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Abstract
Due to the small size of Micro Aerial Vehicles, they are well suited for various
indoor applications, especially search/rescue operations. Most of these opera-
tions are performed in unknown 3D environments. Real-time map construc-
tion and vehicle’s localization are essential tasks. Various approaches provide
solutions for 3D-map representation. However, these approaches require expen-
sive embedded systems to afford high-processing memory/computational costs.
Because of its exposure to risks, the MAV should be equipped with a low-cost
navigation system. The principal aim of map construction herein is to facilitate
the navigation task. Thus, constructing a massive 3D map is not required. Con-
sequently, this paper proposes an efficient real-time 3D SLAM. The proposed
method avoids the 3D-map representation of each region of the trajectory. Alter-
natively, it divides the environment along the trajectory into several 2D maps
with a single 2D map in every region at the height of the MAV, as well as a
transient region between each of the two constructed maps to enable connect-
ing neighboring maps.
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1 INTRODUCTION

Over the past few decades, the potential use of the Micro
Aerial Vehicles (MAVs) in search and rescue operations
increased because they can be in action promptly with-
out the loss of time. In addition to the quick prepara-
tion, their small size grants them the preference against
their peers to efficiently explore narrow environments.
Typically, theMAVs encounter unknown 3D environments
without erstwhile information for most search and rescue
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operations. Therefore, to successfully achieve the naviga-
tion task in such environments, the MAV must construct
a map for the environment and concurrently locate itself
within this map using the onboard sensors. The simulta-
neous localization and mapping (SLAM) approach is uti-
lized to accomplish such a problem (Alpen et al. 2012;
Kamarudin et al., 2015; Kohlbrecher et al. 2011). How-
ever, constructing a massive 3D map is not required in
search and rescue operations. The vehicle utilizes the real-
time map construction to accomplish the navigation task.
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Hence, for such operations, estimating accurate navigation
parameters of unmanned vehicles is the main objective of
the SLAM approach (Thrun, 2007). Furthermore, to suc-
cessfully complement the navigation, the vehicle has to
perform a collision-free trajectory to safely fly from one
position to another (Gageik et al., 2015; Kalogeiton et al.,
2019).
Typically, constructing maps for 3D environments often

suffers from high memory and computational costs due
to the huge amount of collected data (Khan et al., 2015;
Triebel et al., 2006). On one hand, expensive embedded
systems with high specifications are employed to handle
the processing time of the computations and the required
memory.On the other hand,many accustomed approaches
propose compact representation to reduce the required
memory and computation load. Thus, the compact repre-
sentation is much more proper for search and rescue oper-
ations because the utilized MAVs are susceptible to loss
during harsh situations. For efficient 3D mapping, many
probabilistic approaches such as the voxel occupancy grids
(Duffy et al., 1989; Plaza-Leiva et al., 2015), elevation map
(Hadsell et al., 2009; Herbert et al., 1989), multi-level sur-
face maps (MLS) (Rivadeneyra et al., 2009; Triebel et al.,
2006), Octomap (Hornung et al., 2013; Wurm et al., 2010),
multi-volume occupancy grid (MVOG) (Dryanovski et al.,
2010), multi-level occupancy grid (MLOG) (Tian et al.,
2016), and Occupancy Elevation Grid (OEG) (Souza &
Gonçalves, 2016) are used.
The voxel occupancy grids approach is represented as

the direct extension of the 2D occupancy grid for the
3D environment (Anderson-Sprecher & Simmons, 2012).
This approach represents the 3D environment as a grid
of cubic volumes (i.e., voxel) of equal size, where each
cube of the grid is independent from its neighbors. How-
ever, this approach suffers from large memory require-
ments as the whole environment must be represented by
voxels. Although the small voxel represents a close rep-
resentation to the real environment, it suffers from the
high memory consumption and high processing cost. In
order to reduce the memory consumption, the voxel size
is enlarged, which leads to a coarser representation of the
environment. The octomap or octree approach is a hierar-
chical data structure inwhich eachparent voxel has exactly
eight children (Jessup et al., 2014; Zhang et al., 2018). Thus,
the 3D environment is represented as a collection of voxels
with varied sizes, and hence, some voxels are recursively
subdivided into eight children until a desired resolution is
achieved. Although this approach postpones the initializa-
tion of the grid size untilmeasurements need to be updated
and it reduces the number of the required voxels, it also
suffers from large memory requirements.
The elevation map approach represents the 3D environ-

ment in a compact representation using the 2D occupancy

grid. Each cell in the grid stores the height of the obstacle in
the corresponding area (Pfaff & Burgard, 2006). However,
this approach suffers from the insufficient representation
of the vertical structures or even the multi-level surfaces.
The multi-level surface maps (MLS) approach is similar to
the elevationmap approach except for allowing the storage
of different heights in the same cell to clearly represent the
vertical structures (Pfaff, Triebel, & Burgard, 2007). Hence,
this approach consists of a horizontal 2D grid structure,
where each cell stores different elevation values in the cor-
responding area. Although the multi-level surface maps
approach offers compact representation, it only records
positive sensor data, and it does not provide a mechanism
for changing the recorded occupancy value of the object’s
elevation. Therefore, sensor errors are never removed from
the grid.
The multi-volume occupancy grid (MVOG) approach is

an extension of the MLS approach (Morris et al., 2010).
However, the MVOG approach stores both the obstacles
and free space readings, which is denoted as positive
and negative readings, respectively. The drawback of this
approach is the large memory consumption. The multi-
level occupancy grids (MLOG) approach represents the
entire 3D environment as a stack ofmultiple 2D occupancy
grids (Tian et al., 2016). Each 2D occupancy grid has a spe-
cific height. The height difference between each two 2D
occupancy grid is adjusted according to the application
requirements. This approach also has the same trait, which
is the large memory requirements.
This paper proposes an efficient real-time 3D SLAM

method using multiple 2D point cloud slices. This method
depends on low-cost sensors to fit the tough situations of
the search and rescue operations. The method begins by
leveling the 2Dpoint cloud of the laser scanner rangefinder
using the inertial sensor as a phase I. Since MAVs are able
to translate and rotate around all its axes (6-DOF), this
phase aims to mitigate the impact of the rotations (i.e., roll
and pitch) of the vehicle on the scan matching process. In
phase II, the method divides the entire map into several
2D maps based on the height of the MAV. Each 2D map
has its own height and it covers part of the environment,
as well as a transient region between each two maps to
enable connecting neighboringmaps as shown in Figure 1.
This splitting process aims at reducing the memory con-
sumption and processing costs of the entire constructed
map and avoiding restrictions for assigning grid size before
the flight. Moreover, for more memory reduction, the pro-
posedmethod retains the executed trajectory for backward
return, instead of building another 2D map slices during
the exit process.
This paper is organized as follows: the used method-

ology is explained in two phases. Section 2 demonstrates
the first phase for roll and pitch compensation, while the
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F IGURE 1 Transient regions between several 2D map slices.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

second phase, which is the multi-slices representation, is
illustrated in Section 3. Section 4 illustrates the hardware
system architecture of the employedMAV. The experimen-
tal results are presented in Section 5. Finally, the conclu-
sion is provided in Section 6.

2 PHASE I: ROLL AND PITCH
COMPENSATION

Figure 2 demonstrates the overall structure of the roll and
pitch compensation approach. The roll and pitch angles
of the MAV are calculated from the accelerometer mea-
surements (𝑓𝑥, 𝑓𝑦). These angles are used to calculate the
rotation matrix (𝑅𝑙𝑒𝑣𝑒𝑙) and consequently level the current
scan in the body frame (b-frame). The current leveled scan
in the b-frame together with the previous leveled scan in
the mapping frame (m-frame) are fed to the improved ref-
erence key frame (IRKF) algorithm (Mohamed, Moussa,

Elhabiby, &El-Sheimy, 2019) to perform the scanmatching
process. The IRKF algorithm estimates position and head-
ing (𝑃𝑥, 𝑃𝑦, 𝜃) of the MAV in the m-frame.
Equation (1) presents the model equation of the mea-

surements of the specific force (Noureldin et al., 2013):

𝐼𝑓 = 𝑓𝑡 + 𝑏𝑓 + 𝑆𝑓𝑓𝑡 (1)

𝑆𝑓 =

⎡⎢⎢⎣
𝑠𝑖𝑥 0 0

0 𝑠𝑖𝑦 0

0 0 𝑠𝑖𝑧

⎤⎥⎥⎦ , (2)

where

𝐼𝑓: the vector of the accelerometer measurement
(𝑚∕𝑠2)

𝑓𝑡: the vector of the true specific force vector (𝑚∕𝑠2)
𝑏𝑓: the bias of the accelerometer instrument (𝑚∕𝑠2)
𝑆𝑓: the matrix of the linear scale factor error (𝑝𝑝𝑚)
𝑠𝑖𝑥: the linear scale factor error in the x-direction
(𝑝𝑝𝑚)

𝑠𝑖𝑦: the linear scale factor error in the y-direction
(𝑝𝑝𝑚)

𝑠𝑖𝑧: the linear scale factor error in the z-direction
(𝑝𝑝𝑚).

The deterministic errors (i.e., bias, scale factor) are cali-
brated using the six-position static test. Therefore, the spe-
cific force vector after the correction of the deterministic
errors is expressed by

𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (𝐼𝑓 − 𝑏𝑓)∕
(
1 + 𝑆𝑓

)
, (3)

F IGURE 2 Overall structure of the roll and pitch compensation approach. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]
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F IGURE 3 The computation of the pitch (p) and roll (r) angles
using accelerometer measurement. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

where 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 : the corrected specific force from the
deterministic errors.
Figure 3 shows the computation of the pitch (𝑝) and

roll (𝑟) angles using the accelerometer measurement. Due
to the gravitational field and the tilting status of the
accelerometer, the accelerometermeasures components of
the gravity (𝑔) as follows (Noureldin et al., 2013):

⎡⎢⎢⎣
𝑓𝑥
𝑓𝑦
𝑓𝑧

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−𝑔𝑐𝑜𝑠(𝑝) sin(𝑟)

𝑔 sin(𝑝)

𝑔𝑐𝑜𝑠(𝑝) cos(𝑟)

⎤⎥⎥⎦ , (4)

where

𝑓𝑥: the accelerometer measurement in the x-direction
𝑓𝑦: the accelerometer measurement in the y-direction
𝑓𝑧: the accelerometer measurement in the z-direction
𝑟: the tilting angle (roll) around the y-direction
𝑝: the tilting angle (pitch) around the x-direction
𝑔: the magnitude of the gravitational field.

From Equations (3) and (4):

𝑟𝑜𝑙𝑙 = 𝑟 = tan−1
(
−𝑓𝑥−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝑓𝑧−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

)
(5)

𝑝𝑖𝑡𝑐ℎ = 𝑝 = tan−1

⎛⎜⎜⎜⎝
𝑓𝑦−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑√

𝑓𝑥−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
2
+ 𝑓𝑧−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

2

⎞⎟⎟⎟⎠
,

(6)

where 𝑓𝑥−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 : the corrected specific force from the
deterministic errors in the x-direction

𝑓𝑦−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 : the corrected specific force from the
deterministic errors in the y-direction

𝑓𝑧−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 : the corrected specific force from the
deterministic errors in the z-direction.

Therefore, the output of the accelerometer in the x and
z directions can be used to compute the tilt angle (roll)
around the y-axis, as given in Equation (5). Similarly, the
output of the accelerometer in the three (i.e., x, y, and z)
directions can be used to compute the tilt angle (pitch)
around the x-axis, as given in Equation (6).
After the roll and pitch are computed and the azimuth

angle is set to zero, the true azimuthwill be estimated from
the next scan matching step. The rotation matrix (𝑅𝑙𝑒𝑣𝑒𝑙) is
computed as follows:

𝑅𝑙𝑒𝑣𝑒𝑙 =

⎡⎢⎢⎣
cos(𝑟) 0 sin(𝑟)

sin(𝑝) sin(𝑟) cos(𝑝) − sin(𝑝) cos(𝑟)

− cos(𝑝) sin(𝑟) sin(𝑝) cos(𝑝) cos(𝑟)

⎤⎥⎥⎦ , (7)

where

𝜌: pitch angle
𝑟: roll angle.

The current leveled scan is computed using the rotation
matrix (𝑅𝑙𝑒𝑣𝑒𝑙) as follows:

(𝑃𝑐𝑙)3𝑥𝑛 = (𝑅𝑙𝑒𝑣𝑒𝑙)3𝑥3 (𝑃𝑐𝑠)3𝑥𝑛 (8)

(𝑃𝑐𝑠)𝑛𝑥3 =

[
𝑃𝑐𝑥𝑖 𝑃𝑐𝑦𝑖 1

⋮ ⋮ ⋮

]
, (9)

where

𝑃𝑐𝑙: the current leveled scan
𝑃𝑐𝑠: the current scan
𝑃𝑐𝑥𝑖: x-coordinate of current scan 𝑖𝑡ℎ point
𝑃𝑐𝑦𝑖: y-coordinate of current scan 𝑖𝑡ℎ point.

3 PHASE II: MULTI-SLICES OF 2D
POINT CLOUD FOR 3D ENVIRONMENT
REPRESENTATION

The autonomous system of the MAV consists of two sub-
systems, namely: navigation and autopilot subsystems.
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F IGURE 4 Overall structure of the proposedmulti-slices 2D point cloud. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

The autopilot subsystem includes flight controller and sin-
gle beam laser rangefinder (LRF), while the navigation
subsystem includes laser scan rangefinder (LSRF) and
optical flow (OF). Figure 4 illustrates the overall structure
of the proposedmulti-slices 2D point cloud for 3D environ-
ment representation. The utilized IRKF algorithm is fed
with the 2D point clouds (i.e., previous and current leveled
scans), the height of the MAV from the ground, and the
velocities of theMAV in the x and y directions with respect
to the b-frame from the navigation subsystem, while the
roll and pitch of the MAV are provided from the autopilot
subsystem.
The proposedmulti-slicesmethod consists ofmulti-level

2D point clouds separated by vertical distance. Themethod
creates a 2D point cloud for each period of time without a
significant height difference (±10 cm); when the MAV is
forced to change the height beyond the threshold, a new
slice of 2D point cloud is created, and a transient state is
initiated to serve the hand-over between the previous and
the new slices. This process iterates throughout the entire
flight.
The proposed multi-slices method comprises two states,

namely: map-building and transient states, and two trans-
missions, namely: forward and backward transmissions as
shown in Figure 5. The transmission between the states
is carried out after reaching switching criteria related to
the detected gaps in the current scene. The candidate gaps
are chosen according to two factors. Primarily, the laser
scanner rangefinder measurements fail to get returns from
the around obstacles. The dimension of the detected gap
is the second factor of validity, wherein the distance, from

F IGURE 5 The two states of the proposed method with
the transmissions between them. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

the vehicle to each side around it, is not less than (25 cm).
The MAV starts building map at an initial height using the
IRKF algorithm. Hence, the IRKF algorithm performs the
scan matching process between the current leveled scan
from phase I and the previous scan. When no gaps are
detected at the current height of the MAV or when all the
existing gaps are already visited by the MAV, the current
map-building state is quitted. Then the proposed method
is switched to the transient state.
The transient state handles the task of determining the

relation between old and new maps. During the transient
state, the map construction is halted, and the new map



66 MOHAMED et al

F IGURE 6 Hardware system architecture. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com
and www.ion.org]

is built from scratch without a history guide. The MAV
seeks new gaps by changing its height up and down to
detect a new gap. The scan matching process is imple-
mented between each of the two successive scan frames
until the end of the transient state in order to estimate
the transformation parameters between the previous con-
structed map and the next map using the utilized IRKF
algorithm. If a gap is detected at a newheight, the proposed
method is switched back to the map-building state to con-
struct a new map at the new height. Thus, the entire map
is represented as several 2D point cloud slices at different
heights. If there are no detected gaps during the transient
state, the MAV stops building more maps for the environ-
ment and uses the implemented trajectory for backward
return.

4 MAV’S HARDWARE SYSTEM
ARCHITECTURE

Figure 6 illustrates the proposed hardware system archi-
tecture. In addition to the aerial platform (i.e., x-frame
quadcopter), the system architecture consists of two
subsystems, namely: navigation and autopilot subsystems.
The main components of the navigation subsystem are a
low-cost 2D laser scanner rangefinder (LSRF) and an opti-
cal flow (OF) sensor attached with a sonar. On the other
hand, the main components of the autopilot subsystem
are the single beam laser rangefinder (LRF) and flight con-
troller, consisting of the Raspberry Pi 2 model B embedded
computer and NAVIO 2 autopilot. The used LSRF is
RPLIDAR 360◦ from RoboPeak. This sensor provides
2D point cloud data that is characterized by short range
detection, and Table 1 presents the sensor specifications.

TABLE 1 The specifications of the utilized laser scanner
rangefinder

Maximum detection range 6 [m]
Minimum detection range 0.2 [m]
Max scan rate (rotation speed) 7 Hz
Field of view 360◦

Angular resolution at maximum rotation
speed

1.5◦

The utilized OF sensor is PX4FLOW (pixhawk) (Honeg-
ger et al., 2013). This sensor consists of imaging sensor
(camera), ultrasonic rangefinder (sonar), and low-cost
MEMS three-axes gyro. The employed LRF sensor is Puls-
edLight http://static.garmin.com/pumac/LIDAR_Lite_
v3_Operation_Manual_and_Technical_Specifications.
pdf. The maximum detection range of this sensor is 40 m
with the accuracy of +/- 0.025 m and frequency of 500 Hz.
The LSRF is mounted horizontally on the top of the

MAV; the LRF is installed orthogonally to the LSRF
and fixed at the bottom pointing to the ground. The
OF sensor is mounted at the bottom pointing to the
ground as well. The autopilot (i.e., NAVIO 2) is equipped
with the dual IMU (MPU9250 9DOF and LSM9DS1
9DOF) https://cdn.sparkfun.com/assets/learn_tutorials/
5/5/0/MPU9250REV1.0.pdf, https://cdn.sparkfun.com/
assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf,
magnetometer, barometer (MS5611) https://www.te.
com/commerce/DocumentDelivery/DDEController?
Action=srchrtrv&DocNm=MS5611-01BA03&DocType=
Data+Sheet&DocLang=English, and U-blox M8N
GPS/Glonass/Beidou receiver.

http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/MPU9250REV1.0.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/MPU9250REV1.0.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data+Sheet&DocLang=English
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data+Sheet&DocLang=English
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data+Sheet&DocLang=English
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data+Sheet&DocLang=English
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F IGURE 7 The scan matching result of
the transient state using different algorithms.
a) Raw point cloud b) Corners registration
method c) Merging the raw point cloud with
the result of the corner registration method d)
IRKF algorithm e) Merging the raw point
cloud with the result of the IRKF algorithm.
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]

5 EXPERIMENTAL RESULTS

As mentioned earlier, during the transient state, the scan
matching process is implemented to estimate the transfor-
mation parameters between each two neighboring maps.
Therefore, the scan matching performance of the tran-
sient state is evaluated by estimating the scan matching
error. This is performed by computing the RMSE of the
matched points for each two successive scans over the tran-
sient period (Mohamed, Moussa, Elhabiby, El-Sheimy, &
Sesay, 2016). Although feature-to-feature scan matching
methods are more robust than point-to-point scan match-
ing methods (Yin et al., 2014), the opportunity of find-
ing the same feature from scan to scan decreases due
to the vertical translation of the vehicle. Thus, for per-
formance assessment, the transient state is tested with
various point-to-point and feature-to-feature methods
such as the iterative closest point (ICP), corners registra-
tion (Mohamed et al., 2016), and IRKF algorithm.
Figure 7 shows the scan matching result of the transient

state using different algorithms. Subplot (a) shows the
raw point cloud without processing. Subplot (b) presents
the result of the scan matching using corners registration,
while both subplots (i.e., a & b) are merged in subplot (c).

TABLE 2 The average RMSE between each two successive
scans using different algorithms

Method /
Algorithm

ICP
Algorithm

Corners
Registration
Method

IRKF
Algorithm

Average RMSE [cm] 4.0 4.1 1.8

Subplot (d) illustrates the result of the scanmatching using
the IRKF algorithm, while both subplots (i.e., a & d) are
merged in subplot (e).
The average RMSEs of the tested transient state are 4.0,

4.1, and 1.8 cm using the ICP algorithm, corners registra-
tion, and IRKF algorithm, respectively, as demonstrated
in Table 2. It is clear that the IRKF algorithm obtains the
average RMSE less than the ICP algorithm and corners
registration by approximately 55% and 56%, respectively.
Therefore, the IRKF algorithm is chosen to estimate the
transformation parameters during the transient state.
Figure 8 illustrates 3D mapping representation for the

same environment using variousmethods and approaches.
Subplot (a) shows the solution of the standard 3D point
cloud, while the solution of the voxel occupancy grids
is presented in subplot (b). Subplot (c) presents the
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F IGURE 8 3D mapping representation for the same environment using various methods and approaches. a) Standard point cloud b)
Voxel occupancy grids c) Elevation map approach d) Proposed method. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

TABLE 3 A comparison of memory consumption between different methods

Method/Algorithm

Standard
point
cloud Voxel

Elevation
map

Proposed
method

Size of the environment 10.6 × 10.6 × 3.0 [𝑚3] (width x length x height)
Size of the cell and Voxel in the Occupancy Grid – 10 × 10 × 10 [𝑐𝑚3] 10 × 10 [𝑐𝑚2] –
Memory consumption [bytes] 773.5 K 2.6 M 86.8 K 4.7 K
Percentage of reduction w.r.t. the proposed
method

99.39% 99.83% 94.70% –

solution of the elevation map approach, the height of each
cell comes from averaging all heights of all points that fall
in the same cell, while subplot (d) shows the solution of
the proposed method. The scanning process is performed
in an office room.
Table 3 demonstrates a comparison of memory con-

sumption between standard point cloud, voxel occupancy
grids, the elevation map approach, and the proposed
method. The width, length, and height of the tested envi-
ronment are 10.6m, 10.6m, and 3.0m, respectively. The
width, length, and height of the utilized voxel are 10cm,
10cm, and 10cm, respectively, while the cell size of the
occupancy grid is 10cm x 10cm. The memory consump-
tion of the standard point cloud, voxel occupancy grids,
elevation map approach, and the proposed method are
773.5KB, 2.6MB, 86.8KB, and 4.7KB, respectively. Thus, the

proposed method reduces the memory consumption by
approximately 164x, 553x, and 18x, respectively, w.r.t. the
standard point cloud, voxel occupancy grids, and finally
the elevation map approach.
Figure 9 shows a plan view of the first dataset: ENE

building at University of Calgary, using the multi-slices 2D
point cloud approach. Two maps are constructed for the
entire mission, and eachmap has a fixed height. The green
points represent the first map (Map-1), while the second
map (Map-2) is represented by the blue points. The red
asterisks represent the trajectory of the MAV. The black
arrow and the dashed rectangle show the location of the
transient state.
Figure 10 illustrates the 3D representation of the first

dataset using the multi-slices 2D point cloud approach.
The dashed rectangle shows that the MAV is getting stuck
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F IGURE 9 Plan view of the first dataset using multi-slices 2D point cloud. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

F IGURE 10 3D representation of the first dataset usingmulti-slices 2D point cloud. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com and www.ion.org]

because there are no gaps except a previously visited gap.
Thus, the proposed method terminates the map-building
state (Map-1) at a height of 2.2 m and switches to the tran-
sient state. TheMAV decreases the height in order to find a
new gap. Once a new gap is detected, the method switches
back to the map-building state to construct the next map
(Map-2) with the current height, 1.8 m.

Figure 11 illustrates the height of the MAV for the entire
mission of the first dataset. After performing the process of
the take-off and reaching the predefined height according
to the environment, the MAV starts to construct the first
map (Map-1) while maintaining the approximately fixed
height. Once the MAV is trapped due to no gaps being
detected in the current height, the MAV switches to the
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F IGURE 11 The height of the MAV during the first test. [Color figure can be viewed in the online issue, which is available at wileyon-
linelibrary.com and www.ion.org]

transient state and decreases its height hoping to detect
new gaps. The MAV returns to the map-building state to
construct the secondmap (Map-2). After finishing themis-
sion, the MAV reduces its height to land.
Figure 12 shows a plan view of the second dataset: CCIT

building at University of Calgary, using the multi-slices 2D
point cloud approach. Two maps are also constructed for
the entire mission and each map has a fixed height. The
green points represent the first map (Map-1), while the sec-
ondmap (Map-2) is represented by the blue points. The red
asterisks represent the trajectory of the MAV. The black
arrow and the dashed rectangle show the location of the
transient state.
Figure 13 illustrates the 3D representation of the second

dataset using the multi-slices 2D point cloud approach.
The dashed rectangle shows that the MAV is getting stuck
because there are no gaps. Thus, the proposed method
terminates the map-building state (Map-1) at the height
of 2.2 m and switches to the transient state. The MAV
decreases the height in order to find a new gap. Once a
new gap is detected, the method switches back to the map-
building state to construct the next map (Map-2) with the
current height, 1.8 m.
Figure 14 illustrates the height of the MAV for the entire

mission of the second dataset. The MAV increases the
thrust of itsmotors to perform the take-off procedure. After
performing the take-off process and reaching the required
height according to the environment, the MAV starts to
construct the first map (Map 1) while preserving approx-
imately the same height. Due to no gaps being detected

in the current height, the MAV switches to the transient
state and decreases its height trying to detect new gaps.
The MAV returns to the map-building state to construct
the second map (Map 2). After finishing the mission, the
MAV reduces its height to land.

6 CONCLUSION

The autonomous navigation of unmanned vehicles in an
unknown indoor environment is typically addressed by the
simultaneous localization andmapping (SLAM) approach.
In contrast to 2D-mapping representation, the 3D map-
ping requires high-processing computational and memory
costs. These high costs can limit using the low-cost embed-
ded systems in the unmanned vehicles. Consequently,
different approaches were proposed to decrease the com-
putational and memory costs such as the elevation map,
Octomap, andmulti-level occupancy grids. However, these
approaches still suffer from computational and memory
costs. For exploration tasks, that are performed in search
and rescue operations, the mapping process is a means to
achieve the navigation solution in such environments. Fur-
thermore, the vehicle is vulnerable to loss in search and
rescue operations due to hazardous situations. Therefore,
a real-time 3D SLAM approach, based on the low-cost 2D
laser scanner rangefinder, is proposed for indoor naviga-
tion. The proposed approach is divided into two phases.
The role of phase one is to level the current point cloud
to mitigate the effect of the MAVs orientation (i.e., roll and
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F IGURE 1 2 Plan view of the second dataset using multi-slices 2D point cloud. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

F IGURE 13 3D representation of the second dataset using multi-slices 2D point cloud. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]
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F IGURE 14 The height of the MAV during the second test. [Color figure can be viewed in the online issue, which is available at wiley-
onlinelibrary.com and www.ion.org]

pitch angles). In phase two, instead of collecting huge data,
the entire environment is divided into several 2D maps
based on the height of the MAV. Thus, each 2D map has
its own height and it covers part of the environment, as
well as a transient region between each two successive
maps to enable connecting these maps together. This split-
ting process aims to reduce the memory consumption and
the processing costs of the entire constructed map and to
avoid restrictions for assigning grid size before the flight.
The map construction is performed using the IRKF algo-
rithm. The estimation of the transformation parameters
during the transient region is implemented using the IRKF
as well.
For the transient state, the scan matching results, using

different methods and algorithms, are tested in order to
choose the appropriate method as one of the transient
state roles is to accurately connect the neighboring maps
together. The average RMSE between each two successive
scans is 4.0, 4.1, and 1.8 cm using the ICP algorithm, cor-
ners registration, and IRKF algorithm, respectively. The
performance of the proposed method is tested by comput-
ing the memory consumption of the same environment
using various methods and approaches such as the stan-
dard 3D point cloud, voxel occupancy grids, and elevation
map approach. The proposed method succeeds to reduce
the memory consumption by 99.39%, 99.83%, and 94.70%
among standard 3D point cloud, voxel occupancy grids,
and elevation map approaches, respectively.
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