acceptable levels of space-
flight safety. These additional systems not only require pre-
cious onboard resources but are also subject to failures that
can increase the risk of the Loss of Crew or Loss of Vehi-
cle condition. For next generation space navigation, there
is a need to relieve the traditional navigation techniques by
implementing the autonomous navigation system onboard
and thus reducing the risk level of Loss of Crew or Loss of
Vehicle condition.
This study builds upon the preliminary results obtained

during the observability analysis of the navigation system
with a simpler environment model (Bhatia & Geller, 2017,
2018; Geller & Bhatia, 2018). The aim is to explore the
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F IGURE 1 Autonomous Space Navigation using Advanced
Accelerometer Measurements [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

viability of using pairs of advanced accelerometers and
onboard gravity field maps to autonomously determine
orbital position and velocity for the LEO regime. This study
will evaluate the role of advanced accelerometers, used in
recent gravity-mapping missions like GRACE-FO (Gravity
Recovery and Climate Experiment - Follow On) and
GOCE (Gravity Field and Steady-State Ocean Circulation
Explorer), in developing and executing autonomous
orbital navigation for different sensor and orbit
configurations.
Future autonomous orbital navigation architectures

need to be suitable and reliable for varying space environ-
ments. The navigation approach addressed in this study
has the potential to satisfy these requirements. Consider-
ing the universal nature of gravity, this approach provides
a generic solution for autonomous navigation in almost all
types of space environment.
The idea of autonomous space navigation (see Figure 1),

as presented in this study, is to reverse the problem of
precision gravitational mapping (as achieved during Euro-
pean Space Agency’s GOCE mission) and have this high-
fidelity gravity map onboard along with a pair of ultra-
precise accelerometers. The accelerometer measurements
can be correlated to the onboard gravity map to navigate
autonomously in the LEO regime.
The objective of this research is to use the Linear

Covariance theory to investigate the feasibility and sen-
sor requirements for an autonomous orbit determina-
tion using advanced accelerometer measurements and
onboard gravity field maps for different sensor and orbit
configurations.

2 GRAVITY GRADIOMETRY/
LITERATURE SURVEY

The study and measurement of the changes in the gravi-
tational acceleration, with respect to the change in spatial

position, is termed gravity gradiometry. The measurement
of gravity gradiometry is a gravity gradient tensor, mea-
sured over the given spatial distance.
Hungarian physicist Baron Loránd (Roland) von Eötvös

is credited for inventing the first gravity gradiometer
instrument in the late 1880s (Király, 1996; Veryaskin, 2018).
While working on a series of experiments on the propor-
tionality of inertial and gravitational masses, Eötvös’ spe-
cialized torsion balance was used to measure the gravita-
tional gradient (Király, 1996). To recognize his ingenious
invention, the unit of the gravitational gradient has been
named after him (Király, 1996). One Eötvös (E𝑜̈) is equal
to 10−9𝑠−2 (Gray et al., 1995). The gravity gradient tensor
(GGT) is the 3x3 matrix, consisting of nine components of
the derivative of the gravitational vector with respect to the
position vector.

∇𝑔 =
⎡⎢⎢⎣
∇𝑔𝑋𝑋 ∇𝑔𝑋𝑌 ∇𝑔𝑋𝑍
∇𝑔𝑌𝑋 ∇𝑔𝑌𝑌 ∇𝑔𝑌𝑍
∇𝑔𝑍𝑋 ∇𝑔𝑍𝑌 ∇𝑔𝑍𝑍

⎤⎥⎥⎦ (1)

∇𝑔𝑖𝑗 =
𝜕2𝑈

𝜕𝐫𝑖𝜕𝐫𝑗
, 𝑖, 𝑗 = 𝑋,𝑌, 𝑍, (2)

where𝑈 is the gravitational potential at the given position
vector 𝐫. The conservative nature and the continuity of the
gravitation field ensures that the gravity gradient matrix is
symmetric (∇𝑔𝑖𝑗 = ∇𝑔𝑗𝑖), and by Laplace’s equation, it has
zero trace (

∑
𝑖 ∇𝑔𝑖𝑖 = 0) (Argentiero & Garza-Robles, 1976;

Chen et al., 2015; Hofmann-Wellenhof & Moritz, 2006).
Thus, only five out of the nine components are indepen-
dent (Cesare, 2002).
A number of studies have analytically and mathemat-

ically decoded the geophysical, gravitational, and spatial
information ciphered in the gravity gradient measure-
ments. A publication by Christopher Jekeli onGravity Gra-
diometry in 2011 beautifully highlights the rich mathemat-
ical foundations of the gravity gradiometry (Jekeli, 2011).
He presents the basic mathematical equations leading up
to the derivation of gravity gradient tensor and the for-
mulas to compute the minimum and maximum curva-
ture of an equipotential surface, using gravity gradient
measurements.
In his paper, Jekeli presents an interesting account of the

measurement error analysis of the gravity gradient mea-
surement, specifically the analysis of the required gyro-
scope and gradiometer noise levels adequate enough to
separate the gravity gradient from non-gravitational com-
ponents.
A more recent effort to extract the positional informa-

tion of a spacecraft from the gravity gradient matrix
includes a paper titled “Gravity Gradient Eigen-
Decomposition for Spacecraft Positioning” (2015), by
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F IGURE 2 Block Diagram of the GGT Inversion Positioning
System (Image taken from Chen et al. - “Gravity gradient tensor
eigendecomposition for spacecraft positioning” (2015)) (Chen et al.,
2015)

Pei Chen, Sun, and Han. In this paper, they compre-
hensively describe the method to isolate the attitudinal,
latitudinal, and longitudinal information from the gravity
gradient matrix, assuming that the true gravity field is
known (Chen et al., 2015).
Chen and others present an Eigen-Decomposition algo-

rithm for spacecraft positioning using gravity gradient
measurements (Figure 2) (Chen et al., 2015). This pro-
vides a powerful technique when attitudinal states of the
spacecraft are known within permissible limits and a high
resolution gravity field model of the primary body is avail-
able onboard. Interestingly, this technique does not require
any prediction or initial guess. Hence, it is believed that
this technique can be significant for dead reckoning and
help provide initial guesses for Kalman Filters. To formu-
late this Eigen-Decomposition algorithm, Chen and oth-
ers use the J2 spherical harmonics gravity model only.
It is believed that this theory can be extended to higher
spherical harmonics models or different gravity models as
well.
Other attempts made to analytically extract useful infor-

mation from the gravity gradient matrix include the study
titled “Measuring Attitude with Gradiometer” (1994) by
David Sonnabend and Thomas G. Gardner (University of
Colorado) and the article titled “The gradient tensor of
potential field anomalies: Some implications on data col-
lection and data processing of maps” (1990) by Pedersen
and Rasmussen (Pedersen & Rasmussen, 1990; Sonnabend
& Born, 1994).
A number of publications have extensively highlighted

the technical history and mathematical details on the
setup and the operating principles of different gravity
gradiometers (DiFrancesco et al., 2009a, 2009b; Jekeli,
1993, 2011; Richeson, 2008; Veryaskin, 2018; Wells, 1984).
Many other studies have also been found to discuss
different approaches and methods for airborne and ter-
restrial navigation using the GPS integrated gravity gra-
diometer system (Bobojć & Drożyner, 2003; Paik &
Morgan, 1993; Pei et al., 2017; Richeson, 2008; Sun et al.,
2016a, 2016b).

Technical details and operating principles of promi-
nent gravity gradiometers have been discussed in detail by
Bhatia (Bhatia, 2019). One important point to note here is
that an accelerometer rigidly attached to the spacecraft and
at a position offset from the center of mass of the system
will be able to detect gravity gradient provided the mea-
surement noise level and environment noise is sufficiently
low. The results presented in the later sections will con-
vince the reader that the resolution of this gravity gradi-
ent measurement improves by adding more accelerome-
ters to the configuration and the performance also depends
upon the baseline length, linear distance between the two
accelerometers, respectively.
Some studies only discuss terrestrial or airborne naviga-

tion, while others only discuss techniques to estimate the
spacecraft’s position and velocity. Most of the studies con-
sider the integrated inertial navigation system (INS) based
on gravity gradient measurements and GPS updates. Most
of these studies do not include the objective to compute the
requiredmeasurement sensitivity to enable the gravity gra-
diometer based navigation.During the literature survey, no
study has been found to discuss the techniques to provide
the real-time estimate of the spacecraft’s position, veloc-
ity, and attitude using gravity gradient measurements only.
Further, most of the studies used analytical approaches or
Monte Carlo analysis to conduct the measurement error
analysis for gravity gradient measurements. No study has
been found to analyze the effects of gravity gradiometer
measurement sensitivity on the final navigation solution
for different sensor and orbit configurations. Thus, as far
as the authors know, this research is the first to conduct
a Linear Covariance analysis and provide error budgets for
gravity gradiometermeasurements for different sensor and
orbit configurations.
This research offers to complement the existing litera-

ture. The contributions include the determination of spe-
cific sensor requirements and optimal sensor configura-
tion for different sensor and orbit configurations.
Today, as the technological development of gravity gra-

diometer instruments enhance their measurement sensi-
tivity, one of the biggest challenges is to isolate the grav-
ity gradient measurements from the disturbing sources
(DiFrancesco et al., 2009a, 2009b). This is because with
the enhanced measurement sensitivity the resolution of
a gravity gradient measurement improves; however, this
also improves the resolution of disturbing sources by the
same amount (DiFrancesco et al., 2009a, 2009b). Some of
the major challenges impacting the full use of gravity gra-
diometry include the difficulty in obtaining gravity gradi-
ent measurements in a dynamic environment, limitations
of gradiometer measurement bandwidth for moving-base
gravity gradiometers, difficulty in processing gravity gra-
dient measurements and isolating useful measurements
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from the disruptive noise sources, and lastly, hardware and
data export controls present challenges for the growth of
this field (DiFrancesco et al., 2009a, 2009b). It is believed
that these challenges can be managed better by under-
standing the error sources and their contribution towards
the systemperformance, and the error budget analysis pro-
vided in this study aims to provide that information.

3 OBSERVABILITY ANALYSIS

In this section, the results are presented from the study
by Geller and Bhatia (2018), where a quantitative standard
observability analysis is conducted to demonstrate that
three three-axis onboard accelerometermeasurements can
provide both orbit and attitude observability, i.e., orbital
position, velocity, and attitude observability (Geller & Bha-
tia, 2018). It is assumed that the only forces acting on the
spacecraft are due to either a simple point-mass gravity
model or the 𝑛 × 𝑛 spherical harmonic gravity model. It is
also assumed that the angular velocity and angular accel-
eration of the spacecraft is known and equal to zero.
The analysis is then extended to show that only two

and then only one three-axis accelerometer is required to
obtain full-state, position, velocity, and attitude observabil-
ity under the given assumptions.
The observability metrics used in this analysis are the

rank and condition number of the classical observability
Gramian. Special care is taken to ensure that the observ-
ability Gramian is a well-conditioned matrix.
The observability Gramian is given by

̄(𝑡𝑚) ≜

𝑚∑
𝑗=1

𝜙̄𝑇(𝑡𝑗,𝑡0)𝐻̄
𝑇(𝑡𝑗)𝐻̄(𝑡𝑗)𝜙̄(𝑡𝑗,𝑡0), (3)

where 𝐻̄ is the measurement partial due to the accelerom-
eter measurements (please refer to Equation (58)), and the
state transition matrix 𝜙̄(𝑡𝑗,𝑡0) is computed recursively as

𝜙̄(𝑡𝑗,𝑡0) = 𝜙̄(𝑡𝑗,𝑡𝑗−1)𝜙̄(𝑡𝑗−1,𝑡0), 𝜙̄(𝑡0,𝑡0) = 𝐼9×9 (4)

and where

𝜙̄(𝑡𝑗,𝑡𝑗−1) ≈ 𝐼9×9 + 𝐹̄(𝑡𝑗−1)Δ𝑡 + 𝐹̄2(𝑡𝑗−1)Δ𝑡
2∕2 +⋯ . (5)

In this analysis, the rank and condition number of the
observability Gramian in Equation (3) is used as a metric
to determine orbit and attitude observability. The analysis
looks at two different nominal LEO spacecraft orbits, two
different gravity models, and three different accelerome-
ter configurations. In all cases, measurements are taken
for 1,500 seconds with a sample rate of one measurement

every 30 sec. The nominal vehicle orientation is constant
and aligned with the inertial frame. The gravity models
are either a point mass gravity model or a 4 × 4 spherical
harmonics model. The LEO orbits have a semi-major axis
equal to 7,000 km and an inclination of 56 degrees. The
first orbit is circular, and the second orbit has an eccentric-
ity 𝑒 = 0.01.
Observability analysis for the state vector consisting of

position, velocity, and attitude shows that even in the best
case, the conditions number are on the order of 108. This
relatively high value leads to the suspicion that the inertial
attitude is relatively weakly observable. To confirm this,
the above observability analysis was repeated with a state
vector consisting of only position and velocity. The attitude
was assumed to be known. The results of this observability
analysis are shown in Table 1 below.
These results show that position and velocity are

strongly observable and confirm the suspicion that atti-
tude is relativelyweakly observable (Geller&Bhatia, 2018).
Thus, it can be concluded that although it may be the-
oretically possible to estimate the orbital position, veloc-
ity, and attitude using a set of accelerometers, an accu-
rate estimate of attitude may be difficult and require an
additional sensor such as a star camera (Geller & Bhatia,
2018).

4 DYNAMICMODELS

4.1 State vector and reference frames

For the given model, the state vector (𝐱) has been defined
as follows:

𝐱 =
(
𝐱𝑠, 𝐱𝑝, 𝐱𝑎

)𝑇
. (6)

It consists of 16 spacecraft states (𝐱𝑠), 3 environmental
parameter states (𝐱𝑝), and 12n (n = number of accelerom-
eters) accelerometer states (𝐱𝑎), such that

𝐱𝑠 =
(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐯𝐼
𝐶𝑀∕𝐸

, 𝐪𝐼→𝐵, 𝝎
𝐵
𝐵∕𝐼

, 𝐫𝐵
𝐶𝑀∕𝑂

)𝑇

, (7)

where 𝐫𝐼
𝐶𝑀∕𝐸

and 𝐯𝐼
𝐶𝑀∕𝐸

denote the position and velocity
of the spacecraft’s center of mass with respect to the cen-
ter of the Earth, expressed in inertial frame, 𝐪𝐼→𝐵 denote
the spacecraft’s attitude quaternion, such that it defines the
attitude/orientation of the spacecraft body-fixed reference
frame with respect to the inertial reference frame, 𝝎𝐵

𝐵∕𝐼
is

the angular velocity of the spacecraft with respect to the
inertial frame, expressed in spacecraft body-fixed frame,
and 𝐫𝐵

𝐶𝑀∕𝑂
denote the spacecraft center of mass position
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TABLE 1 Orbit-Only Observability (O)/Unobservability (U) using three three-axis accelerometers and one three-axis accelerometer
(Geller & Bhatia, 2018)

Three 3-axis accelerometers One 3-axis accelerometer
Circular Elliptical Circular Elliptical

Point Mass Rank 6 6 6 6
Cond # 110 106 357 345
U/O O O O O

4 × 4 Spherical Rank 6 6 6 6
Cond # 110 106 359 347
U/O O O O O

8 × 8 Spherical Rank 6 6 6 6
Cond # 110 106 359 347
U/O O O O O

with respect to the origin of the spacecraft body-fixed ref-
erence frame.
The three environmental parameter states are given by

𝐱𝑝 = (𝛽, 𝜌𝑟, ℎ𝑠)
𝑇
, (8)

where 𝛽 is the ballistic coefficient for the spacecraft, 𝜌𝑟 is
the reference sea level atmospheric density, and ℎ𝑠 is the
scale height for the exponentially decaying atmospheric
drag model.
The accelerometer parameter states are given by

𝐱𝑎 =
(
𝐫𝐵
𝑎𝑖∕𝑂

, 𝐛
𝑎̃𝑖
𝑖
, 𝐟

𝑎̃𝑖
𝑖
, 𝝐

𝑎̃𝑖
𝑖

)𝑇

, (9)

where 𝐫𝐵
𝑎𝑖∕𝑂

denote the 𝑖𝑡ℎ accelerometer position with
respect to the origin of spacecraft body-fixed reference
frame, and lastly, 𝐛𝑎̃𝑖

𝑖
, 𝐟

𝑎̃𝑖
𝑖
, and 𝝐𝑎̃𝑖

𝑖
denote the accelerome-

ter bias, scale factor, and misalignment, respectively.
The relevant reference frames (all right-handed and

orthogonal) used in this study are the Inertial Ref-
erence Frame (IRF), Spacecraft Body-fixed Reference
Frame (SBRF), Accelerometer Nominal Reference Frame
(ANRF), and Accelerometer Actual Reference Frame
(AARF). The first three frames are generally known, while
the AARF is generally unknown.
The fundamental inertial reference frame for this study

is defined by an origin located at the center of the Earth,
x-axis at the intersection of the mean ecliptic plane with
the mean equatorial plane at the date of January 1, 2000
and pointing positively towards the vernal equinox, z-axis
orthogonal to the mean equatorial plane at the date of Jan-
uary 1, 2000 and y-axis completing a right-handed refer-
ence frame.
SBRF is defined as a reference frame, whose center coin-

cides with the nominal center of mass of the spacecraft.

The transformation from IRF to SBRF is denoted as 𝑇𝐼→𝐵

or 𝑞𝐼→𝐵.
ANRF is the accelerometer reference frame, as defined

by the manufacturer or as per the accelerometer model.
The transformation from SBRF to ANRF is denoted as
𝑇𝐵→𝑎𝑁

𝑖
.

AARF is the same as Accelerometer Nominal Reference
Frame (ANRF), except that it takes into account the mis-
alignments (𝜖𝑖) introduced while securing the accelerom-
eter on the spacecraft structure. The transformation from
ANRF toAARF is a small angle transformation defined by

𝑇𝑎𝑁
𝑖
→𝑎̃𝑖

= 𝐼3×3 −
[
𝜖
𝑎̃𝑖
𝑖
×

]
, (10)

where 𝜖𝑎̃𝑖
𝑖
is a vector of three small angle rotations.

4.2 Environmental models

In this section, relevant environmental models are pre-
sented and correspondingly appropriate perturbations act-
ing on the spacecraft are mathematically represented.
There are in general two classifications of the perturba-
tions: (1) those that arise from the gravitational potential
functions and (2) those that are not derivable from gravita-
tional potential functions (Bond & Allman, 1996). Pertur-
bations like third-body effect (due to the Sun, the Moon,
and other massive space objects), gravity gradient torques,
or the tidal potential perturbations are classified under the
first category as all of these effects can be derived from
potential functions (Bond & Allman, 1996). However, per-
turbations due to atmospheric drag, solar radiation pres-
sure, and other perturbations that involve some “contact”
with the spacecraft are classified under the second category
(Bond & Allman, 1996).
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The spherical harmonics gravity model is used to sim-
ulate Earth’s gravity model. It is computed analytically
by evaluating the first derivative of gravitational potential
𝑈(𝐫) with respect to the position vector 𝐫.

𝑈 =
𝜇

𝑟

[
1 +

∞∑
𝑛=1

𝑛∑
𝑚=0

(
𝑅𝐸
𝑟

)𝑛

𝑃𝑛,𝑚(𝑠𝜆)
{
𝐶𝑛,𝑚 cos (𝑚𝜙)

+𝑆𝑛,𝑚 sin (𝑚𝜙)
}]

, (11)

where gravitational potential 𝑈(𝐫) is given by Equation
(11), such that 𝜇 is the universal gravitational parameter,
𝐫 is the position vector from a point O fixed in body E (say
Earth) to a generic point Q, 𝑟 denotes the magnitude of 𝐫,
𝑅𝐸 is a scaling radius for body E. 𝑃𝑛,𝑚 is the associated Leg-
endre function of the first kind, of degree n and order m,
and has as its argument 𝑠𝜆, the sine of 𝜆, the latitude of
Q (Roithmayr, 1990, 2004). The longitude of Q is denoted
by 𝜙. 𝐶𝑛,𝑚 and 𝑆𝑛,𝑚 are unnormalized gravitational coeffi-
cients of degree n and order m (Roithmayr, 1990, 2004). If
point O is coincident with the mass center of E, then 𝐶1,0,
𝐶1,1, and 𝑆1,1 all become zero (Roithmayr, 1990, 2004, 2019;
Takahashi et al., 2013).
Spacecraft in the lower altitudes (approx. 1,600 km or

below) of the low Earth orbit, experience an opposing
force or drag due to the interaction with the upper atmo-
sphere. A simplified exponentially decaying atmospheric
drag model is used for this study, defined as follows (Gill
Oliver & Montenbruck, 2012; Wertz, 1978):

𝐚𝐼𝑎𝑒𝑟𝑜 = −
1

2
𝜌
(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝜌𝑟, ℎ𝑠

)
𝛽
‖‖‖𝐯𝐼𝐶𝑀∕𝐸

‖‖‖𝐯𝐼𝐶𝑀∕𝐸
(12)

𝜌
(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝜌𝑟, ℎ𝑠

)
= 𝜌𝑟𝑒

−

(‖‖‖‖𝐫𝐼𝐶𝑀∕𝐸

‖‖‖‖−ℎ𝑟𝑒𝑓
)

ℎ𝑠 (13)

ℎ𝑟𝑒𝑓 = 400000 + 𝑅𝐸, (14)

where 𝐚𝑎𝑒𝑟𝑜 is the aerodynamic acceleration due to atmo-
spheric drag at spacecraft position 𝐫𝐼

𝐶𝑀∕𝐸
, velocity 𝐯𝐼

𝐶𝑀∕𝐸
,

and for ballistic coefficient 𝛽, reference atmospheric den-
sity 𝜌𝑟, and scale height ℎ𝑠. Further, 𝜌 is the atmospheric
density at spacecraft position 𝐫𝐼

𝐶𝑀∕𝐸
, ℎ𝑟𝑒𝑓 is the refer-

ence altitude in meters, at which reference atmospheric
density 𝜌𝑟 and scale height ℎ𝑠 have been defined, and
lastly, 𝑅𝐸 is the radius of the Earth (Vallado, 2001; Wertz,
1978).
Due to the incident solar radiation, a force is exerted on

the spacecraft and this is modeled based on three main
factors: (1) the intensity and spectral distribution of the
incident radiation, (2) the geometry of the surface and its

optical properties, and (3) the orientation of the Sun vector
relative to the spacecraft (Wertz, 1978). Here, a simple radi-
ation model is considered, i.e., a constant solar radiation
has been assumed (the Earth’s albedo and the radiation
emitted from the Earth and its atmosphere have been
ignored) (Wertz, 1978). The mathematical model of the
acceleration due to the solar radiation pressure on a spher-
ical spacecraft can be defined as follows (Wertz, 1978):

𝐚𝐼
𝑆𝑅𝑃

= −𝑃𝑓𝑙𝑢𝑥

(
3

𝑟𝑠𝑐𝜌𝑠𝑐

)(
1

4
+
1

9
𝑑𝑟

)
𝐬̂ (15)

𝐬̂ = −
𝐝𝑗‖‖‖𝐝𝑗‖‖‖ = −

𝐫 − 𝛒𝑗‖‖‖𝐫 − 𝛒𝑗
‖‖‖ = −

𝐫𝐼
𝐶𝑀∕𝐸

− 𝛒𝑆𝑢𝑛‖‖‖𝐫𝐼𝐶𝑀∕𝐸
− 𝛒𝑆𝑢𝑛

‖‖‖ = 𝛒̂𝑆𝑢𝑛,

(16)

where 𝐚𝑆𝑅𝑃 is the acceleration due to solar radiation
pressure, 𝑃𝑓𝑙𝑢𝑥 is the mean momentum flux acting on a
surface normal to the Sun’s radiation (refer to Equation
(17)), 𝑟𝑠𝑐 is the radius of the spherical spacecraft, 𝜌𝑠𝑐 is
the density of the spherical spacecraft, 𝑑𝑟 denote the
coefficient of diffuse reflection, i.e., the fraction of the
incident radiation that is diffusely reflected, 𝐬̂ is the unit
vector from the spacecraft to the Sun (refer to Equation
(16)), 𝐝𝑗 denote the vector from the Sun to the spacecraft,
𝐫𝐼
𝐶𝑀∕𝐸

is the vector from the Earth to the spacecraft, and 𝛒𝑗
is the vector from the Earth to the Sun (Wertz, 1978). The
mean momentum flux is defined as follows (Wertz, 1978):

𝑃𝑓𝑙𝑢𝑥 =
𝐹𝑒
𝑐

(17)

𝐹𝑒 =
1358

1.0004 + 0.0334 cos𝐷
𝑊∕𝑚2, (18)

where 𝐹𝑒 is the solar constant (modeled with 1358𝑊∕𝑚2,
i.e., the mean flux at 1 AU, and the denominator is a
correction for the true Earth distance), 𝐷 is the “phase” of
the year measured from July 4 (the day of Earth aphelion),
and 𝑐 is the speed of light (Wertz, 1978). It should be noted
that the solar constant depends on the radiation wave-
length and the eccentricity of the Earth’s orbit about the
Sun (Wertz, 1978). The variations in this flux (based on the
abovemodel) are always less than 0.5%, and solar radiation
is largely emitted in the visible and near-infrared portions
of the spectrum (Wertz, 1978). For this study, a con-
stant mean momentum flux of 4.4 × 10−6 𝑘𝑔 ⋅ 𝑚−1 ⋅ 𝑠−2

has been considered (see page 130 in reference (Wertz,
1978)).
The perturbing acceleration (𝐚𝐼

3𝑟𝑑
), acting on the space-

craft, due to the gravitational force of the massive space
objects (Sun and Moon) can be modeled as follows
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(Bond & Allman, 1996):

𝐚𝐼
3𝑟𝑑

= −𝐺𝑚𝑆𝑢𝑛

⎛⎜⎜⎜⎝
𝐫𝐼
𝐶𝑀∕𝐸

− 𝛒𝑆𝑢𝑛‖‖‖𝐫𝐼𝐶𝑀∕𝐸
− 𝛒𝑆𝑢𝑛

‖‖‖3 +
𝛒𝑆𝑢𝑛‖𝛒𝑆𝑢𝑛‖3

⎞⎟⎟⎟⎠
−𝐺𝑚𝑀𝑜𝑜𝑛

⎛⎜⎜⎜⎝
𝐫𝐼
𝐶𝑀∕𝐸

− 𝛒𝑀𝑜𝑜𝑛‖‖‖𝐫𝐼𝐶𝑀∕𝐸
− 𝛒𝑀𝑜𝑜𝑛

‖‖‖3 +
𝛒𝑀𝑜𝑜𝑛‖𝛒𝑀𝑜𝑜𝑛‖3

⎞⎟⎟⎟⎠, (19)

where 𝑚𝑆𝑢𝑛 and 𝑚𝑀𝑜𝑜𝑛 are the mass of the Sun and the
Moon, and 𝐺 is the universal gravitational constant.
The gravity gradient torque, due to the point-mass gravi-

tational field of the Earth, acting on the spacecraft is given
as follows (Wertz, 1978):

𝐌𝑔𝑔 =
3𝜇‖‖‖𝐫𝐵𝑂∕𝐸‖‖‖5

[
𝐫𝐵
𝑂∕𝐸

×
(
𝐽 ⋅ 𝐫𝐵

𝑂∕𝐸

)]
, (20)

where 𝐫𝐵
𝑂∕𝐸

is the position vector of the spacecraft’s geo-
metric center with respect to the center of the Earth, 𝜇 =

𝐺𝑀𝐸 is the Earth’s gravitational constant, and 𝐽 is the
spacecraft moment-of-inertia tensor (Wertz, 1978). Note
that the above expression is valid only if it is assumed that
the center of mass of the spacecraft coincides with its geo-
metric center (Wertz, 1978).

4.3 Nonlinear Dynamics Modeling

The nonlinear dynamics of the spacecraft and the mea-
surements are defined as presented below
The dynamics for the given system can be defined in the

general form

𝐱̇ = 𝒇(𝐱, 𝑡) + 𝐺𝐰, (21)

where 𝐱 is the true state vector, 𝐺 is a matrix to map
the noise vector to the state dynamics, and 𝐰 is a vec-
tor of zero-mean white noise processes. The dynam-
ics can then be segmented into three broad categories:
(1) translational dynamics, (2) rotational dynamics, and
(3) dynamics of the uncertainties inherent to the sys-
tem/environmental model.
The translational dynamics are defined as

𝐫̇𝐼
𝐶𝑀∕𝐸

= 𝐯𝐼
𝐶𝑀∕𝐸

(22)

𝐯̇𝐼
𝐶𝑀∕𝐸

= 𝐠𝐼𝑒

(
𝐫𝐼
𝐶𝑀∕𝐸

)
+ 𝐚𝐼

𝑇ℎ𝑖𝑟𝑑−𝑏𝑜𝑑𝑦

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝛒𝑆𝑢𝑛, 𝛒𝑀𝑜𝑜𝑛

)

+𝐚𝐼𝑎𝑒𝑟𝑜

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐯𝐼
𝐶𝑀∕𝐸

, 𝛽, 𝜌𝑟, ℎ𝑠

)
+𝐚𝐼

𝑆𝑅𝑃

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝛒𝑆𝑢𝑛

)
+𝐰𝑇 +𝐰𝑎𝑒𝑟𝑜, (23)

where 𝐠𝑒(𝐫𝐼𝐶𝑀∕𝐸
) denotes the Earth’s gravitational acceler-

ation at position 𝐫𝐼
𝐶𝑀∕𝐸

. In Equation (23), 𝐰𝑇 and 𝐰𝑎𝑒𝑟𝑜

denote the translational disturbance acceleration and
unmodeled aerodynamic acceleration, modeled aszero-
mean white Gaussian noise. The dynamics for three envi-
ronmental parameters (𝛽, 𝜌𝑟, ℎ𝑠) aremodeled as first-order
Markov processes, also known as Exponentially Correlated
Random Variables (ECRVs), given as follows:

𝐱̇𝑝 =
𝐱𝑝

𝜏𝐱𝑝
+ 𝜔𝐱𝑝 , (24)

where 𝐱𝑝 are the parameters, 𝜏𝐱𝑝 is the time-constant of
the corresponding parameters, and 𝜔𝐱𝑝 is the unmodeled
zero-mean white Gaussian noise in the dynamics.
The rotational dynamics are defined by the quaternion

representing the orientation of the spacecraft body-fixed
reference frame (SBRF) with respect to the inertial ref-
erence frame (IRF), denoted as 𝐪𝐼→𝐵. The corresponding
kinematics and dynamics will be defined as (Markley &
Crassidis, 2014)

𝐪̇𝐼→𝐵 =
1

2
𝛚𝐵
𝐵∕𝐼

⊗ 𝐪𝐼→𝐵, (25)

where 𝝎𝐵
𝐵∕𝐼

is the angular velocity of the spacecraft,
expressed in the spacecraft-fixed body frame. Correspond-
ingly, the spacecraft’s angular acceleration can be defined
as (Markley & Crassidis, 2014)

𝝎̇𝐵
𝐵∕𝐼

= 𝐽−1
[
𝐌𝑔𝑔

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐪𝐼→𝐵

)
− 𝝎𝐵

𝐵∕𝐼
×

(
𝐽𝝎𝐵

𝐵∕𝐼

)]
+𝐰𝑅.

(26)

In Equation (26),𝐰𝑅 is the rotational disturbance acceler-
ation, modeled as zero-mean white Gaussian noise.
The dynamics of these parameters (𝐫𝐵

𝐶𝑀∕𝑂
, 𝐫𝐵

𝑎𝑖∕𝑂
,

𝐛
𝑎̃𝑖
𝑖
, 𝐟

𝑎̃𝑖
𝑖
, 𝝐

𝑎̃𝑖
𝑖
) are modeled as ECRVs and generally defined

by Equation (24).

4.4 Linear dynamics modeling

In this section, the aforementioned nonlinear models and
equations are linearized about the reference state vector
(𝐱̄) so as to formulate the linear covariance model for
the given system. Note that for formulating an Extended
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Kalman Filter, linearization needs to be done about the
estimated state vector (𝐱̂). All the nominal values are dec-
orated with an over-bar.
Also, note that the state vector is “modified” to for-

mulate the linear model (Lefferts et al. 1982). The four-
dimensional quaternion state 𝐪𝐼→𝐵 is replaced by the
three-dimensional rotation vector 𝜽𝐼→𝐵 and the quaternion
kinematics are replaced by the Bortz equation, given as
(Pittelkau, 2003)

𝜽̇ = 𝝎 +
1

2
𝜽 × 𝝎 +

1‖𝜽‖
[
1 −

‖𝜽‖ sin ‖𝜽‖
2(1 − cos ‖𝜽‖)

]
𝜽 × (𝜽 × 𝝎).

(27)

Linearization of the rotational dynamics is presented in
detail later in this section.
The linearized dynamics of the spacecraft position in

inertial frame (𝐫𝐼
𝐶𝑀∕𝐸

) is given as

𝛿𝐫̇𝐼
𝐶𝑀∕𝐸

= 𝛿𝐯𝐼
𝐶𝑀∕𝐸

. (28)

The linearized dynamics of the spacecraft velocity in
inertial frame (𝐯𝐼

𝐶𝑀∕𝐸
) is given as

𝛿𝐯̇𝐼
𝐶𝑀∕𝐸

=
𝜕𝐠𝐼𝐸

(
𝐫𝐼
𝐶𝑀∕𝐸

)
𝜕𝐫𝐼

𝐶𝑀∕𝐸

|||||||𝐱̄𝛿𝐫
𝐼
𝐶𝑀∕𝐸

+
𝜕𝐚𝐼

3𝑟𝑑

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄𝛿𝐫𝐼𝐶𝑀∕𝐸

+
𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄𝛿𝐫𝐼𝐶𝑀∕𝐸
+

𝜕𝐚𝐼
𝑆𝑅𝑃

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄𝛿𝐫𝐼𝐶𝑀∕𝐸

+
𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄𝛿𝐯𝐼𝐶𝑀∕𝐸
+

𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕𝛽

|||||𝐱̄𝛿𝛽
+
𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕𝜌𝑟

|||||𝐱̄𝛿𝜌𝑟 + 𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕ℎ𝑠

|||||𝐱̄𝛿ℎ𝑠 + 𝐰𝑇 +𝐰𝑎𝑒𝑟𝑜,

(29)

where the partial derivatives in Equation (29) are given in
the Appendix, respectively.
The dynamics of the ballistic coefficient, reference

atmospheric density, and scale height are already linear.
The linearized rotational kinematics can be described by

(Pittelkau, 2003)

𝛿𝛉̇ = 𝛿𝝎𝐵
𝐵∕𝐼

− 𝝎̄𝐵
𝐵∕𝐼

× 𝛿𝜽. (30)

The linearized dynamics of the spacecraft’s angular
velocity (𝝎𝐵

𝐵∕𝐼
) are given as (Markley & Crassidis, 2014)

𝛿𝝎̇𝐵
𝐵∕𝐼

= 𝐽−1
⎡⎢⎢⎣

𝜕𝑀𝑔𝑔

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄𝛿𝐫𝐼𝐶𝑀∕𝐸
+

𝜕𝑀𝑔𝑔

𝜕𝜽

|||||𝐱̄𝛿𝜽

−
𝜕
(
𝝎𝐵
𝐵∕𝐼

×
[
𝐽𝝎𝐵

𝐵∕𝐼

])
𝜕𝝎𝐵

𝐵∕𝐼

|||||||𝐱̄𝛿𝝎
𝐵
𝐵∕𝐼

⎤⎥⎥⎥⎦ +𝐰𝑅, (31)

where

𝜕
(
𝝎𝐵
𝐵∕𝐼

×
(
𝐽𝝎𝐵

𝐵∕𝐼

))
𝜕𝝎𝐵

𝐵∕𝐼

|||||||𝐱̄ = −
[(
𝐽𝝎̄𝐵

𝐵∕𝐼

)
×

]
+

[
𝝎̄𝐵
𝐵∕𝐼

×
]
𝐽.

(32)
The partial derivatives of the gravity gradient torque

with respect to the spacecraft position vector and the rota-
tion vector are given in the Appendix, respectively.
The dynamics of the center ofmass positionwith respect

to the spacecraft body-fixed frame (𝐫𝐵
𝐶𝑀∕𝑂

), 𝑖𝑡ℎ accelerom-
eter position with respect to the spacecraft body-fixed
frame (𝛿𝐫𝐵

𝑎𝑖∕𝑂
), accelerometer bias (𝐛

𝑎̃𝑖
𝑖
), accelerometer

scale factor (𝐟 𝑎̃𝑖
𝑖
), and accelerometermisalignment (𝛜𝑎̃𝑖

𝑖
) are

already linear.

5 ACCELEROMETERMEASUREMENT
MODEL

5.1 Nonlinear measurement modeling

The accelerometer measurements for a system can be
generically defined as

𝑎̃
𝑎̃𝑖
𝑖
= 𝒉(𝐱) + 𝛈

𝑎̃𝑖
𝑖
, (33)

where 𝐱 is the true state vector, 𝒉(⋅) is a nonlinear
function which maps state vector to the accelerometer
measurements, and 𝛈

𝑎̃𝑖
𝑖
is a vector of zero-mean white

Gaussian noise on the accelerometer measurements. In
this document, the subscript i represents the quanti-
ties/vectors related to the 𝑖𝑡ℎ accelerometer, and the super-
script I, B, and 𝑎̃𝑖 denote the vectors coordinatized in the
inertial reference frame (IRF), spacecraft body-fixed ref-
erence frame (SBRF), and accelerometer actual reference
frame (AARF), respectively.
According to Figure 3, the position of the 𝑖𝑡ℎ accelerom-

eter, with respect to the center of the Earth, can be defined
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F IGURE 3 Spacecraft’s center of mass position vector relative
to inertial reference frame (IRF) and spacecraft body-fixed reference
frame (SBRF) [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com and www.ion.org]

as follows:

𝐫𝑎𝑖∕𝐸 = 𝐫𝑂∕𝐸 + 𝐫𝑎𝑖∕𝑂, (34)

where 𝐫𝑎𝑖∕𝐸 is the position of the 𝑖𝑡ℎ accelerometer with
respect to the center of the Earth, 𝐫𝑂∕𝐸 is the position of
the origin of the spacecraft body-fixed reference framewith
respect to the center of the Earth, and 𝐫𝑎𝑖∕𝑂 is the position
of the 𝑖𝑡ℎ accelerometer with respect to the origin of the
spacecraft body-fixed reference frame.
Further, it is assumed that the origin 𝑂 of the spacecraft

body-fixed reference frame is fixed to the spacecraft’s cen-
ter of mass 𝐶𝑀. However, during Linear Covariance sim-
ulation setup, in Section 6.1, an additional state (𝐫𝐵

𝐶𝑀∕𝑂
) is

added to take into account the uncertainty in the estimate
of the position of the center of mass with respect to the ori-
gin 𝑂 of the SBRF.
An electrostatic accelerometer is designed to detect

the difference between the acceleration of the center of
mass of the spacecraft and that of the proof mass of
the 𝑖𝑡ℎ accelerometer by measuring the electrostatic force
required to keep the proof mass in the center of the
accelerometer. The acceleration of the proofmass 𝐚𝐼𝑝𝑖 of the
𝑖𝑡ℎ accelerometer, expressed in the inertial reference frame,
can be given as

𝐚𝐼𝑝𝑖 = 𝐫̈𝐼
𝑎𝑖∕𝐸

= 𝐫̈𝐼
𝐶𝑀∕𝐸

+
(
𝐫̈𝐼
𝑎𝑖∕𝐶𝑀

)
𝑟𝑒𝑙

+ 2𝝎𝐼
𝐵∕𝐼

×
(
𝐫̇𝐼
𝑎𝑖∕𝐶𝑀

)
𝑟𝑒𝑙

+ 𝝎̇𝐼
𝐵∕𝐼

× 𝐫𝐼
𝑎𝑖∕𝐶𝑀

+ 𝝎𝐼
𝐵∕𝐼

×
(
𝝎𝐼
𝐵∕𝐼

× 𝐫𝐼
𝑎𝑖∕𝐶𝑀

)
, (35)

where 𝐚𝐼𝑝𝑖 is the acceleration of the 𝑖𝑡ℎ accelerometer’s

proof mass, 𝐫̈𝐼
𝐶𝑀∕𝐸

is the acceleration of the spacecraft,
(𝐫̈𝐼
𝑎𝑖∕𝐶𝑀

)
𝑟𝑒𝑙

is the acceleration of the 𝑖𝑡ℎ accelerometer’s
proof mass with respect to the spacecraft, as viewed rela-
tive to the rotating spacecraft body-fixed reference frame,
(𝐫̇𝐼
𝑎𝑖∕𝐶𝑀

)
𝑟𝑒𝑙

denotes the velocity of the 𝑖𝑡ℎ accelerometer’s
proof mass with respect to the spacecraft, as viewed rela-
tive to the rotating spacecraft body-fixed reference frame,
and 𝐫𝐼

𝑎𝑖∕𝐶𝑀
is the position of the 𝑖𝑡ℎ accelerometer’s proof

mass with respect to the spacecraft.
Using Newton’s second law,

𝐅𝐼𝑣 = 𝑚𝑣𝐫̈
𝐼
𝐶𝑀∕𝐸

(36)

𝐅𝐼𝑝𝑖 = 𝑚𝑝𝑖𝐚
𝐼
𝑝𝑖
, (37)

where 𝐅𝐼𝑣 is the total force acting on the spacecraft, 𝑚𝑣

is the mass of the spacecraft, 𝐅𝐼𝑝𝑖 is the total force act-
ing on the 𝑖𝑡ℎ accelerometer’s proof mass, and 𝑚𝑝𝑖 is the
mass of the 𝑖𝑡ℎ accelerometer’s proof mass.
Force analysis of the 𝑖𝑡ℎ accelerometer’s proof mass

yields

𝐅𝑝𝑖 = 𝐅𝑔𝑝𝑖
+ 𝐅𝑒𝑚𝑓𝑖 , (38)

where 𝐅𝑔𝑝𝑖 is the force acting on the 𝑖𝑡ℎ accelerometer’s
proof mass due to gravitational field, and 𝐅𝑒𝑚𝑓𝑖 is the
electro-motive force acting on the 𝑖𝑡ℎ accelerometer’s proof
mass to keep the proof mass at the center of the accelerom-
eter frame.
Force analysis of the vehicle yields

𝐅𝑣 = 𝐅𝑔𝑣 + 𝐍 − 𝐅𝑒𝑚𝑓𝑖 , (39)

where 𝐅𝑔𝑣 is the force acting on the spacecraft due to gravi-
tational field,𝐍 is the force acting on the spacecraft due to
non-gravitational forces, like atmospheric drag, and 𝐅𝑒𝑚𝑓𝑖
is the equal and opposite electro-motive force acting on
the spacecraft.
Using free body analysis of the vehicle and 𝑖𝑡ℎ

accelerometer’s proof mass, the acceleration of the
spacecraft and the acceleration of the 𝑖𝑡ℎ accelerometer’s
proof mass can be expressed as below

𝐚𝐼𝑣 = 𝐠𝐼
(
𝐫𝐼
𝐶𝑀∕𝐸

)
+
𝐍𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐯𝐼
𝐶𝑀∕𝐸

, 𝛽, 𝜌𝑟, ℎ𝑠

)
𝑚𝑣

−
𝐅𝐼
𝑒𝑚𝑓𝑖

𝑚𝑣

(40)

𝐚𝐼𝑝𝑖 = 𝐠𝐼
(
𝐫𝐼
𝐶𝑀∕𝐸

+ 𝐫𝐼
𝑎𝑖∕𝐶𝑀

)
+
𝐅𝐼
𝑒𝑚𝑓𝑖

𝑚𝑝𝑖

. (41)
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Further,

𝐫𝐼
𝐶𝑀∕𝐸

+ 𝐫𝐼
𝑎𝑖∕𝐶𝑀

= 𝐫𝐼
𝑎𝑖∕𝐸

, (42)

where 𝐫𝐼
𝑎𝑖∕𝐸

is the inertial position of the 𝑖𝑡ℎ accelerome-
ter’s proof mass.
The difference between the acceleration of the center of

mass of the spacecraft and that of the proof mass of the
𝑖𝑡ℎ accelerometer is defined as the detected acceleration
and is denoted by 𝐚𝐼

𝑑𝑖
. The detected acceleration is equal

to the sum of all non-gravitational accelerations acting on
the proof mass. Thus, using Equation (41) and Equation
(42), the detected acceleration is given as

𝐚𝐼
𝑑𝑖
=

𝐅𝐼
𝑒𝑚𝑓𝑖

𝑚𝑝𝑖

= 𝐚𝐼𝑝𝑖 − 𝐠𝐼
(
𝐫𝐼
𝑎𝑖∕𝐸

)
. (43)

To re-state this rigorously, Equations (40)–(42) are sub-
stituted in Equation (35), and it is noted that the detected
acceleration measurement is proportional to 𝐅𝐼

𝑒𝑚𝑓𝑖
(

1

𝑚𝑝𝑖

+

1

𝑚𝑣
).
Since quantities like position, velocity, and acceleration

of the 𝑖𝑡ℎ accelerometer’s proof mass and the spacecraft
angular velocity are traditionally measured in the space-
craft body-fixed reference frame (SBRF), these terms are
transformed using a transformation matrix from SBRF to
IRF. The detected acceleration is then given as

𝐚𝐼
𝑑𝑖
= 𝐅𝐼

𝑒𝑚𝑓𝑖

(
1

𝑚𝑝𝑖

+
1

𝑚𝑣

)
= 𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

)
− 𝐠𝐼

(
𝐫𝐼
𝑎𝑖∕𝐸

)
+𝐍𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐯𝐼
𝐶𝑀∕𝐸

, 𝛽, 𝜌𝑟, ℎ𝑠

)
+𝑇𝐵→𝐼

[
𝝎𝐵
𝐵∕𝐼

×
(
𝝎𝐵
𝐵∕𝐼

× 𝐫𝐵
𝑎𝑖∕𝐶𝑀

)]
+𝑇𝐵→𝐼

[
𝝎̇𝐵
𝐵∕𝐼

× 𝐫𝐵
𝑎𝑖∕𝐶𝑀

]
+2𝑇𝐵→𝐼

[
𝝎𝐵
𝐵∕𝐼

× 𝐫̇𝐵
𝑎𝑖∕𝐶𝑀

]
+ 𝑇𝐵→𝐼

[
𝐫̈𝐵
𝑎𝑖∕𝐶𝑀

]
. (44)

For thismeasurementmodel, Equation (33) is expanded,
and the accelerometer measurements are given by the
detected acceleration in the accelerometer frame 𝐚𝑎̃𝑖

𝑑𝑖
plus

errors due to bias and noise

𝑎̃
𝑎̃𝑖
𝑖
= 𝐚

𝑎̃𝑖
𝑑𝑖
+ 𝐛

𝑎̃𝑖
𝑖
+ 𝛈

𝑎̃𝑖
𝑖
, (45)

where 𝛈𝑎̃𝑖
𝑖
is the accelerometer measurement noise mod-

eled as zero-mean white Gaussian noise with a strength
denoted by 𝑄𝛈𝑖 , such that

𝐸[𝛈
𝑎̃𝑖
𝑖 (𝑡)𝛈

𝑎̃𝑖
𝑖

(
𝑡′

)𝑇
] = 𝑄𝛈𝑖𝛿

(
𝑡 − 𝑡′

)
. (46)

Thismeans that if the accelerometermeasurement noise
resolution is 𝛈𝑎̃𝑖

𝑖
(

𝑚

𝑠2
√
𝐻𝑧

), then the power spectral den-
sity of the accelerometer noise can be defined as 𝑄𝛈𝑖

(
𝑚2

𝑠4𝐻𝑧
or 𝑚2

𝑠32𝜋𝑟𝑎𝑑
).

Thus, the measurement covariance 𝑅 (
𝑚2

𝑠42𝜋𝑟𝑎𝑑
) is given

as

𝑅 =
𝑄𝛈𝑖

𝛿𝑡𝑚𝑒𝑎𝑠
, (47)

where 𝛿𝑡𝑚𝑒𝑎𝑠 is the measurement update time in sec-
onds. All vectors with superscript 𝑎̃𝑖 are coordinatized
in the actual 𝑖𝑡ℎ accelerometer frame. In Equation (45),
𝐚
𝑎̃𝑖
𝑑𝑖
denotes the detected acceleration in the accelerometer

frame, defined as

𝐚
𝑎̃𝑖
𝑑𝑖
=

[
𝐼 + 𝐷

(
𝐟
𝑎̃𝑖
𝑖

)]
𝑇𝑎𝑁

𝑖
→𝑎̃𝑖

𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

[
𝐚𝐼
𝑑𝑖

]
, (48)

where 𝐷(𝐟
𝑎̃𝑖
𝑖
) denotes the matrix with accelerometer

measurement scale-factors on the diagonal. All vectors
with superscript 𝑎𝑁

𝑖
are coordinatized in the nominal

𝑖𝑡ℎ accelerometer frame. The nominal 𝑖𝑡ℎ accelerometer
frame and the actual 𝑖𝑡ℎ accelerometer frame are different
because of the inherent misalignments that occur while
setting up the accelerometer in the spacecraft frame. These
accelerometer misalignments (𝝐𝑎̃𝑖

𝑖
) are accounted for by

defining the following small angle rotation:

𝑇𝑎𝑁
𝑖
→𝑎̃𝑖

= 𝐼 −
[
𝝐
𝑎̃𝑖
𝑖
×

]
. (49)

It can be noted that with reasonable assumptions of
nearly constant spacecraft angular velocity and a rigid
body spacecraft with accelerometers firmly fixed to the
spacecraft structure, the last three terms in Equation (44)
are very small and can be absorbed into the bias and noise
terms in Equation ( 45).
Further, using vector algebra (refer to Figure 4), the

relationship between accelerometer position (𝐫𝐼
𝑎𝑖∕𝐸

) with
respect to the center of the Earth, expressed in inertial
frame, and accelerometer position (𝐫𝐵

𝑎𝑖∕𝐶𝑀
)with respect to

the spacecraft center of mass, expressed in spacecraft fixed
body frame, can be written as

𝐫𝐼
𝑎𝑖∕𝐸

= 𝐫𝐼
𝐶𝑀∕𝐸

+ 𝑇𝑇𝐼→𝐵

[
𝐫𝐵
𝑎𝑖∕𝐶𝑀

]
, (50)

where accelerometer position (𝐫𝐵
𝑎𝑖∕𝐶𝑀

) with respect to the
spacecraft center of mass, expressed in spacecraft fixed
body frame, is given as

𝐫𝐵
𝑎𝑖∕𝐶𝑀

= 𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

. (51)
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F IGURE 4 Schematic Model (only two of the six accelerom-
eters are shown) (Cesare, 2002) [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

Now using Equation (49) in Equation (48), gives

𝐚
𝑎̃𝑖
𝑑𝑖
=

[
𝐼 + 𝐷

(
𝐟
𝑎̃𝑖
𝑖

)](
𝐼 −

[
𝝐
𝑎̃𝑖
𝑖
×

])
𝑇𝐵→𝑎𝑁

𝑖
𝑇𝐼→𝐵

[
𝐚𝐼
𝑑𝑖

]
, (52)

where the detected acceleration (𝐚𝐼
𝑑𝑖
), in the inertial frame,

can be rewritten using Equations (50)-(51) and ignoring
the linear acceleration ( ̇̄𝝎

𝐵
𝐵∕𝐼 × 𝐫̄𝐵

𝑎𝑖∕𝐶𝑀
), Coriolis accelera-

tion (2𝝎̄𝐵
𝐵∕𝐼

× ̇̄𝐫𝐵
𝑎𝑖∕𝐶𝑀

), and acceleration with respect to the
spacecraft (̈̄𝑟𝐵

𝑎𝑖∕𝐶𝑀
)

𝐚𝐼
𝑑𝑖
= 𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

)
− 𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

+ 𝑇𝐵→𝐼

[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])
+𝐚𝐼𝑎𝑒𝑟𝑜

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐯𝐼
𝐶𝑀∕𝐸

, 𝛽, 𝜌𝑟, ℎ𝑠

)
+𝐚𝐼

𝑆𝑅𝑃

(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝛒𝑆𝑢𝑛

)
+𝑇𝐵→𝐼

{
𝝎𝐵
𝐵∕𝐼

×
(
𝝎𝐵
𝐵∕𝐼

×
[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])}
. (53)

This provides the necessary relationship between the
measurement 𝑎̃𝑖 and the state 𝐱. As noted earlier, an
accelerometer rigidly attached to the spacecraft and at a
position offset from the center ofmass of the systemwill be
able to detect gravity gradient provided the measurement
noise level and environment noise is sufficiently low. The
term related to the gravity gradient measurement can be
noted in Equation (53).
Measurements from an onboard star camera are used to

improve the estimation of the states and thereby enhance
the overall fidelity of the navigation system. The star cam-

era measurements 𝑠 are generically defined as

𝑠𝑠 = 𝒍(𝐱) + 𝛈𝑠𝑠𝑐, (54)

where superscript 𝑠 denotes the vectors coordinatized in
the actual star-camera reference frame (ASRF), 𝐱 is the
true state vector, 𝒍(⋅) is a nonlinear function which maps
state vector to the star camera measurements, and 𝛈𝑠𝑠𝑐 is
a vector of zero-mean white Gaussian noise on the star
camera measurements with the covariance of the noise
denoted by 𝑄𝛈𝑠𝑐 (𝑟𝑎𝑑

2), such that

𝐸[𝛈𝑠
𝑠𝑐,𝑖
𝛈𝑠
𝑠𝑐,𝑗

𝑇] = 𝑄𝛈𝑠𝑐𝛿𝑖𝑗, (55)

where 𝛿𝑖𝑗 is a Kronecker delta function.
The star camera measurements 𝑠 are modeled as

𝑠𝑠 = 𝑇𝐵→𝑠𝜽𝐼→𝐵 + 𝛈𝑠𝑠𝑐, (56)

where 𝑇𝐵→𝑠 is the transformation matrix from the space-
craft body-fixed reference frame (SBRF) to the actual star-
camera reference frame (ASRF) and 𝜽𝐼→𝐵 is the true orien-
tation of the spacecraft body-fixed reference frame (SBRF)
with respect to the inertial reference frame (IRF).
For this study, the actual star-camera reference frame

(ASRF) is aligned with the spacecraft body-fixed reference
frame (SBRF). This means that the misalignments in
the setting up of the star camera on the rigid body of
the spacecraft have been ignored. Thus, 𝑇𝐵→𝑠 is a 3 × 3

identity matrix.

5.2 Linearized measurement equation

Now, Equation (33) is linearized as

𝛿𝑎̃
𝑎̃𝑖
𝑖
= 𝐻𝑥𝛿𝐱 + 𝛈

𝑎̃𝑖
𝑖
, (57)

where𝐻𝑥 is themeasurement partial due to the accelerom-
eter measurements, defined as

𝐻𝑥 =
𝜕𝐡

𝜕𝐱

||||𝐱̄ (58)

𝐻𝑥 =
⎡⎢⎢⎣

𝜕𝒉3𝑛

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄
𝜕𝒉3𝑛
𝜕𝜽𝐼→𝐵

||||𝐱̄ 𝜕𝒉3𝑛

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄
𝜕𝒉3𝑛
𝜕𝛽

||||𝐱̄ 𝜕𝒉3𝑛
𝜕𝜌𝑟

||||𝐱̄ 𝜕𝒉3𝑛
𝜕ℎ𝑠

||||𝐱̄ 𝜕𝒉3𝑛

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐛
𝑎̃𝑖
𝑖

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐟
𝑎̃𝑖
𝑖

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝛜
𝑎̃𝑖
𝑖

||||||𝐱̄
⎤⎥⎥⎦
3𝑛×(18+12𝑛)

. (59)
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Noting that the total number of states is 18 + 12𝑛

(where n is the number of accelerometers), the measure-
ment partial 𝐻𝑥 is a matrix of dimension size 3𝑛 × (18 +

12𝑛). Measurement partials with respect to each state are
given below.
Measurement partials with respect to the spacecraft

position in the inertial frame (𝐫𝐼
𝐶𝑀∕𝐸

) are given as

𝜕𝒉

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄, (60)

where

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ =
𝜕𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

)
𝜕𝐫𝐼

𝐶𝑀∕𝐸

|||||||𝐱̄
−
𝜕𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

+ 𝑇𝐵→𝐼

[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])
𝜕𝐫𝐼

𝐶𝑀∕𝐸

|||||||𝐱̄
+

𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ +
𝜕𝐚𝐼

𝑆𝑅𝑃

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄. (61)

Measurement partials with respect to the spacecraft
velocity in inertial frame (𝐯𝐼

𝐶𝑀∕𝐸
) are given as

𝜕𝒉

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄. (62)

Measurement partials with respect to the spacecraft’s
rotation vector (𝜽𝐼→𝐵) are given as

𝜕𝒉

𝜕𝜽𝐼→𝐵

||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖

𝜕𝐚𝐵
𝑑𝑖

𝜕𝜽𝐼→𝐵

||||||𝐱̄. (63)

Measurement partials with respect to the spacecraft’s
angular velocity (𝝎𝐵

𝐵∕𝐼
) are given as

𝜕𝒉

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

) 𝜕𝐚𝐼
𝑑𝑖

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄. (64)

Measurement partials with respect to the center of mass
position, in spacecraft body-fixed frame andwith respect to
the origin of the spacecraft body-fixed frame (𝐫𝐵

𝐶𝑀∕𝑂
), are

given as

𝜕𝒉

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

) 𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄. (65)

Measurement partials with respect to the ballistic coeffi-
cient (𝛽), for exponentially decaying atmospheric drag, are

given as

𝜕𝒉

𝜕𝛽

||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

) 𝜕𝐚𝐼𝑑𝑖
𝜕𝛽

||||||𝐱̄. (66)

Measurement partials with respect to the reference
atmospheric density (𝜌𝑟), for exponentially decaying atmo-
spheric drag, are given as

𝜕𝒉

𝜕𝜌𝑟

||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

) 𝜕𝐚𝐼𝑑𝑖
𝜕𝜌𝑟

||||||𝐱̄. (67)

Measurement partials with respect to the scale height
(ℎ𝑠), for exponentially decaying atmospheric drag, are
given as

𝜕𝒉

𝜕ℎ𝑠

||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

) 𝜕𝐚𝐼𝑑𝑖
𝜕ℎ𝑠

||||||𝐱̄. (68)

Measurement partials with respect to the 𝑖𝑡ℎ accelerom-
eter position, in spacecraft body-fixed frame and with
respect to the origin of the spacecraft body-fixed frame
(𝐫𝐵
𝑎𝑖∕𝑂

), are given as

𝜕𝒉

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄ = 𝑇𝐵→𝑎𝑁
𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

) 𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄. (69)

Detailed derivation of partial derivatives used in Equa-
tions (61)-(69) are given in the Appendix.
Measurement partials with respect to the accelerometer

bias (𝐛𝑎̃𝑖
𝑖
) are given as

𝜕𝒉

𝜕𝐛
𝑎̃𝑖
𝑖

||||||𝐱̄ = 𝐼3×3. (70)

Measurement partials with respect to the accelerometer
scale factor (𝐟 𝑎̃𝑖

𝑖
) are given as

𝜕𝒉

𝜕𝐟
𝑎̃𝑖
𝑖

||||||𝐱̄ = 𝐷
(
𝐚̄
𝑎̃𝑖
𝑑𝑖

)
, (71)

where 𝐚̄𝑎̃𝑖
𝑑𝑖
is given by Equation (52).

Measurement partials with respect to the accelerometer
misalignment (𝛜𝑎̃𝑖

𝑖
) are given as

𝜕𝒉

𝜕𝛜
𝑎̃𝑖
𝑖

||||||𝐱̄ =
(
𝐼 + 𝐷

(
𝐟
𝑎̃𝑖
𝑖

)){[(
𝑇𝐵→𝑎𝑁

𝑖
𝑇𝐼→𝐵

(
𝛉̄𝐼→𝐵

)
𝐚̄𝐼
𝑑𝑖

)
×

]}
,

(72)

where 𝐚̄𝐼
𝑑𝑖
is given by Equation (53).
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Now, the star camera measurement model, as given in
Equation (56), is linearized as

𝛿𝑠𝑠 = 𝐿𝑥𝛿𝐱 + 𝛈𝑠𝑠𝑐, (73)

where 𝐿𝑥 is the measurement partial due to star camera
measurements, defined as

𝐿𝑥 =
𝜕𝒍

𝜕𝐱

||||𝐱̄. (74)

Noting that, for this study, only one star camera has been
included and because the total number of states is 18 + 12𝑛

(where n is the number of accelerometers), the measure-
ment partial 𝐿𝑥 is a matrix of dimension size 3 × (18 +

12𝑛). Since using Equation (56), it is easy to note that the
star camerameasurement is only the function of spacecraft
rotation vector; this implies

𝜕𝒍

𝜕𝜽𝐼→𝐵

||||𝐱̄ = 𝑇𝐵→𝑠 = 𝐼3×3. (75)

As stated earlier, for this study, the misalignments in
the setting up of the star camera on the rigid body of the
spacecraft have been ignored. Thus, 𝑇𝐵→𝑠 is a 3 × 3 iden-
tity matrix.

6 LINCOV TOOL

6.1 Summary of linearized dynamics &
measurement model

The linearized dynamics in Equation (21) can be summa-
rized as follows:

𝛿𝐱̇ = 𝐹𝑥𝛿𝐱 + 𝐺𝐰, (76)

where uppercase characters denote partial derivatives
taken with respect to the variable indicated by a subscript
and evaluated along the reference state vector (e.g., 𝐹𝑥 =
𝜕𝒇∕𝜕𝐱|𝐱̄), and 𝐺 is a matrix to map the noise vector to the
state dynamics.
Now, let the state vector be segmented in two parts such

that

𝐱 =

[
𝐱1
𝐱2

]
(77)

𝐱̇ =

[
𝐱̇1

𝐱̇2

]
=

[
𝒇1(𝐱1, 𝑡)

𝒇2(𝐱2, 𝑡)

]
, (78)

where 𝐱 is the true state vector, and 𝐱1 and 𝐱2 are defined
as

𝐱1 =
(
𝐫𝐼
𝐶𝑀∕𝐸

, 𝐯𝐼
𝐶𝑀∕𝐸

, 𝛉𝐼→𝐵, 𝝎
𝐵
𝐵∕𝐼

)𝑇

(79)

𝐱2 =
(
𝐫𝐵
𝐶𝑀∕𝑂

, 𝛽, 𝜌𝑟, ℎ𝑠, 𝐫
𝐵
𝑎𝑖∕𝑂

, 𝐛
𝑎̃𝑖
𝑖
, 𝐟

𝑎̃𝑖
𝑖
, 𝝐

𝑎̃𝑖
𝑖

)𝑇

, (80)

where 𝐱2 denotes all the ECRV.
Thus, based on Equations (76)-(80), 𝐹𝑥 can be defined as

𝐹𝑥 =
𝜕𝒇

𝜕𝐱

||||𝐱̄ =
[
𝐹𝑥1𝑥1 𝐹𝑥1𝑥2
𝐹𝑥2𝑥1 𝐹𝑥2𝑥2

]
, (81)

where 𝐹𝑥 is a (18 + 12𝑛) × (18 + 12𝑛) Jacobian matrix,
while 𝐹𝑥1𝑥1 is 12 × 12, 𝐹𝑥1𝑥2 and 𝐹𝑥2𝑥1 are 12 × (6 +

12𝑛) and (6 + 12𝑛) × 12, and lastly, 𝐹𝑥2𝑥2 is (6 + 12𝑛) ×

(6 + 12𝑛), respectively. The number of accelerometers is
denoted by n.

𝐹𝑥1𝑥1 =
𝜕𝒇1

𝜕𝐱1

||||𝐱̄ =
⎡⎢⎢⎢⎢⎢⎣

𝑍33 𝐼33 𝑍33 𝑍33

𝐹𝑉𝑅 𝐹𝑉𝑉 𝑍33 𝑍33

𝑍33 𝑍33 −Ω⊗ 𝐼33

𝐹𝑊𝑅 𝑍33 𝐹𝑊𝜃 𝐹𝑊𝑊

⎤⎥⎥⎥⎥⎥⎦
12×12

, (82)

where

𝑍33 = 03×3, 𝐼33 = 𝐼3×3 (83)

𝐹𝑉𝑅 =
𝜕𝐠𝐼𝐸

(
𝐫𝐼
𝐶𝑀∕𝐸

)
𝜕𝐫𝐼

𝐶𝑀∕𝐸

|||||||𝐱̄ +
𝜕𝐚𝐼

𝑇ℎ𝑖𝑟𝑑−𝑏𝑜𝑑𝑦

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄
+

𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ +
𝜕𝐚𝐼

𝑆𝑅𝑃

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ (84)

𝐹𝑉𝑉 =
𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ (85)

𝐹𝑊𝑅 = 𝐽−1
𝜕𝑀𝑔𝑔

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ (86)

𝐹𝑊𝜃 = 𝐽−1
𝜕𝑀𝑔𝑔

𝜕𝜽

|||||𝐱̄ (87)

𝐹𝑊𝑊 = −𝐽−1
𝜕
(
𝝎𝐵
𝐵∕𝐼

×
[
𝐽𝝎𝐵

𝐵∕𝐼

])
𝜕𝝎𝐵

𝐵∕𝐼

|||||||𝐱̄ (88)

𝐹𝑊𝑊 = −𝐽−1
(
−

[(
𝐽𝝎̄𝐵

𝐵∕𝐼

)
×

]
+

[
𝝎̄𝐵
𝐵∕𝐼

×
]
𝐽
)
. (89)



808 BHATIA and GELLER

Detailed derivation of partial derivatives used in Equa-
tions (84)–(87) are given in the Appendix.

𝐹𝑥1𝑥2 =
𝜕𝒇1

𝜕𝐱2

||||𝐱̄ (90)

𝐹𝑥1𝑥2 =

⎡⎢⎢⎢⎢⎢⎣

𝑍33 𝑍31 𝑍31 𝑍31 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛

𝑍33 𝐹𝑉𝛽 𝐹𝑉𝜌𝑟 𝐹𝑉ℎ𝑠 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛

𝑍33 𝑍31 𝑍31 𝑍31 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛

𝑍33 𝑍31 𝑍31 𝑍31 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛

⎤⎥⎥⎥⎥⎥⎦
. (91)

Note that 𝐹𝑥1𝑥2 is a matrix of size 12 × (6 + 12𝑛), respec-
tively. Elements of the matrix in Equation (91) are given
below:

𝑍31 = 03×1, 𝑍33𝑛 = 03×3𝑛 (92)

𝐹𝑉𝛽 =
𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕𝛽

|||||𝐱̄, 𝐹𝑉𝜌𝑟 = 𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕𝜌𝑟

|||||𝐱̄, 𝐹𝑉ℎ𝑠 = 𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕ℎ𝑠

|||||𝐱̄.
(93)

Detailed derivation of partial derivatives used in Equa-
tion (93) are given in the Appendix.

𝐹𝑥2𝑥1 =
𝜕𝒇2

𝜕𝐱1

||||𝐱̄ = 0(6+12𝑛)×12 (94)

𝐹𝑥2𝑥2 =
𝜕𝒇2

𝜕𝐱2

||||𝐱̄. (95)

That is,

𝐹𝑥2𝑥2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹𝐫𝐶𝑀∕𝑂
𝑍31 𝑍31 𝑍31 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛 𝑍33𝑛

𝑍13 𝐹𝛽 0 0 𝑍13𝑛 𝑍13𝑛 𝑍13𝑛 𝑍13𝑛
𝑍13 0 𝐹𝜌𝑟 0 𝑍13𝑛 𝑍13𝑛 𝑍13𝑛 𝑍13𝑛
𝑍13 0 0 𝐹ℎ𝑠 𝑍13𝑛 𝑍13𝑛 𝑍13𝑛 𝑍13𝑛
𝑍3𝑛3 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛1 𝐹𝐫𝑎𝑖∕𝑂

𝑍3𝑛3𝑛 𝑍3𝑛3𝑛 𝑍3𝑛3𝑛
𝑍3𝑛3 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛3𝑛 𝐹𝐛𝑖 𝑍3𝑛3𝑛 𝑍3𝑛3𝑛
𝑍3𝑛3 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛3𝑛 𝑍3𝑛3𝑛 𝐹𝐟𝑖 𝑍3𝑛3𝑛
𝑍3𝑛3 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛1 𝑍3𝑛3𝑛 𝑍3𝑛3𝑛 𝑍3𝑛3𝑛 𝐹𝝐𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(96)

Note that 𝐹𝑥2𝑥2 is a matrix of size (6 + 12𝑛) × (6 + 12𝑛),
respectively. Elements of the matrix in Equation (96) are
given below:

𝑍13 = 01×3, 𝑍13𝑛 = 01×3𝑛 (97)

𝑍3𝑛3 = 03𝑛×3, 𝑍3𝑛1 = 03𝑛×1, 𝑍3𝑛3𝑛 = 03𝑛×3𝑛 (98)

𝐹𝐫𝐶𝑀∕𝑂
=

𝜕𝐫̇𝐶𝑀∕𝑂

𝜕𝐫𝐶𝑀∕𝑂

|||||𝐱̄ = −
𝐼3×3
𝜏𝐫𝐶𝑀∕𝑂

(99)

𝐹𝛽 =
𝜕𝛽̇

𝜕𝛽

|||||𝐱̄ = −
1

𝜏𝛽
(100)

𝐹𝜌𝑟 =
𝜕𝜌̇𝑟
𝜕𝜌𝑟

||||𝐱̄ = −
1

𝜏𝜌𝑟
(101)

𝐹ℎ𝑠 =
𝜕ℎ̇𝑠
𝜕ℎ𝑠

|||||𝐱̄ = −
1

𝜏ℎ𝑠
(102)

𝐹𝐫𝑎𝑖∕𝑂
=

𝜕𝐫̇𝑎𝑖∕𝑂

𝜕𝐫𝑎𝑖∕𝑂

|||||𝐱̄ = −
𝐼3𝑛×3𝑛
𝜏𝐫𝑎𝑖∕𝑂

(103)

𝐹𝐛𝑖 =
𝜕𝐛̇𝑖
𝜕𝐛𝑖

|||||𝐱̄ = −
𝐼3𝑛×3𝑛
𝜏𝐛𝑖

(104)

𝐹𝐟𝑖 =
𝜕𝐟̇𝑖
𝜕𝐟𝑖

|||||𝐱̄ = −
𝐼3𝑛×3𝑛
𝜏𝐟𝑖

(105)

𝐹𝝐𝑖 =
𝜕𝝐̇𝑖
𝜕𝝐𝑖

||||𝐱̄ = −
𝐼3𝑛×3𝑛
𝜏𝝐𝑖

. (106)

The linearized accelerometer measurements can be
summarized as follows:

𝛿𝑎̃
𝑎̃𝑖
𝑖
=

⎡⎢⎢⎣
𝜕𝒉3𝑛

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄
𝜕𝒉3𝑛
𝜕𝜽𝐼→𝐵

||||𝐱̄ 𝜕𝒉3𝑛

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄
𝜕𝒉3𝑛
𝜕𝛽

||||𝐱̄ 𝜕𝒉3𝑛
𝜕𝜌𝑟

||||𝐱̄ 𝜕𝒉3𝑛
𝜕ℎ𝑠

||||𝐱̄ 𝜕𝒉3𝑛

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐛
𝑎̃𝑖
𝑖

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝐟
𝑎̃𝑖
𝑖

||||||𝐱̄
𝜕𝒉3𝑛

𝜕𝛜
𝑎̃𝑖
𝑖

||||||𝐱̄
⎤⎥⎥⎦
3𝑛×(18+12𝑛)

𝛿𝐱 + 𝛈
𝑎̃𝑖
𝑖
,

(107)

where partials in Equation (107) are given in Section 5.2.
Similarly, the linearized star camera measurements can

be summarized as follows:

𝛿𝑠𝑠 = [03×3 03×3 𝐼3×3 03×3 03×3 03×1 03×1

03×1 03×3𝑛 03×3𝑛 03×3𝑛

03×3𝑛]3×(18+12𝑛)𝛿𝐱 + 𝛈𝑠𝑠𝑐, (108)

where partials in Equation (108) are given in Section 5.2.

6.2 LinCov models - theory & setup

Techniques like the Monte Carlo analysis and Linear
Covariance analysis are extensively used for modeling
and simulating a range of possible operational scenarios
and thereby enable the study of the effects of significant
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parameters on the overall mission performance. These
techniques are particularly useful for guidance, naviga-
tion, and control (GN&C) analysis and generally include
the effects of environment, actuator, and sensor uncertain-
ties; estimation errors; and most importantly, the effect of
uncertainties and estimation errors on trajectory and atti-
tude control errors (Geller, 2006).
Despite the initial overhead associatedwith the develop-

ment of linear models, LinCov techniques have cost bene-
fits when compared toMonte Carlo analysis (Geller, 2006).
This is because LinCov techniques produce the representa-
tive results in a fraction of the time, thus saving a tremen-
dous amount of computational power and time (Geller,
2006). Since the expected envelope of trajectories about the
nominal is often very small for a general orbital dynamics
problem, the conditions under which LinCov is valid (e.g.,
good linear models) are easily satisfied (Geller, 2006).
In a Linear Covariance approach, the system states

are segmented into two parts, viz. filter states and truth
states. Where the truth states are the same as the filter
states, except the difference between the truth gravitational
model and filter gravitational model. The filter gravita-
tionalmodel is of low resolution in comparison to the truth
gravitational model. Both state vectors include stochastic
realizations and are initialized with the nominal values of
the states.
Further, the covariance of the filter states and the aug-

mented states (truth and filter) are defined such that the fil-
ter state covariance (𝑃̂) is the same as the truth state covari-
ance (in the augmented state covariance 𝑃𝐴). However, the
filter covariance (in the augmented state covariance 𝑃𝐴) is
a zero matrix. These covariances (and 𝑃𝐴) are propagated
and updated so as to generate the covariance of the disper-
sions and navigation errors in a single simulation run.
The filter state covariance 𝑃̂ and the augmented state

covariance 𝑃𝐴 are propagated as follows (Christensen &
Geller, 2014):

𝑃̂(𝑡𝑘+1) = 𝜙̂𝑃̂(𝑡𝑘)𝜙̂
𝑇 + 𝑄̂𝑑 (109)

𝑃𝐴(𝑡𝑘+1) = 𝜙𝑃𝐴(𝑡𝑘)𝜙
𝑇 + 𝑄𝑑, (110)

where 𝜙̂ and 𝜙 are the filter and augmented state transition
matrices, defined as

𝜙̂ = 𝑒𝐹̂𝑥𝑑𝑡 (111)

𝜙 = 𝑒

⎛⎜⎜⎝
⎡⎢⎢⎣
𝐹𝑥 0𝑧×𝑧̂
0𝑧̂×𝑧 𝐹̂𝑥

⎤⎥⎥⎦𝑑𝑡
⎞⎟⎟⎠ (112)

𝐹̂𝑥 =
𝜕𝒇

𝜕𝐱̂

||||𝐱̄, (113)

where𝐹𝑥 and 𝐹̂𝑥 are the true and filter state Jacobian given
by Equation (81) and Equation (113), and 𝑧 and 𝑧̂ represent
the number of truth and filter states, respectively.
Now, since for this study the filter state model has the

same states as the truth state model and because the only
notable difference between two models is the resolution of
the gravity model, the partial derivatives needed to com-
pute 𝐹̂𝑥 are the same (except the gravity partials) as that
needed for 𝐹𝑥, given in Section 6.1.
For this study, the resolution of the truth gravity model

has been set to 18 × 18, whereas the resolution of the
filter gravity model is set to 12 × 12. Details about filter
and truth models are also noted, alongside the results, in
Section 8.
In Equation (109) and Equation (110), 𝑄̂𝑑 and 𝑄𝑑 are the

filter and augmented process noise covariancematrices for
the filter and augmented states.
For the accelerometermeasurements, the filter 𝑃̂ covari-

ance is updated as follows (Christensen & Geller, 2014):

𝑃̂
(
𝑡+
𝑘

)
=

[
𝐼 − 𝐾̂(𝑡𝑘)𝐻̂𝑥̂(𝑡𝑘)

]
𝑃̂(𝑡𝑘)

[
𝐼 − 𝐾̂(𝑡𝑘)𝐻̂𝑥̂(𝑡𝑘)

]𝑇
+ 𝐾̂(𝑡𝑘)𝑅̂𝑎(𝑡𝑘)𝐾̂

𝑇(𝑡𝑘) (114)

𝐾̂(𝑡𝑘) = 𝑃̂(𝑡𝑘)𝐻̂
𝑇
𝑥̂
(𝑡𝑘)

[
𝐻̂𝑥̂(𝑡𝑘)𝑃̂(𝑡𝑘)𝐻̂

𝑇
𝑥̂
(𝑡𝑘) + 𝑅̂𝑎(𝑡𝑘)

]−1
(115)

𝐻̂𝑥̂ =
𝜕𝒉

𝜕𝐱̂

||||𝐱̄, (116)

where 𝐾̂(𝑡𝑘) is the Kalman gain, and 𝐻̂𝑥̂(𝑡𝑘) is the filter
measurement partial matrix given by Equation (116) (for
accelerometer measurements).
In Equation (114) and Equation (115), the filter measure-

ment noise covariance is denoted by 𝑅̂𝑎(𝑡𝑘) and is given by

𝐸[𝛈̂
𝑎̃𝑖
𝑖 (𝑡)𝛈̂

𝑎̃𝑖
𝑖

(
𝑡′

)𝑇
] = 𝑄𝛈̂𝑖𝛿

(
𝑡 − 𝑡′

)
(117)

𝑅̂𝑎(𝑡𝑘) =
𝑄𝛈̂𝑖

𝛿𝑡𝑚𝑒𝑎𝑠
, (118)

where 𝛈̂𝑎̃𝑖
𝑖
is the accelerometer measurement noise, mod-

eled as zero-mean white Gaussian noise, used in the fil-
termodel. The strength of the accelerometermeasurement
noise is denoted by 𝑄𝛈̂𝑖 , and 𝛿𝑡𝑚𝑒𝑎𝑠 is the measurement
update time in seconds, as used in the filter model. Note
the size of 𝑅̂𝑎(𝑡𝑘) is 3𝑛 × 3𝑛, where 𝑛 is the number of
accelerometers onboard.
The augmented 𝑃𝐴 covariance is updated as follows

(Christensen & Geller, 2014):

𝑃𝐴(𝑡
+
𝑘
) = 𝐴𝑘(𝑡𝑘)𝑃𝐴(𝑡𝑘)𝐴

𝑇
𝑘
(𝑡𝑘) + 𝐵𝑘(𝑡𝑘)𝑅𝑎(𝑡𝑘)𝐵

𝑇
𝑘
(𝑡𝑘)

(119)
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𝐴𝑘(𝑡𝑘) =

[
𝐼𝑧×𝑧 0𝑧×𝑧̂

𝐾̂(𝑡𝑘)𝐻𝑥(𝑡𝑘) 𝐼𝑧̂×𝑧̂ − 𝐾̂(𝑡𝑘)𝐻̂𝑥̂(𝑡𝑘)

]
(120)

𝐵𝑘(𝑡𝑘) =

[
0𝑧×(𝑧+𝑧̂)
𝐾̂(𝑡𝑘)

]
, (121)

where 𝐻𝑥(𝑡𝑘) is the truth measurement partial matrix
given by Equation (58) (for accelerometer measure-
ments), and 𝑅𝑎(𝑡𝑘) is the truth measurement noise covari-
ance given by Equation (47) (for accelerometer mea-
surements), respectively. In Equation (120) and Equation
(121), 𝑧 and 𝑧̂ represent the number of truth and filter
states.
As stated earlier, the filter state model has the same

states as the truth state model, and because the only
notable difference between two models is the resolution of
the gravity model, the partial derivatives needed to com-
pute 𝐻̂𝑥̂(𝑡𝑘) are the same (except the gravity partials) as
that needed for𝐻𝑥(𝑡𝑘), given in Section 5.2.
For the star camera measurements, the filter 𝑃̂ covari-

ance is updated as follows (Christensen & Geller, 2014):

𝑃̂
(
𝑡+
𝑘

)
=

[
𝐼 − 𝐾̂(𝑡𝑘)𝐿̂𝑥̂(𝑡𝑘)

]
𝑃̂(𝑡𝑘)

[
𝐼 − 𝐾̂(𝑡𝑘)𝐿̂𝑥̂(𝑡𝑘)

]𝑇
+ 𝐾̂(𝑡𝑘)𝑅̂𝑠𝑐(𝑡𝑘)𝐾̂

𝑇(𝑡𝑘) (122)

𝐾̂(𝑡𝑘) = 𝑃̂(𝑡𝑘)𝐿̂
𝑇
𝑥̂
(𝑡𝑘)

[
𝐿̂𝑥̂(𝑡𝑘)𝑃̂(𝑡𝑘)𝐿̂

𝑇
𝑥̂
(𝑡𝑘) + 𝑅̂𝑠𝑐(𝑡𝑘)

]−1
(123)

𝐿̂𝑥̂ =
𝜕𝒍

𝜕𝐱̂

||||𝐱̄, (124)

where 𝐾̂(𝑡𝑘) is the Kalman gain, and 𝐿̂𝑥̂(𝑡𝑘) is the filter
measurement partial matrix given by Equation (124) (for
star camera measurements).
In Equation (122) and Equation (123), the filter measure-

ment noise covariance is denoted by 𝑅̂𝑠𝑐(𝑡𝑘) and is given
by

𝐸[𝛈̂𝑠
𝑠𝑐,𝑖
𝛈̂𝑠
𝑠𝑐,𝑗

𝑇] = 𝑄𝛈̂𝑠𝑐𝛿𝑖𝑗, (125)

where 𝛿𝑖𝑗 is a Kronecker delta function, and 𝛈̂𝑠𝑠𝑐 is a vec-
tor of zero-mean white Gaussian noise on the star camera
measurements, as used in the filter model. The covariance
of the measurement noise for the star camera measure-
ments is denoted by 𝑄𝛈̂𝑠𝑐 (𝑟𝑎𝑑

2), i.e.,

𝑅̂𝑠𝑐(𝑡𝑘) = 𝑄𝛈̂𝑠𝑐 . (126)

Note the size of 𝑅̂𝑠𝑐(𝑡𝑘) is 3𝑛 × 3𝑛, where 𝑛 is the number
of star cameras onboard.

The augmented 𝑃𝐴 covariance is updated as follows
(Christensen & Geller, 2014):

𝑃𝐴(𝑡
+
𝑘
) = 𝐴𝑘(𝑡𝑘)𝑃𝐴(𝑡𝑘)𝐴

𝑇
𝑘
(𝑡𝑘) + 𝐵𝑘(𝑡𝑘)𝑅𝑠𝑐(𝑡𝑘)𝐵

𝑇
𝑘
(𝑡𝑘)

(127)

𝐴𝑘(𝑡𝑘) =

[
𝐼𝑧×𝑧 0𝑧×𝑧̂

𝐾̂(𝑡𝑘)𝐿𝑥(𝑡𝑘) 𝐼𝑧̂×𝑧̂ − 𝐾̂(𝑡𝑘)𝐿̂𝑥̂(𝑡𝑘)

]
(128)

𝐵𝑘(𝑡𝑘) =

[
0𝑧×(𝑧+𝑧̂)
𝐾̂(𝑡𝑘)

]
, (129)

where 𝐿𝑥(𝑡𝑘) is the truthmeasurement partialmatrix given
by Equation (74) (for star camera measurements), and
𝑅𝑠𝑐(𝑡𝑘) is the truth measurement noise covariance given
by Equation (55) (for star camera measurements), respec-
tively. In Equation (128) and Equation (129), 𝑧 and 𝑧̂ repre-
sent the number of truth and filter states.
As stated earlier, the filter state model has the same

states as the truth state model, and because the only
notable difference between two models is the resolution of
the gravity model, the partial derivatives needed to com-
pute 𝐿̂𝑥̂(𝑡𝑘) are the same (except the gravity partials) as that
needed for 𝐿𝑥(𝑡𝑘), given in Section 5.2.

7 PROCEDURE

7.1 Performance metric & evaluation

Performance metrics for this research are the naviga-
tion solution at the final time, i.e., the standard devi-
ation (three-sigma values) for the spacecraft position,
velocity, attitude, angular velocity, center of mass posi-
tion, accelerometer positions, and accelerometer param-
eters (bias, scale factor, and misalignment). Final naviga-
tion requirements are defined based on the mission type,
and these requirements are compared to the performance
metrics of the autonomous navigation system based on
advanced accelerometers.
Final navigation requirements are defined in the Local

Vertical and Local Horizontal (LVLH) frame, and the final
navigation solution in the LVLH frame is compared with
the pre-defined requirements. Error budgets are used to
show the contribution of each source of error to the final
orbit navigation error, which in turn is compared against
the reference solution for different mission types.
Covariance of the true navigation state errors 𝑃𝑡𝑟𝑢𝑒 and

covariance of the filter state errors 𝑃̂ are used to evaluate
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the performance of the onboard navigation system.

𝑃𝑡𝑟𝑢𝑒 =
[
−𝑀𝑥 𝐼𝑧̂×𝑧̂

]
𝑃𝐴

[
−𝑀𝑥 𝐼𝑧̂×𝑧̂

]𝑇
, (130)

where𝑀𝑥 is the partial with respect to the true state of the
mapping function defined as (Christensen, 2013)

𝑀𝑥 = 𝐼𝑧̂×𝑧. (131)

True navigation error provides insight into the nav-
igation performance. The true navigation error is also
used for sensitivity analysis, where the simulation is
run multiple times with the combination of different
error groups switched on/off in the truth model (while
the filter model remains unchanged), to compute the
error budget or relative contribution of each error group,
respectively.

7.2 Error budget analysis

Error budget analysis, also known as sensitivity analysis,
is a tool to compute the contribution of different sources
of error to the total error. This is significant as based on
this analysis, individual components of a navigation sys-
tems, or GN&C in general, can be adjusted and designed
while having permissible and predictable performance as
per mission requirements.
In an error budget analysis, the total error is always

equal to the root sum square (RSS) of the individ-
ual error sources, provided the error sources are uncor-
related. The selection and classification of the error
sources depend entirely on the mission requirements and
known/unknown parameters.
For this study, the sources of error have been classified

into nine groups:

1. Spacecraft’s initial position and velocity uncertainty - In
the plots, this group is denoted by an acronym PosVel.

2. Spacecraft’s initial orientation and angular velocity
uncertainty - In the plots, this group is denoted by an
acronym AttdAV.

3. Spacecraft’s center of mass position uncertainty -
In the plots, this group is denoted by an acronym
COMPos.

4. Translational process noise - In the plots, this group is
denoted by an acronym QTErr.

5. Rotational process noise - In the plots, this group is
denoted by an acronym QRErr.

6. Uncertainty in atmospheric model parameters (space-
craft ballistic coefficient, reference atmospheric density,
and scale height) - In the plots, this group is denoted by
an acronym AtmErr.

7. Uncertainty in accelerometer parameters (accelerome-
ter measurement noise, bias, scale factor, and misalign-
ment) - In the plots, this group is denoted by an acronym
ACErr.

8. Accelerometer position uncertainty - In the plots, this
group is denoted by an acronym ACPos.

9. Star camera measurement noise - In the plots, this
group is denoted by an acronym SCNoise.

Uncertainty/Error due to each of the individual groups
is switched on for the truth model, while all other sources
of error (in the truth model) are switched off. The filter
model remains unchanged, and the contribution due to
this error group on the true navigation error of each state is
determined in a single simulation run. Thus, with a single
simulation run, the range of acceptable uncertainty in the
particular error group for a givenmission requirement can
be determined. Based on nine simulation runs, an error
budget analysis is conducted, and the results are used to
design an autonomous orbital navigation system.
Note that this classification of error groups is for this

study and is not unique; it depends on the knowledge of
the system and mission requirements. However, the error
sources must be uncorrelated.
Generally, an additional simulation run with all the

errors switched on for both the truth and filter model to
validate the error budget analysis.

8 SIMULATION RESULTS & ANALYSIS

8.1 Initial setup

Initial setup of the simulation parameters and the nominal
values for initial state errors/uncertainties are presented
in this section. Spacecraft specifications, nominal values
of atmospheric drag model parameters, initial conditions,
time constants, accelerometer parameters, star camera
parameters, and environmental uncertainties are given in
Tables 2–7.
Initial conditions, as defined in Table 3, are the initial

uncertainties on the state vector. These uncertainties are
used to initialize the filter state covariance (𝑃̂) and the
truth state covariance (in the augmented state covariance
𝑃𝐴), respectively.
Further, the time constants, as defined in Table 4, are

used to model the ECRVs in the state vector.
For the results presented in the forthcoming sections,

three accelerometers with a baseline of 0.5 m and a mea-
surement update frequency of 20 sec are used. A plot of the
accelerometer configuration is shown in Figure 5.
Specifications for parameters given above have been set

as per the recent advancements made in the development
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TABLE 2 Spacecraft (s/c) specifications and nominal value of atmospheric drag parameters

Parameter name Nominal value Units
Spacecraft (s/c) parameters Radius 0.3 meters (𝑚)

Mass 406.965 𝑘𝑔

Coefficient of diffuse reflection 2 unit-less
Inertia 11.40 (along X-X) 𝑘𝑔.𝑚2

10.93 (along Y-Y) 𝑘𝑔.𝑚2

10.93 (along Z-Z) 𝑘𝑔.𝑚2

Coefficient of drag 2 unit-less
Atmospheric drag parameters Ballistic number 5.56 × 10−3 𝑚2∕𝑘𝑔

Reference atmospheric density 2.80 × 10−12 𝑘𝑔∕𝑚3

Reference scale height 58019 meters (𝑚)

TABLE 3 Initial conditions - spacecraft (s/c) position, velocity,
attitude, and angular velocity

Initial conditions 𝟏𝝈 value Units
Spacecraft (s/c) position radial 500 meters (𝑚)

cross-track 1000 meters (𝑚)
along-track 1000 meters (𝑚)

Spacecraft (s/c) velocity radial 1.0 𝑚∕𝑠

cross-track 1.0 𝑚∕𝑠

along-track 1.0 𝑚∕𝑠

Spacecraft (s/c) attitude radial 10−3 radians (𝑟𝑎𝑑)
cross-track 10−3 radians (𝑟𝑎𝑑)
along-track 10−3 radians (𝑟𝑎𝑑)

Spacecraft (s/c) angular radial 10−5 𝑟𝑎𝑑∕𝑠velocity cross-track 10−5 𝑟𝑎𝑑∕𝑠

along-track 10−5 𝑟𝑎𝑑∕𝑠

TABLE 4 Time Constants (T denotes the orbital period)

Parameter name Value Units
Ballistic number 1000T seconds (𝑠)
Reference atmospheric density 1000T seconds (𝑠)
Reference scale height 1000T seconds (𝑠)
Center of mass (COM) position T/2 seconds (𝑠)
Accelerometer (AC) position,
bias, scale-factor,
misalignment

T/2 seconds (𝑠)

of precision sensors and future projections mentioned in
the relevant literature (Kasevich, 2006, 2007; Silvestrin
et al., 2012; Zhu et al., 2013).

8.2 LinCov results

The reference orbit is defined by the orbital parameters tab-
ulated below.

F IGURE 5 Accelerometer configuration [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

The key performance characteristic, considered here, is
the final time true navigation error. The true navigation
error is defined as the difference between the navigation
state vector and the corresponding true state vector; the
covariance matrix of the true navigation error is extracted
from the augmented covariance matrix. This performance
characteristic is important as it helps to quantify the filter
performance based on the comparison of the solution from
the filter and the truth, respectively.
Also, in the results, the major contributing error groups

have been labelled as error source 1, 2, and 3, where the
error contribution (towards theRSS of all the error sources)
due to error source 1 is more than that due to the error
source 2, which in turn is more than that due to the error
source 3, respectively.
Results for LEO (50-deg inclination) are presented. To

model high sensor grade and precise systemmodel, sensor
parameters, environmental uncertainties, and initial 1𝜎
errors for all states are set equal to the values given in
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TABLE 5 Accelerometer (AC) parameters

Parameter name High cost Moderate cost Low cost Units
Number of accelerometers (AC) 3, 6 3, 6 3, 6 unit-less
Accelerometer baseline 0.5, 1.0 0.5, 1.0 0.5, 1.0 meters (𝑚)
Accelerometer measurement update frequency 20 20 20 seconds (𝑠)
Accelerometer measurement noise resolution 10−13 10−11 10−10 𝑚∕𝑠2

√
𝐻𝑧

1𝜎 Accelerometer position 10−5 10−4 10−3 meters (𝑚)
1𝜎 Accelerometer bias 10−5 10−4 10−3 unit-less
1𝜎 Accelerometer scale-factor 10−11 10−9 10−7 𝑚∕𝑠2

1𝜎 Accelerometer misalignment 10−6 10−5 10−4 radians (𝑟𝑎𝑑)

TABLE 6 Star Camera (SC) parameters

Parameter name High cost Moderate cost Low cost Units
Number of star cameras (SC) 1 1 1 unit-less
Star camera measurement update frequency 20 20 20 seconds (𝑠)
Star camera measurement noise resolution 10−4 10−4 10−3 radians (𝑟𝑎𝑑)

the High Cost column of Tables 5, 6, and 7. Results have
been generated by setting the parameters as per the values
given in Tables 2, 3, and 8.
First, the results are presented for three accelerometers

with initial 1𝜎 error on spacecraft position, velocity, atti-
tude, and angular velocity set equal to the values given in
Table 3, accelerometer parameters are set as per Table 5,
and the time constants are set as per Value 1 in Table 4.
Results for the true navigation error 1𝜎 standard devi-

ation on spacecraft position and attitude are shown in
Figures 6–7. These results are for the inertially fixed case,
i.e., non-rotating spacecraft.
The true navigation error 1𝜎 standard deviation for

all states converge to a steady-state value. However, the
estimates for accelerometer states are poor, especially
accelerometer misalignment. This means that with the

given system (dynamics and measurements), the uncer-
tainty on the accelerometer states did not converge to a
steady-state value. One of the reasons for poor estima-
tion of accelerometer states could be weak observability
of these states. The error budget results for accelerometer
states also reflect this, because the major source of error is
accelerometer error.
Further, plots for spacecraft velocity and angular veloc-

ity are not shown, as the trend for these states is sim-
ilar to the trend of the true navigation error for space-
craft position and orientation. All the plots have been
annotated to depict the major sources of true navigation
error.
Error budget results are summarized in Table 9. Note

that the total steady-state true navigation error is the RSS
of all the error sources.

TABLE 7 Environmental Uncertainties

Parameter name High cost Moderate cost Low cost Units
Truth gravity model 18 × 18 18 × 18 18 × 18 unit-less
Filter gravity model 12 × 12 12 × 12 12 × 12 unit-less
1𝜎 reference atm. density 2.80 × 10−15 2.80 × 10−14 2.80 × 10−13 𝑘𝑔∕𝑚3

1𝜎 reference scale height 58.019 580.19 5801.9 meters (𝑚)
Translational process noise 10−10 10−08 10−08 𝑚2∕𝑠3

(∼ 52 𝑚∕𝑟𝑒𝑣 3𝜎) (∼ 520 𝑚∕𝑟𝑒𝑣 3𝜎) (∼ 520 𝑚∕𝑟𝑒𝑣 3𝜎)

Aerodynamic process noise 10−10 10−08 10−08 𝑚2∕𝑠3

(∼ 52 𝑚∕𝑟𝑒𝑣 3𝜎) (∼ 520 𝑚∕𝑟𝑒𝑣 3𝜎) (∼ 520 𝑚∕𝑟𝑒𝑣 3𝜎)

Rotational process noise 10−16 10−14 10−14 1∕𝑠3

(∼ 0.03 𝑟𝑎𝑑∕𝑟𝑒𝑣 3𝜎) (∼ 0.3 𝑟𝑎𝑑∕𝑟𝑒𝑣 3𝜎) (∼ 0.3 𝑟𝑎𝑑∕𝑟𝑒𝑣 3𝜎)

1𝜎 spacecraft (s/c) ballistic number 5.56 × 10−6 5.56 × 10−5 5.56 × 10−4 𝑚2∕𝑘𝑔

1𝜎 spacecraft (s/c) (COM) position 10−4 10−3 10−2 meters (𝑚)
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F IGURE 6 True navigation error 1𝜎 std. deviation on spacecraft position components (in LVLH frame) & magnitude. For a non-rotating
s/c in LEO 50 deg. inc. orbit, with 3 accel., 0.5 m baseline length, large time constant, & high cost model. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and www.ion.org]

Results for the true navigation error 1𝜎 standard devia-
tion on spacecraft position and attitude are shown in Fig-
ures 8–9, for the rotating Nadir pointing spacecraft.
The true navigation error 1𝜎 standard deviation for

all states converge to a steady-state value. However, the
estimates for accelerometer states do not converge to a
steady-state value, especially accelerometermisalignment.
The reason for poor estimation of accelerometer states is
suspected to be weak observability of these states. The
error budget results for accelerometer states also reflect
this, because the major source of error is accelerometer
error.
Further, plots for spacecraft velocity and angular veloc-

ity are not shown as the trend for these states is similar to
the trend of the true navigation error for spacecraft posi-
tion and orientation. All the results have been annotated
to depict the major sources of true navigation error.

Error budget results are summarized in Table 10. Note
that the total steady-state true navigation error is the RSS
of all the error sources.
The results in Table 10 show that the estimates for the

spacecraft position, velocity, attitude, angular velocity,
and atmospheric parameter states improve (by about
2% in position and 34% in attitude) for the rotating
spacecraft in comparison to that for the non-rotating
spacecraft, whereas the estimates for the spacecraft’s
center of mass position are marginally better for the non-
rotating spacecraft. Estimates for accelerometer states
show no change for the rotating spacecraft.
Correspondingly, the results for the moderate sensor

grade and moderately precise system model were gener-
ated using the values given in theModerate Cost column of
Tables 5, 6, and 7. It was found that the filter performance
degrades and depicts the effect of the lower sensor grade

TABLE 8 Orbital Parameters of LEO (50-degree Inclination) and Polar LEO

Value Value
Name (LEO 50◦ inc.) (Polar LEO) Units
Semi-major axis (𝑎) 7 × 106 7080136.3 meters (𝑚)
Eccentricity (𝑒) 10−2 1.37 × 10−4 unit-less
Inclination (𝑖) 50 98.2194 degree (𝑑𝑒𝑔)
Argument of perifocus (𝜔) 30 89.4379 degree (𝑑𝑒𝑔)
Right ascension of the ascending node (Ω) 60 298.3267 degree (𝑑𝑒𝑔)
True anomaly (𝜈) 120 0 degree (𝑑𝑒𝑔)
Numerical integration time-step 10 10 seconds (𝑠)
Number of orbits simulated 5 5 unit-less
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F IGURE 7 True navigation error 1𝜎 std. deviation on spacecraft attitude magnitude. For a non-rotating s/c in LEO 50 deg. inc. orbit, with
3 accel., 0.5 m baseline length, large time constant, & high cost model. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

TABLE 9 Error budget of the maximum steady-state true navigation error 1𝜎 std. deviation. For a non-rotating s/c in LEO 50 deg. inc.
orbit, with 3 accel., 0.5 m baseline length, large time constant, & high cost model

State name

Total
steady-state

true
navigation
error 𝟏𝝈 Error source 1 Error source 2 Error source 3 Units

Spacecraft Position Magnitude 105.36 Accelerometer
Position - 76.20

Star Camera Noise -
53.89

Accelerometer Error -
45.34

m

Spacecraft Velocity Magnitude 0.11 Accelerometer
Position - 0.08

Star Camera Noise -
0.06

Accelerometer Error -
0.05

m/s

Spacecraft Attitude Magnitude 4.032 × 10−5 Star Camera Noise -
3.137 × 10−5

Rotational Process
Noise -
1.6535 × 10−5

Accelerometer
Position -
1.5211 × 10−5

rad

Spacecraft Angular Velocity
Magnitude

2.0629 × 10−7 Rotational Process
Noise -
1.6269 × 10−7

Accelerometer
Position -
7.4626 × 10−8

Star Camera Noise -
7.4081 × 10−8

rad/s

on the true navigation error of spacecraft position, veloc-
ity, attitude, and angular velocity. The accelerometer error
is a major source of error and thus the system should be
designed accordingly.
Expectedly, filter performance worsens when the low

sensor grade and less precise system model is simulated
using the values given in the Low Cost column of Tables 5,
6, and 7. The true navigation error for spacecraft position
and velocity diverge, and the estimation of these states
is not feasible. The major source of error is due to the

low grade sensor model and its associated accelerometer
error. Though estimation of spacecraft attitude and angu-
lar velocity is still possible because of the star camera mea-
surements.
Further, results for Polar LEO are presented. Filter

performance is found to be about 20-35% better than that
for the LEO 50-degree inclination orbit for the corre-
sponding scenarios. To model the high sensor grade and
precise system model, sensor parameters, environmental
uncertainties, and initial 1𝜎 error for all states are set equal
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F IGURE 8 True navigation error 1𝜎 std. deviation on spacecraft position components (in LVLH frame) & magnitude. For a rotating s/c
in LEO 50 deg. inc. orbit, with 3 accel., 0.5 m baseline length, large time constant, & high cost model [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and www.ion.org]

F IGURE 9 True navigation error 1𝜎 std. deviation on spacecraft attitude magnitude. For a rotating s/c in LEO 50 deg. inc. orbit, with
3 accel., 0.5 m baseline length, large time constant, & high cost model [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]
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TABLE 10 Error budget of the maximum steady-state true navigation error 1𝜎 std. deviation. For a rotating s/c in LEO 50 deg. inc. orbit,
with 3 accel., 0.5 m baseline length, large time constant, & high cost model

State name

Total steady-state
True navigation
error 𝟏𝝈 Error source 1 Error source 2 Error source 3 Units

Spacecraft Position
Magnitude

103.33 Accelerometer Error -
68.32

Star Camera Noise -
66.11

Accelerometer Position -
34.10

m

Spacecraft Velocity
Magnitude

0.11 Accelerometer Error -
0.07

Star Camera Noise -
0.07

Accelerometer Position -
0.04

m/s

Spacecraft Attitude
Magnitude

2.6354 × 10−5 Star Camera Noise -
1.8959 × 10−5

Accelerometer Error -
1.312 × 10−5

Accelerometer Position -
1.1457 × 10−5

rad

Spacecraft Angular
Velocity Magnitude

7.8497 × 10−8 Rotational Process
Noise - 5.6284 × 10−8

Accelerometer
Error - 3.4877 × 10−8

Accelerometer Position -
3.1892 × 10−8

rad/s

TABLE 11 Error budget of the maximum steady-state true navigation error 1𝜎 std. deviation. For a non-rotating s/c in Polar LEO orbit,
with 3 accel., 0.5 m baseline length, large time constant, & high cost model

State name

Total steady-state
True navigation
Error 𝟏𝝈 Error source 1 Error source 2 Error source 3 Units

Spacecraft Position
Magnitude

84.07 Accelerometer Position -
71.16

Accelerometer Error -
41.94

Translational Process
Noise - 10.79

m

Spacecraft Velocity
Magnitude

0.09 Accelerometer Position -
0.07

Accelerometer Error -
0.04

Translational Process
Noise - 0.01

m/s

Spacecraft Attitude
Magnitude

1.0178 × 10−5 Star Camera Noise -
7.7697 × 10−6

Rotational Process
Noise -
4.4302 × 10−6

Accelerometer Position -
2.9721 × 10−6

rad

Spacecraft Angular
Velocity
Magnitude

1.5876 × 10−7 Rotational Process Noise -
1.3008 × 10−7

Star Camera Noise -
6.3519 × 10−8

Accelerometer Position -
4.2393 × 10−8

rad/s

to the values given in the High Cost column of Tables 5, 6
(except the star camera noise is set equal to 10−5 rad), and
7. Results are generated by setting the parameters as per
the values given in Tables 2, 3, and 8.
First, the results are presented for three accelerometers

with initial 1𝜎 error on spacecraft position, velocity, atti-
tude, and angular velocity set equal to the values given in
Table 3, accelerometer parameters are set as per Table 5,
and the time constants are set as per Value 1 in Table 4.
Plots for the true navigation error 1𝜎 standard devia-

tion of all states, for the non-rotating inertially fixed space-
craft, show convergence to a steady-state value. However,
the estimates for the accelerometer states do not converge
to a steady-state value, especially accelerometer misalign-
ment. One of the reasons for poor estimation of accelerom-
eter states could be weak observability of these states. The
error budget results for accelerometer states also reflect
this, because the major source of error is the accelerom-
eter error.
Error budget results are summarized in Table 11. Note

that the total steady-state true navigation error is the RSS
of all the error sources.

Plots for the true navigation error 1𝜎 standard devia-
tion of all states, for the rotating Nadir pointing space-
craft, show convergence to a steady-state value. However,
the estimates for accelerometer states do not converge to a
steady-state value, especially accelerometermisalignment.
One of the reasons for poor estimation of accelerome-
ter states is suspected to be weak observability of these
states. The error budget results for accelerometer states
also reflect this, and themajor source of error is accelerom-
eter error.
Error budget results are summarized in Table 12. Note

that the total steady-state true navigation error is the RSS
of all the error sources.
The results in Table 12 show that the estimates for

the spacecraft position, velocity, attitude, angular veloc-
ity, and atmospheric parameter states improve (by about
8% in position and 40% in attitude) for the rotating space-
craft in comparison to that for the non-rotating spacecraft.
Whereas, the estimates for spacecraft’s center ofmass posi-
tion are marginally better for the non-rotating spacecraft.
Estimates for accelerometer states show no change for the
rotating spacecraft.
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TABLE 1 2 Error budget of the maximum steady-state true navigation error 1𝜎 std. deviation. For a rotating s/c in Polar LEO orbit, with 3
accel., 0.5 m baseline length, large time constant, & high cost model

State name

Total steady-state
true navigation
error 𝟏𝝈 Error source 1 Error source 2 Error source 3 Units

Spacecraft Position
Magnitude

77.54 Accelerometer Error -
69.63

Accelerometer
Position - 28.61

Star Camera Noise - 11.69 m

Spacecraft Velocity
Magnitude

0.08 Accelerometer Error -
0.07

Accelerometer
Position - 0.03

Star Camera Noise - 0.01 m/s

Spacecraft Attitude
Magnitude

6.0128 × 10−6 Star Camera Noise -
5.0169 × 10−6

Accelerometer Error -
2.5929 × 10−6

Accelerometer Position -
1.7653 × 10−6

rad

Spacecraft Angular
Velocity
Magnitude

6.3451 × 10−8 Rotational Process Noise -
5.5115 × 10−8

Accelerometer Error -
2.0514 × 10−8

Accelerometer Position -
1.7138 × 10−8

rad/s

Next, results are generated for moderate and low sen-
sor grade for Polar LEO orbit. The filter performance is
found to degrade and is similar to that for corresponding
scenarios in LEO 50-degree inclination orbit. The reader is
encouraged to please refer to these results in the disserta-
tion by Bhatia (2019).
The above results are also repeated for the different

number of accelerometers, different initial conditions, dif-
ferent time constants on atmospheric parameters, and dif-
ferent baseline length. Filter performance improves when
the number of onboard accelerometers is increased. Fil-
ter performance is also better for the 1-m baseline length
accelerometer configuration in comparison to that for the
0.5-m baseline length accelerometer configuration. These
results are documented and discussed in detail by Bhatia
(2019).

9 CONCLUSION

LinCov results for a spacecraft in a LEO (50-degree inclina-
tion) and a polar LEO orbit have been presented, analyzed,
and discussed in detail. Key contributions from this study
are noted to be the development of the mathematical mea-
surement model of electrostatic accelerometers, observ-
ability analysis for the autonomous navigation system, and
the error budget results for a spacecraft in LEO regime.
An extensive detail about the existing technology and

literature background of gravity gradiometry and space-
craft navigation has been discussed. Detailed problem
setup and LinCov tool development has been presented
along with the mathematical model for measurements
and state dynamics. Observability analysis was conducted
and the results were presented, so as to corroborate the
idea of autonomous orbital navigation with advanced
accelerometers.

Observability of spacecraft position, velocity, and atti-
tude was proven for a configuration of three three-axis
accelerometers. Feasibility of autonomous orbital naviga-
tion was established.
Error budget analysis for a non-rotating and a rotating

spacecraft, in a low Earth orbit (50-degree inclination) and
polar low Earth orbit, was conducted and results were doc-
umented.
Results were analyzed for three different sensor grades,

and it was shown that the performance of the high sen-
sor grade and precise system model satisfies the require-
ments for autonomous orbital navigation. Additionally,
filter performance was shown to improve when the num-
ber of onboard accelerometers is increased. Filter per-
formance was shown to be better for the 1-m baseline
length accelerometer configuration in comparison to that
for the 0.5-m baseline length accelerometer configuration.
It has also been noted that the estimation of accelerom-
eter scale-factor and misalignment is poor for all the
scenarios.
Further, the major source of error for most of the sce-

narios has been sensor errors (like accelerometer error,
accelerometer position uncertainty, or star camera noise).
This is an important result as it highlights the sensor spec-
ifications to be improved so as to reduce the final naviga-
tion error.
This research highlighted the ultra-precise sensitivity

requirements needed to generate accelerometer measure-
ments and navigate autonomously in space.
In summary, the objective of the research, as stated ear-

lier, has been accomplished.
The objective of this research is to use the Linear Covari-

ance theory to investigate the feasibility and sensitivity
requirements for an autonomous orbit determination using
advanced accelerometermeasurements and onboard gravity
field maps for different sensor and orbit configurations.
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10 FUTUREWORK

This research presented an idea and a feasibility study
along with the sensitivity requirements for developing
an autonomous orbital navigation system based on ultra-
precise accelerometers. To extend this idea of developing
an autonomous orbital navigation system into reality, a
detailed analysis and intensive study of the hardware of
these ultra-precise sensors is needed.
Results presented in this study can be used to per-

form a detailed analysis by expanding the number of
parameters and including uncertainties in the gravity field
model and Earth model. Further, a suite of sensors can
be included and different permutations can be tested
accordingly.
A Monte Carlo analysis can be conducted, and an anal-

ysis may be performed in order to test and validate the lin-
earized models. Different types of gravity models can be
studied, and an effort may be made towards determining
a computationally efficient method to store high-fidelity
gravity maps onboard.
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APPENDIX A
This appendix highlights some additional partial deriva-
tives.

Partial of gravitational acceleration with respect to the
spacecraft position is given as follows:

𝜕𝐠𝐼𝐸

(
𝐫𝐼
𝐶𝑀∕𝐸

)
𝜕𝐫𝐼

𝐶𝑀∕𝐸

|||||||𝐱̄ = ∇𝐠𝐼𝐸

(
𝐫̄𝐼
𝐶𝑀∕𝐸

)
. (A.1)

Partial of acceleration due to atmospheric drag
with respect to the spacecraft position is given as
follows:

𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ =
1

2
𝜌̄𝑟𝑒

−

(‖‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

‖‖‖‖−ℎ𝑟𝑒𝑓
)

ℎ̄𝑠 𝛽
‖‖‖𝐯̄𝐼𝐶𝑀∕𝐸

‖‖‖𝐯̄𝐼𝐶𝑀∕𝐸

𝐢̂𝑇
𝐫̄𝐼
𝐶𝑀∕𝐸

ℎ̄𝑠
.

(A.2)
Partial of acceleration due to atmospheric drag with

respect to the spacecraft velocity is given as follows:

𝜕𝐚𝐼𝑎𝑒𝑟𝑜

𝜕𝐯𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ = −
1

2
𝜌̄𝑟𝑒

−

(‖‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

‖‖‖‖−ℎ𝑟𝑒𝑓
)

ℎ̄𝑠 𝛽

(
𝐯̄𝐼
𝐶𝑀∕𝐸

𝐢̂𝑇
𝐯̄𝐼
𝐶𝑀∕𝐸

+
‖‖‖𝐯̄𝐼𝐶𝑀∕𝐸

‖‖‖𝐼3×3). (A.3)

Partial of acceleration due to atmospheric drag with
respect to the spacecraft ballistic coefficient is given as fol-
lows:

𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕𝛽

|||||𝐱̄ = −
1

2
𝜌̄𝑟𝑒

−

(‖‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

‖‖‖‖−ℎ𝑟𝑒𝑓
)

ℎ̄𝑠
‖‖‖𝐯̄𝐼𝐶𝑀∕𝐸

‖‖‖𝐯̄𝐼𝐶𝑀∕𝐸
. (A.4)

Partial of acceleration due to atmospheric drag with
respect to the reference atmospheric density is given as fol-
lows:

𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕𝜌𝑟

|||||𝐱̄ = −
1

2
𝑒
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. (A.5)

Partial of acceleration due to atmospheric drag with
respect to the scale height is given as follows:

𝜕𝐚𝐼𝑎𝑒𝑟𝑜
𝜕ℎ𝑠

|||||𝐱̄ = 𝐶𝑎𝑙𝑡𝜌̄𝑟𝑒

−

(‖‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

‖‖‖‖−ℎ𝑟𝑒𝑓
)

ℎ̄𝑠 𝛽
‖‖‖𝐯̄𝐼𝐶𝑀∕𝐸
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,

(A.6)
where 𝐶𝑎𝑙𝑡 is a constant given as

𝐶𝑎𝑙𝑡 = −

(‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

‖‖‖ − ℎ𝑟𝑒𝑓

)
2ℎ̄2𝑠

. (A.7)

Solar radiation pressure perturbation partial with
respect to the spacecraft position in the inertial frame is
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computed as follows:
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𝐹𝑒

𝑐
‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

− 𝛒𝑆𝑢𝑛
‖‖‖

[
3

𝑟𝑠𝑐𝜌𝑠𝑐

][
1

4
+
1

9
𝑑𝑟

]
[𝐼3×3

− 𝐢̂𝐼
𝐶𝑀∕𝑆𝑢𝑛

(
𝐢̂𝐼
𝐶𝑀∕𝑆𝑢𝑛

)𝑇
]
, (A.9)

where 𝐢̂𝐼
𝐶𝑀∕𝑆𝑢𝑛

is the unit vector defined as

𝐢̂𝐼
𝐶𝑀∕𝑆𝑢𝑛

=
𝐫̄𝐼
𝐶𝑀∕𝐸

− 𝛒𝑆𝑢𝑛‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸
− 𝛒𝑆𝑢𝑛

‖‖‖ . (A.10)

Third-body perturbation partial with respect to the
spacecraft position in the inertial frame is computed as fol-
lows:

𝜕𝐚𝐼
3𝑟𝑑

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ =
−𝐺𝑚3𝑟𝑑𝜕

⎛⎜⎜⎝
𝐫𝐼
𝐶𝑀∕𝐸

−𝛒3𝑟𝑑‖‖‖‖𝐫𝐼𝐶𝑀∕𝐸
−𝛒3𝑟𝑑

‖‖‖‖
3 +

𝛒3𝑟𝑑‖𝛒3𝑟𝑑‖3

⎞⎟⎟⎠
𝜕𝐫𝐼

𝐶𝑀∕𝐸

||||||||||||||𝐱̄
(A.11)

𝜕𝐚𝐼
3𝑟𝑑

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ =
−𝐺𝑚3𝑟𝑑‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸

− 𝛒3𝑟𝑑
‖‖‖3

[
𝐼3×3 − 3𝐢̂𝐼

𝐶𝑀∕3𝑟𝑑

(
𝐢̂𝐼
𝐶𝑀∕3𝑟𝑑

)𝑇
]
,

(A.12)

where𝑚3𝑟𝑑 is the mass of the third body (Sun, Moon, etc.),
and 𝐢̂𝐼

𝐶𝑀∕3𝑟𝑑
is the unit vector defined as

𝐢̂𝐼
𝐶𝑀∕3𝑟𝑑

=
𝐫̄𝐼
𝐶𝑀∕𝐸

− 𝛒3𝑟𝑑‖‖‖𝐫̄𝐼𝐶𝑀∕𝐸
− 𝛒3𝑟𝑑

‖‖‖ . (A.13)

Gravity gradient torque partial with respect to the space-
craft position is computed as follows:

𝜕𝑀𝑔𝑔

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ =
𝜕

⎧⎪⎨⎪⎩
3𝜇‖‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖‖
5

(
𝐫𝐵
𝐶𝑀∕𝐸

×
[
𝐽𝐫𝐵

𝐶𝑀∕𝐸

])⎫⎪⎬⎪⎭
𝜕𝐫𝐼

𝐶𝑀∕𝐸

|||||||||||||||||𝐱̄
(A.14)

𝜕𝑀𝑔𝑔

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ = 3𝜇
[
𝐫𝐵
𝐶𝑀∕𝐸

×
(
𝐽𝐫𝐵

𝐶𝑀∕𝐸

)] 𝜕
⎛⎜⎜⎝ 1‖‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖‖
5

⎞⎟⎟⎠
𝜕
‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖
𝜕
‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖
𝜕𝐫𝐵

𝐶𝑀∕𝐸

𝜕𝐫𝐵
𝐶𝑀∕𝐸

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||||||||||𝐱̄
+

(−3𝜇)
[(
𝐽𝐫̄𝐵

𝐶𝑀∕𝐸

)
×

]
‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖5
𝜕𝐫𝐵

𝐶𝑀∕𝐸

𝜕𝐫𝐵
𝐶𝑀∕𝐸

𝜕𝐫𝐵
𝐶𝑀∕𝐸

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||||𝐱̄
+

3𝜇
[
𝐫̄𝐵
𝐶𝑀∕𝐸

×
]
𝐽‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖5
𝜕𝐫𝐵

𝐶𝑀∕𝐸

𝜕𝐫𝐵
𝐶𝑀∕𝐸

𝜕𝐫𝐵
𝐶𝑀∕𝐸

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||||𝐱̄
(A.15)

𝜕𝑀𝑔𝑔

𝜕𝐫𝐼
𝐶𝑀∕𝐸

||||||𝐱̄ =
−3𝜇‖‖‖𝐫̄𝐵𝐶𝑀∕𝐸

‖‖‖5
⎧⎪⎨⎪⎩
5
[
𝐫̄𝐵
𝐶𝑀∕𝐸

×
(
𝐽𝐫̄𝐵

𝐶𝑀∕𝐸

)]
𝐢̂𝑇
𝐫̄𝐵
𝐶𝑀∕𝐸‖‖‖𝐫̄𝐵𝐶𝑀∕𝐸

‖‖‖
+

[(
𝐽𝐫̄𝐵

𝐶𝑀∕𝐸

)
×

]
−

[
𝐫̄𝐵
𝐶𝑀∕𝐸

×
]
𝐽
}
𝑇𝐼→𝐵.

(A.16)
Gravity gradient torque partial with respect to the rota-

tion vector is computed as follows:

𝜕𝑀𝑔𝑔

𝜕𝜽

|||||𝐱̄ = −3𝜇‖‖‖𝐫𝐵𝐶𝑀∕𝐸

‖‖‖5
{[(

𝐽𝐫̄𝐵
𝐶𝑀∕𝐸

)
×

]
−

[
𝐫̄𝐵
𝐶𝑀∕𝐸

×
]
𝐽
}[

𝐫̄𝐵
𝐶𝑀∕𝐸

×
]
. (A.17)

Partial of accelerometer measurement with respect to
the spacecraft rotation vector is given as follows:

𝜕𝒂𝐵
𝑑𝑖

𝜕𝜽

||||||𝒙̄ =
[{

𝑇𝐼→𝐵̄

(
𝜽
)
𝒂̄𝐼
𝑑𝑖

(
𝜽
)}

×
]

+ 𝑇𝐼→𝐵̄

(
𝜽
)
∇𝒈̄𝐼

(
𝒓̄𝐼
𝑎𝑖∕𝐸

)
𝑇𝑇
𝐼→𝐵̄

(
𝜽
)[
𝐫̄𝐵
𝑎𝑖∕𝐶𝑀

×
]
.

(A.18)
Partial of accelerometer measurement with respect to

the spacecraft angular velocity is given as follows:

𝜕𝐚𝐼
𝑑𝑖

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄ = 𝑇𝐵𝐼

𝜕
[
𝝎𝐵
𝐵∕𝐼

×
(
𝝎𝐵
𝐵∕𝐼

×
(
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

))]
𝜕𝝎𝐵

𝐵∕𝐼

|||||||𝐱̄
(A.19)
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𝜕𝐚𝐼
𝑑𝑖

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄ = −𝑇𝐵𝐼

⎡⎢⎢⎢⎣
𝜕
{
𝝎𝐵
𝐵∕𝐼

×
([
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

]
× 𝝎𝐵

𝐵∕𝐼

)}
𝜕𝝎𝐵

𝐵∕𝐼

|||||||𝐱̄
+
𝜕
{(

𝝎𝐵
𝐵∕𝐼

×
[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])
× 𝝎𝐵

𝐵∕𝐼

}
𝜕𝝎𝐵

𝐵∕𝐼

|||||||𝐱̄
⎤⎥⎥⎥⎦

(A.20)

𝜕𝐚𝐼
𝑑𝑖

𝜕𝝎𝐵
𝐵∕𝐼

||||||𝐱̄ = −𝑇𝐵𝐼

{[(
𝝎̄𝐵
𝐵∕𝐼

×
[
𝐫̄𝐵
𝑎𝑖∕𝑂

− 𝐫̄𝐵
𝐶𝑀∕𝑂

])
×

]

+
[
𝝎̄𝐵
𝐵∕𝐼

×
][(

𝐫̄𝐵
𝑎𝑖∕𝑂

− 𝐫̄𝐵
𝐶𝑀∕𝑂

)
×

]}
, (A.21)

where 𝑇𝐵𝐼 is the transformation from SBRF to IRF, given
as

𝑇𝐵𝐼 = 𝑇𝐵→𝐼(𝐪𝐵→𝐼). (A.22)

Partial of accelerometer measurement with respect to
the spacecraft’s center ofmass position, in spacecraft body-
fixed frame and with respect to the origin of spacecraft
body-fixed frame, is given as

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄ = −
𝜕
{
𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

+ 𝑇𝐵𝐼

[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])}
𝜕𝐫𝐵

𝐶𝑀∕𝑂

|||||||𝐱̄
+ 𝑇𝐵𝐼

𝜕
{
𝝎𝐵
𝐵∕𝐼

×
(
𝝎𝐵
𝐵∕𝐼

×
[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])}
𝜕𝐫𝐵

𝐶𝑀∕𝑂

|||||||𝐱̄
(A.23)

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄ = −
𝜕
{
𝐠𝐼

(
𝒓̄𝐼
𝑎𝑖∕𝐸

)}
𝜕𝐫𝐼

𝑎𝑖∕𝐸

|||||||𝐱̄
𝜕
(
𝐫𝐼
𝑎𝑖∕𝐸

)
𝜕𝐫𝐵

𝐶𝑀∕𝑂

|||||||𝐱̄
+ 𝑇𝐵𝐼

⎛⎜⎜⎜⎝
𝜕
{[

𝝎̄𝐵
𝐵∕𝐼

×
][
𝝎̄𝐵
𝐵∕𝐼

×
][
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

]}
𝜕𝐫𝐵

𝐶𝑀∕𝑂

|||||||𝐱̄
⎞⎟⎟⎟⎠

(A.24)

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝐶𝑀∕𝑂

||||||𝐱̄ = ∇𝒈̄𝐼
(
𝒓̄𝐼
𝑎𝑖∕𝐸

)
𝑇𝐵𝐼 − 𝑇𝐵𝐼

([
𝝎̄𝐵
𝐵∕𝐼

×
][
𝝎̄𝐵
𝐵∕𝐼

×
])
.

(A.25)
Partial of accelerometer measurement with respect to

the 𝑖𝑡ℎ accelerometer position, in spacecraft body-fixed
frame andwith respect to the origin of the spacecraft body-
fixed frame (𝐫𝐵

𝑎𝑖∕𝑂
), is given as

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄ = −
𝜕
{
𝐠𝐼

(
𝐫𝐼
𝐶𝑀∕𝐸

+ 𝑇𝐵𝐼

[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])}
𝜕𝐫𝐵

𝑎𝑖∕𝑂

|||||||𝐱̄
+ 𝑇𝐵𝐼

𝜕
{
𝝎𝐵
𝐵∕𝐼

×
(
𝝎𝐵
𝐵∕𝐼

×
[
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

])}
𝜕𝐫𝐵

𝑎𝑖∕𝑂

|||||||𝐱̄
(A.26)

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄ = −
𝜕
{
𝐠𝐼

(
𝒓̄𝐼
𝑎𝑖∕𝐸

)}
𝜕𝐫𝐼

𝑎𝑖∕𝐸

|||||||𝐱̄
𝜕
(
𝐫𝐼
𝑎𝑖∕𝐸

)
𝜕𝐫𝐵

𝑎𝑖∕𝑂

|||||||𝐱̄
+ 𝑇𝐵𝐼

⎛⎜⎜⎜⎝
𝜕
{[

𝝎̄𝐵
𝐵∕𝐼

×
][
𝝎̄𝐵
𝐵∕𝐼

×
][
𝐫𝐵
𝑎𝑖∕𝑂

− 𝐫𝐵
𝐶𝑀∕𝑂

]}
𝜕𝐫𝐵

𝑎𝑖∕𝑂

|||||||𝐱̄
⎞⎟⎟⎟⎠

(A.27)

𝜕𝐚𝐼
𝑑𝑖

𝜕𝐫𝐵
𝑎𝑖∕𝑂

||||||𝐱̄ = −∇𝒈̄𝐼
(
𝒓̄𝐼
𝑎𝑖∕𝐸

)
𝑇𝐵𝐼 + 𝑇𝐵𝐼

([
𝝎̄𝐵
𝐵∕𝐼

×
][
𝝎̄𝐵
𝐵∕𝐼

×
])
.

(A.28)
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