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Abstract
Prior work established a model for uncertain Gauss-Markov (GM) noise that
is guaranteed to produce a Kalman filter (KF) covariance matrix that over-
bounds the estimate error distribution. The derivation was conducted for the
continuous-time KF when the GM time constants are only known to reside
within specified intervals. This paper first provides a more accessible deriva-
tion of the continuous-time result and determines the minimum initial vari-
ance of the model. This leads to a new, non-stationary model for uncertain GM
noise that we prove yields an overbounding estimate error covariance matrix
for both sampled-data and discrete-time systems. The new model is evaluated
using covariance analysis for a one-dimensional estimation problem and for an
example application in Advanced Receiver Autonomous Integrity Monitoring
(ARAIM).
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SUMMARY OFMAIN RESULT

Let 𝚺 be the Kalman filter (KF) estimate error covariance
matrix and 𝐏 be the true estimate error covariance matrix.
The inequality 𝚺 ≥ 𝐏 means that the predicted variance
𝜶𝑇𝚺𝜶 is greater than or equal to the true variance 𝜶𝑇𝐏𝜶

for any real vector 𝜶.
Suppose that the measurement and process noise com-

ponents are known to be first-order Gauss-Markov ran-
dom processes (GMPs). These processes are completely
specified by a time constant 𝜏, steady-state variance 𝜎2

and initial variance 𝜎2
0, and propagate according to the

difference equation

𝑎𝑘+1 = 𝑒−Δ𝑡∕𝜏𝑎𝑘 +
√

𝜎2
(
1 − 𝑒−2Δ𝑡∕𝜏

)
𝑤𝑘

𝑤𝑘 ∼ WGN (0, 1) and 𝑎0 ∼ 𝑁(0, 𝜎2
0 ),

where 𝑘 is an arbitrary time index, Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 is
the discrete-time sampling interval, WGN(0, 1) indicates
zero-mean white Gaussian noise with unit variance and
𝑁(0, 𝜎2

0 ) denotes a zero-mean normal random variable
with variance 𝜎2

0 .
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When 𝜏 and 𝜎2 are only known to reside in the inter-
vals [𝜏min, 𝜏max ] and [0, 𝜎2

max ], a state-augmented KF that
models 𝑎𝑘 with

𝜏 = 𝜏max

𝜎2 = 𝜎2
max(𝜏max∕𝜏min)

𝜎2
0 =

2𝜎2
max

1 + (𝜏min∕𝜏max)

is guaranteed to produce a covariance matrix 𝚺 ≥ 𝐏.

1 INTRODUCTION

Safety-critical GNSS applications must ensure that the
probability of the estimate error exceeding predefined
bounds is acceptably small. This probability is often
referred to as integrity risk. In aviation navigation
applications, cumulative distribution function (CDF)
overbounding has been used extensively over the past
10-20 years to derive upper bounds on integrity risk for
snapshot least-squares, GPS-based navigation (DeCleene,
2000; Rife et al., 2004, Rife et al., 2006; Blanch et al.,
2019). However, state estimation using a recursive fil-
ter can be more accurate and enables integration with
additional sensors like an inertial measurement unit
(IMU). One challenge with sequential estimation is how
to conservatively account for time-correlated noise like
GPSmultipath. Precise multipath models are very difficult
to obtain, as illustrated in Pervan et al. (2017), for an
ensemble of empirically derived multipath autocorrela-
tion functions (ACFs). Thus, even using the best models
available, there is uncertainty when dealing with time-
correlated noise.
Existing CDF overbounding methods do not account

for model uncertainty over time, which has prompted the
development of new techniques. Theoretical approaches
were developed in (Rife & Gebre-Egziabher, 2007; Pul-
ford, 2008) to bound the integrity risk of linear systems
driven by a spherically symmetric random process. The
authors in Langel et al. (2014) derive an integrity risk
bound for the KF when measurement and process noise
are Gaussian with ACFs that are unknown but can be
upper- and lower-bounded. Themethods in (Rife &Gebre-
Egziabher, 2007; Pulford, 2008; Langel et al., 2014) are
attractive because they do not require any knowledge
about the mathematical form of the input noise ACFs.
However, the price to pay is that (Rife & Gebre-Egziabher,
2007; Pulford, 2008; Langel et al., 2014) all provide a batch
solution in the sense that they require storing matrices
whose dimensions grow without bound at a rate dictated
by sensor sampling rates. For real-time applications, these

techniques are only suitable for short duration applica-
tions. If high-rate sensors like an IMU are being used,
the maximum allowable duration could be on the order
of minutes before computational and memory constraints
begin to prohibit real-time operation. One way to derive
a practical algorithm is to stipulate that the measurement
and process noise ACFs are known up to a finite set of
uncertain parameters.
State estimation with uncertain parameters has been

studied extensively in the robust estimation literature.
Guaranteed cost filtering emerged in the 1990s as a tech-
nique for defining a robust filter whose estimate error vari-
ance is guaranteed to be smaller than a given bound. These
filters often require determination of one or more scale
parameters using an optimization algorithm and can dis-
play unstable behavior. Dependence on scale parameters
and questionable stability characteristics means that sig-
nificant effort is required up front to design the estimator.
Real-time capability is also a challenge, given the need to
numerically solve an optimization problem. For these rea-
sons, robust estimators have not beenwidely adopted so far
by the navigation community to upper bound KF integrity
risk when the input noise ACFs are uncertain.
This paper builds on the work in Tupysev et al. (2009),

where a guaranteed upper bound on the KF estimate
error variance is derived when process and measurement
noise components are first-orderGMPswithunknown, but
bounded, time constants. Reference Tupysev et al. (2009)
shows that in order to guarantee that the KF covariance
matrix overbounds the estimate error, both the minimum
and maximum time constants must be used in the KF
matrices. The derivation is conducted for the continuous-
time KF, and a covariance analysis is performed for an
IMU-aided navigation problem to show that the estimate
error variance is bounded. The authors in Tupysev et al.
(2009) indicate that the initial variance of their model
must be inflated relative to the true GM variance but
do not specify how much inflation is necessary. They
also did not discuss how their results apply for the more
common case of discrete-time systems. We will address
both deficiencies.
The paper begins with the problem statement and moti-

vation for its study in Sections 2 and 3. Starting from a
sampled-data systemmodel, Sections 4 through 5.1 provide
a more accessible derivation of Equation (23) in Tupysev
et al. (2009), following many of the authors’ key develop-
ments. In Section 5.2, we derive the minimum initial vari-
ance for the GMmodel (Equation (25)) that yields an over-
bounding covariance matrix for the mixed continuous-
discrete KF. This expression is a previously unknown
result that leads to a new, non-stationary model for GM
noise that we prove in Section 5.3 results in an overbound-
ing estimate error covariance matrix for the discrete-time
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KF. The proof is a new development that rigorously justi-
fies using our model to account for uncertain GM noise in
a discrete-time setting. An illustrative example shows that
the non-stationary model provides a significantly tighter
bound on the estimate error variance compared to a sta-
tionary model.
One application where time-sequential estimation is

being explored for high integrity navigation is Vertical
Advanced Receiver Autonomous Integrity Monitoring, or
V-ARAIM, which seeks to provide worldwide vertical
guidance of aircraft using dual-frequency measurements
from GPS and Galileo. It was shown recently that V-
ARAIM performance can be significantly improved by
processing time-sequences of measurements (Joerger &
Pervan, 2015, 2016). In Section 6, we carry out a perfor-
mance analysis for time-sequential V-ARAIM. Multipath
and residual tropospheric errors are first-order GMPs with
time constants that reside within their own specified inter-
vals. We use our new GM model to establish global avail-
ability maps that show sequential V-ARAIM outperforms
traditional snapshot ARAIM even though the multipath
and residual tropospheric error time constants are uncer-
tain. Concluding remarks and suggestions for future study
are given in Section 7.

2 PROBLEM SETUP

Consider the state estimation problem for the sampled-
data system

𝝃̇ = 𝐀(𝑡)𝝃 + 𝐁(𝑡)𝒘(𝑡)

𝒛𝑘 = 𝐂𝑘𝝃𝑘 + 𝐃𝑘𝒗𝑘, (1)

where 𝝃 ∈ ℝ𝑛 is the state vector, 𝒛𝑘 ∈ ℝ𝑚 is the measure-
ment vector and 𝒘(𝑡) ∈ ℝ𝑝, 𝒗𝑘 ∈ ℝ𝑠 are the process and
measurement noise vectors, respectively. The matrices 𝐀,
𝐁, 𝐂𝑘 and 𝐃𝑘 are known and of appropriate dimension.
A sampled-data system model is used for most of

the theoretical development in this paper because many
systems encountered in practice are described by Equation
(1). State dynamics are often derived from physical laws
(e.g., Newton’s laws of motion) and take the form of
continuous-time differential equations, whereas external
measurements of a system are usually taken with digital
sensors. Recognizing that Equation (1) is typically con-
verted entirely to discrete-time prior to developing an
estimator, results for sampled-data systems are extended
to discrete-time systems in Section 5.3.
The vectors 𝒘 and 𝒗𝑘 are known to be linear combina-

tions of a first-order GMP vector 𝒂 ∈ ℝ𝑙 and zero-mean

WGN vectors 𝒏(𝑡) ∈ ℝ𝑝 and 𝒓𝑘 ∈ ℝ𝑠. That is

𝒘(𝑡) = 𝐄w(𝑡)𝒂(𝑡) + 𝒏(𝑡) , 𝐸 [𝒏(𝑡)𝒏𝑇(𝑠)] = 𝐍(𝑡)𝛿(𝑡 − 𝑠)

𝒗𝑘 = 𝐄v,𝑘𝒂𝑘 + 𝒓𝑘 , 𝐸 [𝒓𝑘𝒓
𝑇
𝑙
] = 𝐑𝑘𝛿kl

𝒂̇ = 𝐋𝒂 + 𝒖(𝑡) , 𝐸 [𝒖(𝑡)𝒖𝑇(𝑠)] = 𝐔𝛿(𝑡 − 𝑠)

(2)

such that 𝐄w(𝑡) ∈ ℝ𝑝×𝑙 and 𝐄v,𝑘 ∈ ℝ𝑠×𝑙 are known matri-
ces, 𝐍(𝑡) ∈ ℝ𝑝×𝑝 is the power spectral density matrix of
𝒏(𝑡), 𝐑𝑘 ∈ ℝ𝑠×𝑠 is the covariance matrix of 𝒓𝑘 and 𝛿(𝑡), 𝛿kl
are the Dirac delta function and Kronecker delta, respec-
tively. 𝐍(𝑡) and 𝐑𝑘 are unknown, but we assume that
𝐍̂(𝑡) ≥ 𝐍(𝑡) and 𝐑̂𝑘 ≥ 𝐑𝑘 can be determined.
For the GMP vector 𝒂, 𝐋 and𝐔 are (Gelb et al., 1974)

𝐋 =

⎡⎢⎢⎢⎣
−

1

𝜏1
⋱

−
1

𝜏𝑙

⎤⎥⎥⎥⎦ and 𝐔 =

⎡⎢⎢⎢⎢⎣
2𝜎2

1

𝜏1
⋱

2𝜎2
𝑙

𝜏𝑙

⎤⎥⎥⎥⎥⎦
(3)

where 𝜎2
𝑖
and 𝜏𝑖, 𝑖 = 1, … , 𝑙 are only known to reside in

specified intervals. The goal of the paper is to develop a KF
whose predicted estimate error covariancematrix accounts
for uncertainty in 𝜎2

𝑖
and 𝜏𝑖 . In subsequent sections, “(𝑡)”

will be omitted to lighten the notation.
State augmentation (Anderson & Moore, 1974) is com-

monly used to account for correlated noise and involves
appending 𝒂 to 𝝃 to form the new linear system[

𝝃̇

𝒂̇

]
=

[
𝐀 𝐁𝐄w

𝟎 𝐋

] [
𝝃

𝒂

]
+

[
𝐁𝒏

𝒖

]

𝒛𝑘 =
[
𝐂𝑘 𝐃𝑘𝐄v,𝑘

] [𝝃𝑘
𝒂𝑘

]
+ 𝐃𝑘𝒓𝑘 (4)

With 𝒙𝑇 = [𝝃𝑇 𝒂𝑇], Equation (4) can also be written as

𝒙̇ = 𝐅𝒙 + 𝒒

𝒛𝑘 = 𝐇𝑘𝒙𝑘 + 𝐃𝑘𝒓𝑘 (5)

Equation (5) is a linear system driven by zero-mean WGN.
Thus it is permissible to estimate 𝒙 using a KF. Since 𝜎2

𝑖
and 𝜏𝑖 are unknown, it is not clear what values should be
used to define theKF.One criterion is to use parameter val-
ues so the predicted estimate error distribution overbounds
the true error distribution over the range of admissible
values.
To define an overbounding distribution, let 𝑦̂ be an esti-

mate of a specified state 𝑦 and define 𝜀𝑦 = 𝑦 − 𝑦̂ as the
associated estimate error. Then for a maximum tolerable
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F IGURE 1 One-dimensional position and velocity estimation

error 𝓁𝑦 , an overbounding distribution is one that pro-
duces an upper bound on the integrity risk 𝑃(|𝜀𝑦 | ≥ 𝓁𝑦).
Given that Equation (5) is a linear system driven by zero-
mean WGN and the fact that the KF is a linear unbiased
estimator, it follows that 𝜀𝑦 ∼ 𝑁(0, 𝜎2

𝑦 ). In this case, an
upper bound on integrity risk is equivalent to an upper
bound on the estimate error variance 𝜎2

𝑦 . Therefore, sub-
sequent sections of the paper will focus on developing an
upper bound on the estimate error variance for any state of
interest.

3 MOTIVATIONAL EXAMPLE

Before developing a rigorous approach for defining an
overbounding distribution in the presence of uncertainty,
it is instructive to address the fallacies in current think-
ing. The conventional wisdom is that a KF using upper
bound parameter values will produce an estimate error
covariance matrix that overbounds the true error dis-
tribution. We use a simple one-dimensional estimation
problem to demonstrate that this heuristic is not always
accurate.
Consider the vehicle in Figure 1 moving at con-

stant speed 𝑢 along the 𝑥-axis from an initial point 𝑝0.
Noisy measurements of the current position are available,
described by the model

𝑧𝑘 =
[
1 𝑘Δ𝑡

] [𝑝0

𝑢

]
+ 𝑣𝑘 (6)

where 𝑣𝑘 is the sum of a first-order GMP and zero-mean
WGN. That is, 𝑣𝑘 = 𝑎𝑘 + 𝑟𝑘 such that 𝑟𝑘 ∼ 𝑁(0, 𝜎2

𝑟 ) and

𝑎𝑘+1 = 𝑒−Δ𝑡∕𝜏𝑎𝑘 + 𝑤𝑘

𝑤𝑘 ∼ 𝑁
(
0, 𝜎2

𝑎

(
1 − 𝑒−2Δ𝑡∕𝜏

)) (7)

The variances are known and given by 𝜎2
𝑟 = 0.5m2 and

𝜎2
𝑎 = 1m2. However, the time constant 𝜏 is only known
to lie in the interval [10,100] s. Noting that 𝑝0 and 𝑢 are
constants, state augmentation results in the estimation
problem

F IGURE 2 Difference between predicted and true estimate
error standard deviations for a KF that assumes 𝜏 = 𝜏max

⎡⎢⎢⎣
𝑝0, 𝑘+1

𝑢𝑘+1

𝑎𝑘+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0

0 1 0

0 0 𝑒−Δ𝑡∕𝜏

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑝0, 𝑘

𝑢𝑘

𝑎𝑘

⎤⎥⎥⎦ +
⎡⎢⎢⎣

0

0

𝑤𝑘

⎤⎥⎥⎦
𝑧𝑘 =

[
1 𝑘Δ𝑡 1

] ⎡⎢⎢⎣
𝑝0, 𝑘

𝑢𝑘

𝑎𝑘

⎤⎥⎥⎦ + 𝑟𝑘 (8)

such that the initial estimate error covariance matrix 𝐏0 is
diagonal with nonzero elements: [10m2, 1m2∕s2, 1m2 ].
The KF is constructed assuming that 𝜏 = 100 seconds.

However, suppose that 𝜏 is actually equal to 50 seconds.
We want to compare the KF’s predicted estimate error
variance to the true variance in this case. The true esti-
mate error variance is obtained through Monte Carlo
simulation. Measurements of current position are gen-
erated according to the true measurement model and
passed into the KF. The variance is then estimated from
the sample estimate error distribution. We saw that the
change in estimated variance between 800,000 trials to
one million trials was indistinguishable. Thus, one mil-
lion trials is sufficient to accurately determine the true
variance.
Figure 2 shows the estimate error standard deviation

predicted by the KF minus the true standard deviation
for the initial position and speed states. One might expect
to see that the estimated-minus-true difference is posi-
tive at all times when assuming that 𝜏 = 𝜏max. This is
clearly not the case. For the initial position state, the
assumption that 𝜏 = 𝜏max is eventually conservative after
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60 seconds have elapsed. For the speed state, assum-
ing that 𝜏 = 𝜏max always leads to optimistic predictions
of the estimate error standard deviation. This simple
example demonstrates that a more rigorous approach is
needed to establish an overbounding estimate error dis-
tribution when correlated measurement error models are
uncertain.

4 TRUE COVARIANCEMATRIX

This section derives propagation equations for the true
estimate error covariancematrix when the KF usesmodels
that do not correspond to the actual process and measure-
ment noise statistics. In what follows, the notation (⋅)𝑘|𝑘
will be used to denote a quantity at time index 𝑘 based on
all measurements up to and including time index 𝑘. The
KF for the system in Equation (5) is defined by the recur-
sion

̇̂𝒙 = 𝐅𝒙̂ , 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] and 𝒙̂(𝑡𝑘−1) = 𝒙̂𝑘−1|𝑘−1

̇̂𝐏 = 𝐅𝐏̂ + 𝐏̂𝐅𝑇 +

[
𝐁𝐍̂𝐁𝑇 𝟎

𝟎 𝐔̂

]
, 𝐏̂(𝑡𝑘−1) = 𝐏̂𝑘−1|𝑘−1

𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 + 𝐊𝑘

(
𝐳𝑘 − 𝐇𝑘𝒙̂𝑘|𝑘−1

)
(9)

𝐊𝑘 = 𝐏̂𝑘|𝑘−1𝐇
𝑇
𝑘
(𝐇𝑘𝐏̂𝑘|𝑘−1𝐇

𝑇
𝑘
+ 𝐃𝑘𝐑̂𝑘𝐃

𝑇
𝑘
)−1

𝐏̂𝑘|𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏̂𝑘|𝑘−1(𝐈 − 𝐊𝑘𝐇𝑘)
𝑇 + 𝐊𝑘𝐃𝑘𝐑̂𝑘𝐃

𝑇
𝑘
𝐊𝑇

𝑘

The filter designer must specify 𝐋̂ (which is contained
in 𝐅) and 𝐔̂. These matrices generally will not describe the
true measurement and process noise statistics because the
parameters defining them are uncertain. The KF covari-
ance matrix 𝐏̂ therefore does not accurately capture the
true estimate error distribution, and a new covariance
matrix 𝐏 must be defined that accounts for model uncer-
tainty.
When 𝐋̂ ≠ 𝐋, Appendix A shows that the KF estimate

error vector 𝜺 = 𝒙 − 𝒙 propagates according to 𝜺̇ = 𝐅𝜺 +

Δ𝐅𝒂 + 𝒒, where Δ𝐅𝑇 = [𝟎 (𝐋 − 𝐋̂)
𝑇
]. Thus, 𝜺 and 𝒂 must

be considered simultaneously when determining the true
covariance matrix for 𝜺. The correlation between 𝜺 and 𝒂

is properly accounted for by forming the augmented vec-
tor 𝒆𝑇 = [𝜺𝑇 𝒂𝑇]. This method of accounting for model
uncertainty is similar to the approach in Gelb et al. (1974).
The only difference is that we focus on uncertainty in
𝐋, whereas Gelb et al. (1974) considers uncertainty in

the entire transition matrix 𝐅. Appendix A shows that
𝐏 = 𝐸 [𝒆𝒆𝑇 ] evolves according to

𝐏̇ =

[
𝐅 Δ𝐅

𝟎 𝐋

]
𝐏 + 𝐏

[
𝐅𝑇 𝟎

Δ𝐅𝑇 𝐋𝑇

]
+ 𝐐

𝐏𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝐏𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘𝐑𝑘𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(10)

such that

𝐐 =
⎡⎢⎢⎣
𝐁𝐍𝐁𝑇 𝟎 𝟎

𝟎 𝐔 𝐔

𝟎 𝐔 𝐔

⎤⎥⎥⎦ (11)

Equations (10) and (11) contain both true and estima-
tor matrices and thus reflect that𝐍,𝐑,𝐔 and 𝐅 are uncer-
tain. For example, 𝐍̂ and 𝐑̂𝑘 go into determining 𝐊𝑘, but
𝐍 and 𝐑𝑘 also appear explicitly. However, 𝐏 cannot be
computed in practice because of the unknown matrices
involved. We therefore seek to define a covariance matrix
𝚺 free of dependence on unknown matrices such that
(𝚺 − 𝐏) ≥ 0, that is, 𝚺 − 𝐏 is positive semi-definite. This
criterion ensures that the predicted error variance for any
state is an upper bound on the true variance.

5 MODELING UNCERTAIN GMNOISE

The goal of this section is to define a propagation structure
for 𝚺 and use the criteria (𝚺 − 𝐏) ≥ 0 to derive a model for
uncertain GM noise. Following the approach in Tupysev
et al. (2009), we stipulate that 𝚺 propagates in a manner
similar to Equations (10) and (11), that is,

𝚺̇ =

[
𝐅 Δ𝐅

𝟎 𝐋

]
𝚺 + 𝚺

[
𝐅𝑇 𝟎

Δ𝐅𝑇 𝐋𝑇

]
+ 𝐐̂ (12a)

𝚺𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝚺𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘𝐑̂𝑘𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(12b)

This structure was chosen because, as we will see, it
enables 𝐅, 𝐐̂ and the initial covariance matrix 𝚺(0) to be
defined explicitly from the requirement (𝚺 − 𝐏) ≥ 0. The
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covariance error matrix 𝚫 = 𝚺 − 𝐏 propagates as

𝚫̇ =

[
𝐅 Δ𝐅

𝟎 𝐋

]
𝚫 + 𝚫

[
𝐅𝑇 𝟎

Δ𝐅𝑇 𝐋𝑇

]
+ 𝐐̂ − 𝐐 (13a)

𝚫𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝚫𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘(𝐑̂𝑘 − 𝐑𝑘)𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(13b)

Equation (13a) is a matrix differential equation with initial
condition 𝚫𝑘−1|𝑘−1 and whose solution at 𝑡 = 𝑡𝑘 is 𝚫𝑘|𝑘−1.
The matrix 𝚫𝑘|𝑘−1 is positive semi-definite if 𝚫𝑘−1|𝑘−1 ≥ 0

and 𝐐̂ ≥ 𝐐 (see Dieci & Eirola, 1994). The quadratic struc-
ture inEquation (13b) ensures that𝚫𝑘|𝑘 ≥ 0when𝚫𝑘|𝑘−1 ≥

0 and 𝐑̂𝑘 ≥ 𝐑𝑘. Therefore, we must have an initial matrix
𝚫(0) ≥ 0 and 𝐐̂ ≥ 𝐐 to guarantee that 𝚫(𝑡) ≥ 0 for all 𝑡.

5.1 Continuous-time model

We will now provide a more accessible derivation of the
continuous-time model for uncertain GM noise given in
Tupysev et al. (2009), following many of the authors’ key
developments. In preparation for the first step, defining 𝐐̂,
readers should re-familiarize themselves with the defini-
tions in Equation (3).
Let 𝐔̂ be 𝐔 formed with the upper bound values for 𝜎2

𝑖

and the lower bound values for 𝜏𝑖 . Let’s also define 𝐔 as
the matrix 𝐔 populated with the true time constants 𝜏𝑖

and as yet undetermined variances 𝜎
2
𝑖 ≥ 𝜎2

𝑖
. Then with 𝐐̂

defined as

𝐐̂ =
⎡⎢⎢⎣
𝐁𝐍̂𝐁𝑇 𝟎 𝟎

𝟎 𝐔̂ 𝐔

𝟎 𝐔 𝐔

⎤⎥⎥⎦ (14)

it is clear that (𝐐̂ − 𝐐) ≥ 0 for all admissible values of 𝜎2
𝑖

and 𝜏𝑖 . However, 𝐐̂ could never be constructed because it
depends on the unknown matrix 𝐔. Therefore, we must
use a mathematical approach to make 𝚺 insensitive to 𝐔.
To see how this can be accomplished, form the partitioned

matrix 𝚺 =

[
𝚺𝑥 𝚺𝑥𝑎

𝚺𝑇
𝑥𝑎 𝚺𝑎

]
so that Equation (12a) can be

written in expanded form as

𝚺̇𝑥 = 𝐅𝚺𝑥 + Δ𝐅𝚺𝑇
𝑥𝑎 + 𝚺𝑥𝐅

𝑇 + 𝚺𝑥𝑎Δ𝐅𝑇 + 𝐐̂𝑥 (15a)

𝚺̇𝑥𝑎 = 𝐅𝚺𝑥𝑎 + Δ𝐅𝚺𝑎 + 𝚺𝑥𝑎𝐋
𝑇 + 𝐐̂𝑥𝑎 (15b)

𝚺̇𝑎 = 𝐋𝚺𝑎 + 𝚺𝑎𝐋
𝑇 + 𝐔 (15c)

where

𝐐̂𝑥 =

[
𝐁𝐍̂𝐁𝑇 𝟎

𝟎 𝐔̂

]
and 𝐐̂xa =

[
𝟎

𝐔

]
(16)

We are only interested in propagating 𝚺𝑥, the block of
𝚺 corresponding to 𝜺. In its current form, Equation (15a)
cannot be propagated because it depends on the unknown
matrix Δ𝐅. We can eliminate Δ𝐅 by forcing 𝚺𝑥𝑎(𝑡) = 𝟎 for
all 𝑡. To achieve this, let Δ𝐋 = 𝐋 − 𝐋̂ and impose the con-
straint

Δ𝐅𝚺𝑎 + 𝐐̂xa = 𝟎
Δ𝐅𝑇 = [𝟎 𝚫𝐋𝑇]
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ Δ𝐋𝚺𝑎 + 𝐔 = 𝟎 (17)

which simplifies Equation (15b) to the unforced linear dif-
ferential equation 𝚺̇𝑥𝑎 = 𝐅𝚺𝑥𝑎 + 𝚺𝑥𝑎𝐋

𝑇 . Next, set the ini-
tial condition 𝚺𝑥𝑎(0) = 𝟎. The only solution to an unforced
linear differential equation with zero initial condition is
the trivial solution. Therefore, it must be that 𝚺𝑥𝑎(𝑡) = 0

for all 𝑡, as desired.
Equation (17) has additional ramificationswhenwe con-

sider the alternative form 𝚺𝑎 = −(Δ𝐋)
−1

𝐔. The matrices
Δ𝐋 and 𝐔 are time-invariant, which implies that 𝚺̇𝑎 = 𝟎.
Making the substitutions 𝚺̇𝑎 = 𝟎 and 𝚺𝑎 = −(Δ𝐋)

−1
𝐔 into

Equation (15c) results in the additional constraint

𝟎 = −𝐋(Δ𝐋)
−1

𝐔 − (Δ𝐋)
−1

𝐔𝐋𝑇 + 𝐔 (18)

Noting that 𝐋, 𝐋̂,𝐔 and 𝐔 are diagonal matrices, Equa-
tion (18) is equivalent to the set of scalar conditions(

−1 +
𝜏𝑖

𝜏̂𝑖

)
+

2𝜎2
𝑖

𝜎
2
𝑖

= 0 , 𝑖 = 1, … , 𝑙 (19)

It is worth reiterating that 𝜏𝑖 and 𝜎2
𝑖
are unknown, 𝜏̂𝑖 is

a quantity we need to determine, and 𝜎
2
𝑖 must be greater

than or equal to 𝜎2
𝑖
. To determine 𝜏̂𝑖 , first solve Equation

(19) for 𝜎2
𝑖 , resulting in

𝜎
2
𝑖 =

2𝜎2
𝑖
𝜏̂𝑖

𝜏̂𝑖 − 𝜏𝑖

≥ 𝜎2
𝑖

(20)

We know that variances are never less than zero. The
denominator in Equation (20) indicates that the only way
to guarantee that 𝜎2

𝑖 ≥ 0 for any 𝜏𝑖 ∈ [𝜏𝑖,min, 𝜏𝑖,max] is to set
𝜏̂𝑖 equal to 𝜏𝑖,max .
With 𝜏̂𝑖 = 𝜏𝑖,max , the inequality in Equation (20) simpli-

fies to 1 ≥ 𝜏𝑖∕𝜏𝑖,max , which is satisfied for all admissible
values of 𝜏̂𝑖 . Thus, we satisfy the requirement that 𝜎

2
𝑖 ≥𝜎2

𝑖
.

Having determined the diagonal elements of 𝐋̂ and 𝐔̂,
we can conclude that 𝚺𝑥 ≥ 𝐏𝑥 when first-order GMPs are



LANGEL et al 265

modeled according to

𝑎̇ = −
1

𝜏max
𝑎 +

√
2𝜎2

max

𝜏min
𝑤 , 𝐸 [𝑤(𝑡)𝑤(𝑠)] = 𝛿(𝑡 − 𝑠)

(21)

Equation (21) is identical to Equation (23) in Tupysev
et al. (2009). This completes the proof of the main result in
Tupysev et al. (2009). At this point, the model in Equation
(21) is incomplete without specifying the initial variance.
The reader also may be wondering about the role of 𝜎

2
𝑖 .

It is comforting that 𝜎
2
𝑖 is not required to propagate 𝚺𝑥

because its dependence on the unknown time constant 𝜏𝑖

means that 𝜎2
𝑖 can never be constructed. However, a pre-

viously unknown fact is that 𝜎2
𝑖 places constraints on the

initial variance for the GM model. This new result is cov-
ered next.

5.2 Initialization

Reference Tupysev et al. (2009) indicates that the initial
variance of the GM model must be inflated relative to the
true variance but does not provide any insight as to how
much inflation is required. In this section, we derive the
tightest bound on the initial variance for the model in
Equation (21) that still guarantees 𝚺𝑥 ≥ 𝐏𝑥.
Section 5.1 showed that the initial cross-covariance

𝚺𝑥𝑎(0)must be zero to eliminate any dependence of 𝚺𝑥 on
the unknown matrix Δ𝐅. Assuming that 𝜺𝜉,0 and 𝜺𝑎,0 are
initially uncorrelated with covariance matrices 𝚺𝜉,0 and
𝚺𝑎,0, the requirement 𝚺𝑥𝑎(0) = 𝟎 leads to the initial covari-
ance matrix

𝚺(0) =
⎡⎢⎢⎣
𝚺𝜉,0 𝟎 𝟎

𝟎 𝚺𝑎,0 𝟎

𝟎 𝟎 𝚺𝑎,0

⎤⎥⎥⎦ (22)

where 𝚺𝜉,0 is assumed to be known (e.g., from an initial-
ization algorithm), 𝚺𝑎,0 is what we seek to define in this
section, and 𝚺𝑎,0 is a diagonal matrix populated with the
𝜎

2
𝑖 in Equation (20).
Appendix B shows that the true initial covariancematrix

is

𝐏(0) =
⎡⎢⎢⎣
𝐏𝜉,0 𝟎 𝟎

𝟎 𝐏𝑎,0 𝐏𝑎,0

𝟎 𝐏𝑎,0 𝐏𝑎,0

⎤⎥⎥⎦ (23)

such that 𝐏𝑎,0 is a diagonal matrix comprised of the
unknown variances 𝜎2

𝑖
. We showed earlier that 𝚺(0) ≥

𝐏(0) is a necessary condition to ensure that 𝚺(𝑡) ≥ 𝐏(𝑡) for

all 𝑡. We assume that 𝚺𝜉,0 can be specified so that 𝚺𝜉,0 ≥

𝐏𝜉,0. Then using the fact that a block diagonal matrix is
positive semi-definite if and only if each diagonal block is
positive semi-definite, 𝚺𝑎,0 must be specified so that[

𝚺𝑎,0 − 𝐏𝑎,0 −𝐏𝑎,0

−𝐏𝑎,0 𝚺𝑎,0 − 𝐏𝑎,0

]
≥ 0 (24)

Denoting an arbitrary diagonal element of 𝚺𝑎,0 as 𝜎2
0,

Appendix B shows that Equation (24) is satisfied if

𝜎2
0 ≥

2𝜎2
max

1 + (𝜏min∕𝜏max)
(25)

It is worth noting that the model in Equation (21) is sta-
tionary when initialized with a variance 𝜎2

max(𝜏max∕𝜏min)

that is greater than the lower bound in Equation (25). A
stationary model for uncertain GMPs is appealing because
GMPs are in fact stationary. However, by initializing with
the minimum variance in Equation (25), it is possible to
obtain a tighter bound on the estimate error variance using
a non-stationary model. This will be demonstrated in Sub-
section 5.4 for the one-dimensional example considered in
Section 3.

5.3 Discrete-time model

Even though Equation (1) may be the native description
of a system, it is often converted entirely to discrete-time
when designing and implementing a KF. We will prove in
this section that the discretized formof Equation (21) yields
an overbounding estimate error covariance matrix for the
discrete-time KF.
Consider a discrete-time system analogous to Equa-

tion (4) [
𝝃𝑘+1

𝒂𝑘+1

]
=

[
𝐀𝑘 𝐁𝑘𝐄w,𝑘

𝟎 𝐋𝑘

] [
𝝃𝑘
𝒂𝑘

]
+

[
𝐁𝑘𝒏𝑘

𝒖𝑘

]
𝒛𝑘 =

[
𝐂𝑘 𝐃𝑘𝐄v,𝑘

] [𝝃𝑘
𝒂𝑘

]
+ 𝐃𝑘𝒓𝑘 (26)

where 𝐸 [𝒏𝑘𝒏
𝑇
𝑙
] = 𝐍𝑘𝛿kl and 𝐸 [𝒓𝑘𝒓

𝑇
𝑙
] = 𝐑𝑘𝛿kl. As before,

we assume that 𝐍̂𝑘 ≥ 𝐍𝑘, 𝐑̂𝑘 ≥ 𝐑𝑘 and 𝚺𝜉,0 ≥ 𝐏𝜉,0 can be
specified. Suppose that 𝒙𝑇

𝑘
= [𝝃𝑇

𝑘
𝒂𝑇

𝑘
] is estimated with a

KF that models 𝒂𝑘 using the discretized form of Equation
(21). From the continuous-to-discrete mapping (Rogers,
2003)

𝑎̇ = −
𝑎

𝜏
+

√
2𝜎2

𝜏
𝑤 ⟹ 𝑎𝑘+1 = 𝜙𝑎𝑘 + 𝜎

√
1 − 𝜙2𝑤𝑘

(27)
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with 𝜙 = 𝑒−Δ𝑡∕𝜏, the discretized form of Equation (21) is
seen to be

𝑎𝑘+1 = 𝑒−Δ𝑡∕𝜏max𝑎𝑘 +

√(
𝜎2
max𝜏max
𝜏min

)(
1 − 𝑒−2Δ𝑡∕𝜏max

)
𝑤𝑘

𝑤𝑘 ∼ WGN(0, 1)

𝜎2
0 =

2𝜎2
max

1 + (𝜏min∕𝜏max)
(28)

Following a similar approach to Subsection 5.1,
Appendix C shows that the covariance error matrix
𝚫 = 𝚺 − 𝐏 for the discrete-time KF propagates as

𝚫𝑘+1|𝑘 =

[
𝐅𝑘 𝚫𝐅𝑘

𝟎 𝐋𝑘

]
𝚫𝑘|𝑘

[
𝐅𝑘 Δ𝐅𝑘

𝟎 𝐋𝑘

]𝑇

+

[
𝐐̂𝑥,𝑘 − 𝐐𝑥,𝑘 −𝐐xa,𝑘

−𝐐𝑇
xa,𝑘 𝐔𝑘 − 𝐔𝑘

]

−

[
Δ𝐅𝑘𝚺𝑎,0Δ𝐅𝑇

𝑘
Δ𝐅𝑘𝚺𝑎,0𝐋

𝑇
𝑘

𝐋𝑘𝚺𝑎,0Δ𝐅𝑇
𝑘

𝟎

]
(29a)

𝚫𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝚫𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘(𝐑̂𝑘 − 𝐑𝑘)𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(29b)

Given that our analysis of sampled-data systems also
considered discrete-time measurements, it is no surprise
that Equation (29b) is identical to Equation (13b). How-
ever, Equation (29a) differs from the continuous version in
Equation (13a) in that there is an additional matrix depen-
dent on Δ𝐅𝑘 that must now be considered.
To show that 𝚫𝑘|𝑘 ≥ 0, first note that whether the origi-

nal system is a sampled-data system or a discrete-time sys-
tem, initialization is the same. Thus, the results from Sub-
section 5.2 also apply here, that is, initializing with 𝚺𝜉,0 ≥

𝐏𝜉,0 and the variances in Equation (28) ensures that 𝚺0|0 ≥

𝐏0|0. Second, notice that the quadratic structure in Equa-
tion (29b) guarantees that 𝚫𝑘|𝑘 ≥ 0 if 𝚫𝑘|𝑘−1 ≥ 0. There-
fore, if we can establish that 𝚫𝑘+1|𝑘 ≥ 0, this will prove
that the discrete-time KF covariance matrix overbounds
the estimate error distribution.
Determining whether 𝚫𝑘+1|𝑘 ≥ 0 comes down to show-

ing that[
𝐐̂𝑥,𝑘 − 𝐐𝑥,𝑘 − Δ𝐅𝑘𝚺𝑎,0Δ𝐅𝑇

𝑘
−𝐐xa,𝑘 − Δ𝐅𝑘𝚺𝑎,0𝐋

𝑇
𝑘

−𝐐𝑇
xa,𝑘 − 𝐋𝑘𝚺𝑎,0Δ𝐅𝑇

𝑘
𝐔𝑘 − 𝐔𝑘

]
≥ 0

(30)

F IGURE 3 KF standard deviation compared to truth when
using stationary and non-stationary bounding GMP models

which we prove is true in Appendix D. Hence, we can
conclude that for a discrete-time system, the model given
in Equation (28) yields a KF covariance matrix that over-
bounds the estimate error distribution when the GM time
constants are uncertain.

5.4 Motivational example revisited

A visual representation of the paper’s main result is
obtained by revisiting the motivational example from Sec-
tion 3. The KF is run twice, once with the non-stationary
model in Equation (28) and oncewith the stationarymodel
where 𝜎2

0 = 𝜎2
max(𝜏max∕𝜏min). Just as before, the true esti-

mate error variance is obtained through Monte Carlo sim-
ulation.
Figure 3 shows the estimate error standard deviation

predicted by the KF and the true standard deviation using
each model. The predicted standard deviation is always
greater than the true standard deviation, indicating that
both models provide an upper bound on the estimate error
variance. For the speed state, there is almost no visible
benefit of using the non-stationary model. However, the
benefit is clear for the initial position state. Not only
is the variance bound smaller using the non-stationary
model compared to the stationary model, but it is also
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F IGURE 4 True and bounding covariance ellipses for the
motivational example in Section 3. Ellipses are shown at an elapsed
time of 10 seconds

less conservative. That is, the gap between the predicted
and true standard deviations is smaller when using the
non-stationary model for GM noise.
Remember that 𝚺was derived so that 𝚺 ≥ 𝐏. This means

that the ellipsoid corresponding to 𝚺 circumscribes the
ellipsoid associated with 𝐏 for any admissible 𝜏. Figure 4
shows the true covariance matrix obtained from Monte
Carlo simulation in gray and the KF covariance matrix
in black, at an elapsed time of 10 seconds, when using
the stationary and non-stationary bounding models. The
true covariance matrices are different for each bounding
model because they are obtained using two separate esti-
mators, derived from twodifferent values for the initial GM
state variance. We can see that the KF covariance ellipse
does indeed circumscribe the true ellipse. The white space
between 𝐏 and 𝚺 along the 𝑥-axis is smaller for the non-
stationary bound, and about the same for both bounds
along the 𝑦-axis. This reiterates the conclusion from Fig-
ure 3 that the non-stationary bound is tighter than the sta-
tionary bound for the initial position state, but provides lit-
tle benefit for the speed state.
The ability to overbound the estimate error distribution

for any linear combination of state vector components is
critical for certain applications. In aircraft precision nav-
igation, for example, horizontal integrity risk assessment
requires overbounding a combination of the north and east
components of positioning error. For the first time, the
methods developed in this paper provide a practical means
to determine such an overbound in the presence of uncer-
tain GM noise. The next section will implement the non-
stationary model in an example application of aircraft nav-

igation using ARAIM (Working Group C - ARAIMTechni-
cal Subgroup, 2012, 2015, & 2016).

6 APPLICATION TO SEQUENTIAL
ARAIM PERFORMANCE ANALYSIS

The baseline ARAIM algorithm is a “snapshot” implemen-
tation that uses dual-frequency multi-constellation mea-
surements at one time-instant to achieve LPV-200 require-
ments, that is, requirements for localizer performance
with vertical guidance down to 200 feet above the runway
(Working Group C - ARAIM Technical Subgroup, 2015 &
2016).
However, when nominal GPS and Galileo constellations

are depleted, LPV-200 can only be sparsely achieved using
snapshot ARAIM (Working Group C - ARAIM Techni-
cal Subgroup, 2015). “Sequential ARAIM” addresses this
limitation by processing measurements over time (Joerger
& Pervan, 2015, 2016, & 2020). One major challenge in
sequential ARAIM is to derive robust models of measure-
ment errors over time. In prior work (Joerger & Pervan,
2016 & 2020), a "bias-plus-ramp" model was derived for
satellite clock and orbit error dynamics using nine months
of data. In parallel, assumptions were made on the time
correlation of tropospheric and multipath errors. Because
no method was available to account for uncertainty in cor-
relation time constants, the largest measured value was
employed for multipath, and sensitivity to residual tropo-
spheric delaywas analyzed (Joerger&Pervan, 2015, 2016, &
2020). But multipath time constants can take a wide range
of values as reported in Figures 21-22 of Pervan et al. (2017).
In this paper, we implement our new non-stationary

GM model to account for uncertainty in the correlation
time constant of multipath and tropospheric errors in
a sequential ARAIM performance analysis. This section
briefly describes the main assumptions of the multipath
and troposphere error models, and then focuses on quan-
tifying the impact of error correlation model uncertainty
on ARAIM performance. Readers may refer to Joerger and
Pervan (2015, 2016, & 2020) for details on the sequential
ARAIM implementation but should be aware that these
references focus on the batch implementation. The algo-
rithms in Joerger and Pervan (2015, 2016, & 2020) can
equivalently be implemented using a KF because sequen-
tial ARAIM risk evaluation only requires current-time
state estimates, which coincide for the KF and batch esti-
mators. In KF-based sequential ARAIM, a bank of KFs is
used to evaluate current-time full-set and subset solutions
for multiple hypothesis solution separation (MHSS). Read-
ers interested in the details of the KF versus batch imple-
mentationsmay refer to Joerger and Pervan (2013); Joerger
(2009); and Crassidis and Junkins (2004).
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6.1 Sequential ARAIM assumptions

Let 𝑠 be the number of visible and healthy GPS and Galileo
satellites at time 𝑘. The sequential ARAIM state propa-
gation and measurement equations can be written in the
form of Equations (4) and (5), where

𝝃 ∶ is the 𝑛 × 1 non-augmented state vector composed
of three-dimensional antenna position coordi-
nates and GPS/Galileo receiver clock biases, time-
invariant, float-valued carrier phase cycle ambigu-
ities, and time-invariant clock and orbit error bias
and ramp parameters for each satellite. In this case,
𝑛 = 5 + 3𝑠.

𝒂 ∶ is the 𝑙 × 1 augmentation vector, with 𝑙 = 3𝑠, made
of code and carrier multipath and troposphere
error states for each satellite.

𝒛𝑘 ∶ is the 𝑚 × 1 measurement vector, with 𝑚 = 2𝑠,
comprised of unfiltered ionosphere-free code and
carrier ranging measurements for all satellites at
time 𝑘.

For the measurement equation, 𝐃𝑘 = 𝐈𝑚, and 𝐂𝑘 and
𝐄v,𝑘 are

𝐂𝑘 =

[
𝐆𝑘 𝟎𝑠×𝑠 𝐈𝑠 𝐈𝑠 (𝑡𝑘 − 𝑡0)

𝐆𝑘 𝐈𝑠 𝐈𝑠 𝐈𝑠 (𝑡𝑘 − 𝑡0)

]
(31a)

𝐄v,𝑘 =

[
𝐇M,𝒌 𝟎𝑠×𝑠 𝐇T,𝑘

𝟎𝑠×𝑠 𝐇M,𝑘 𝐇T,𝑘

]
(31b)

where 𝐆𝑘 is an 𝑠 × 5 geometry matrix whose first three
columns are made of unit line-of-sight row vectors, and
whose next two columns have zeros and ones identi-
fying whether the receiver clock bias is for a GPS or
Galileo satellite; 𝑡0 and 𝑡𝑘 are the filter initialization time
and current time, respectively; 𝐇M,𝑘 is a diagonal matrix
of elevation-dependent multipath coefficients described
in Equations (8) and (9) of Joerger and Pervan (2016);
𝐇T,𝑘 is a diagonal matrix of elevation-dependent tropo-
sphere error coefficients given in Equations (6) and (7) of
Joerger and Pervan (2016). The measurement noise covari-
ance matrix 𝐑̂𝑘 is diagonal, with elevation-dependent ele-
ments given in Equations (10) and (11) of Joerger and
Pervan (2016).
The non-augmented process equation captures the fact

that all elements of 𝝃 are constant, except for the five posi-
tion and receiver clock bias states, for which the time prop-
agation is unknown. Thus, 𝐀 = 𝟎𝑛×𝑛, 𝐁 = 𝐈𝑛, 𝐄w = 𝟎𝑛×𝑙,
and the process noise power spectral density matrix 𝐍

has large values on the first five diagonal elements, and
zeros otherwise.

For the GM state vector, 𝐋 and𝐔 are

𝐋 =

⎡⎢⎢⎢⎢⎣
−

1

𝜏𝜌
𝐈𝑠

−
1

𝜏𝜙
𝐈𝑠

−
1

𝜏𝑇
𝐈𝑠

⎤⎥⎥⎥⎥⎦
(32)

𝐔 =

⎡⎢⎢⎢⎢⎢⎣

2𝜎2
𝜌

𝜏𝜌
𝐈𝑠

2𝜎2
𝜙

𝜏𝜙
𝐈𝑠

2𝜎2
𝑇

𝜏𝑇
𝐈𝑠

⎤⎥⎥⎥⎥⎥⎦
(33)

where 𝜎2
𝜌, 𝜎

2
𝜙
and 𝜎2

𝑇 are defined in Table 1. The values
of 𝜏𝜌, 𝜏𝜙 and 𝜏𝑇 are unknown but bounded following the
inequalities

𝜏𝜌,min ≤ 𝜏𝜌 ≤ 𝜏𝜌,max

𝜏𝜙,min ≤ 𝜏𝜙 ≤ 𝜏𝜙,max

𝜏𝑇,min ≤ 𝜏𝑇 ≤ 𝜏𝑇,max (34)

Values for the bounds on 𝜏𝜌, 𝜏𝜙 and 𝜏𝑇 are provided in
Table 1.
In order to evaluate sequential ARAIMperformance, we

assume nominal error model parameter values given in
Joerger and Pervan (2020). A constant filtering period of
10 min is assumed throughout the section.
Additional ARAIM error model parameters, such as

the bounded bias accounting for non-Gaussian ranging
errors (Working Group C - ARAIM Technical Subgroup,
2015 & 2016), are included in the simulation as explained
in Joerger and Pervan (2020) but are not described here
because they are not directly relevant to the problem of
modeling uncertain, time-correlated noise.

6.2 Sequential ARAIM integrity
monitoring performance analysis

In this subsection, we compare sequential ARAIM per-
formance using the non-stationary GM model to the
performance of snapshot ARAIM. Nominal simulation
parameters are defined in Joerger and Pervan (2020), and
include:

1. an elevation mask of 5 degrees
2. an integrity risk requirement of 10−7 per approach
3. a continuity risk requirement of 4 × 10−6 per approach
4. a vertical alert limit 𝓁 of 35 m (unless otherwise stated)
5. a prior probability of satellite fault of 10−5
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TABLE 1 Multipath and troposphere error models

Parameter description Symbol Value
Upper bound on the raw code multipath correlation time constant 𝜏𝜌,max 900s

Lower bound on the raw code multipath correlation time constant 𝜏𝜌,min 10s

Variance of GMP used to model raw code multipath at 90 deg elevation angle (Joerger & Pervan, 2016) 𝜎2
𝜌 (0.5m)

2

Upper bound on the raw carrier multipath correlation time constant 𝜏𝜙,max 900s

Lower bound on the raw carrier multipath correlation time constant 𝜏𝜙,min 10s

Variance of GMP used to model raw carrier multipath at 90 deg elevation angle (Joerger & Pervan, 2016) 𝜎2
𝜙

(5mm)
2

Upper bound on the troposphere error correlation time constant 𝜏𝑇,max 2700s

Lower bound on the troposphere error correlation time constant 𝜏𝑇,min 900s

Variance of GMP used to model zenith troposphere error 𝜎2
𝑇 (0.12m)

2

All other simulation parameters are given in Joerger and Pervan (2020).

F IGURE 5 Integrity risk bound for snapshot versus sequential
ARAIM with the non-stationary GMmodel. Bounds are computed
using depleted constellations, 𝑃const = 10−8 and 𝓁 = 10m

6. a prior probability of constellation fault 𝑃const of 10−4

(unless otherwise stated)
7. depleted constellations of “24-1” GPS satellites and “24-

1” Galileo satellites (Stanford University GPS Lab)

In Figure 5, the integrity risk is evaluated using sequen-
tial MHSS (Working Group C - ARAIM Technical Sub-
group, 2016; Joerger & Pervan, 2020) over 24 hours, at an
example Blacksburg, VA, location (37.2◦ N, −80.4◦ E),
assuming dual-frequency measurements from GPS and
Galileo. In this figure, in order to accentuate differences
between implementations, we use a vertical alert limit of
10 m (instead of 35 m) and a prior probability of constella-
tion faults of 10−8.
Figure 5 shows the significant integrity risk reduction

obtained using sequential ARAIM (thick black curve) as
compared to snapshot ARAIM (thin black curve with dia-
mond markers). The fraction of time where the integrity
risk curves are below the horizontal dotted line is the

F IGURE 6 Availability map for snapshot ARAIM using
depleted constellations, 𝑃const = 10−4, 𝓁 = 35m (coverage of 99.5%
availability is 84.6%)

availability. In this case, availability is 60% for sequen-
tial ARAIM compared to 26% for snapshot ARAIM. The
main conclusion from Figure 5 is not only that sequential
ARAIM outperforms snapshot ARAIM as in Joerger and
Pervan (2020), but also that we are still able to achieve sub-
stantial availability improvement even after accounting for
our lack of knowledge in 𝜏𝜌, 𝜏𝜙 and 𝜏𝑇 .
Figures 6 and 7 display global availability maps for a

10◦ × 10◦ latitude-longitude grid of locations, for satellite
geometries simulated at regular 10-minute intervals over a
24-hour period. Availability is computed at each location
as the fraction of time where the integrity risk bound is
lower than the 10−7 requirement. The larger presence of
white areas in Figure 7 compared to Figure 6 clearly indi-
cates that snapshot ARAIM is outperformed by sequential
ARAIM, even after accounting formeasurement error time
correlation uncertainty. The worldwide availability met-
ric given in the figure captions is the weighted coverage
of 99.5% availability. Coverage is defined as the percent-
age of grid point locations exceeding 99.5% availability. The
coverage computation is weighted at each location by the
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F IGURE 7 Availability map for sequential ARAIM with the
non-stationary GMmodel using depleted constellations,
𝑃const = 10−4, 𝓁 = 35m (coverage of 99.5% availability is 97.8%)

TABLE 2 Coverage of 99.5% availability and coverage of 95%
availability (in parentheses)

Snapshot
ARAIM

Sequential ARAIM
(non-stationary GMmodel)

84.6% 97.8%
(100%) (100%)

cosine of the location’s latitude, because grid point loca-
tions near the equator represent larger areas than near the
poles.
Table 2 lists worldwide coverage of 99.5% availability,

and of 95% availability (given in parentheses). It shows that
the coverage of 99.5% availability increases from 84.6% for
snapshot ARAIM to 97.8% for sequential ARAIM with the
new non-stationary GMmodel, a 13% improvement for the
case considered here. It is also worth pointing out that in
Langel et al. (2019), we showed that if we knew 𝜏 = 𝜏max ,
99.5% availability coverage for sequential ARAIMwould be
99.5%. Thus, we sacrifice 1.7% of availability coverage due
to time correlation uncertainty. These results would fur-
ther improve with better knowledge of the measurement
error sources, that is, if the difference between 𝜏max and
𝜏min could be reduced.

7 CONCLUSIONS

A new model for GM noise was developed that produces a
KF covariance matrix that overbounds the estimate error
distribution when the GM variances and time constants
are uncertain. We proved that our model is applicable to
both sampled-data and discrete-time systems, and demon-
strated its performance for a one-dimensional estima-
tion problem. For an aircraft navigation application using
sequential ARAIMwith our newmodel, it was shown that

under specific circumstances, a larger than 10% improve-
ment in 99.5% availability coverage is achievable compared
to conventional snapshot ARAIM.
Future work will apply the results of this paper to other

filtering applications like GNSS/INS integrated navigation.
Research is also underway extending the ideas presented in
the paper beyond first-order Gauss-Markov noise, with the
goal of developing practical overboundingmethods that do
not rely on precise mathematical knowledge of the under-
lying time correlation.
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APPENDIX A: TRUE COVARIANCEMATRIX

This appendix derives the true estimate error covariance
matrix for a state-augmented KF when there are uncertain
parameters in the augmented state dynamic models. With
Δ𝐋 = 𝐋 − 𝐋̂, the transition matrix in Equation (4) can be
written as

𝐅 =

[
𝐀 𝐁𝐄w

𝟎 𝐋̂ + Δ𝐋

]
= 𝐅 +

[
𝟎 𝟎

𝟎 Δ𝐋

]
(A1)

Then the dynamic model 𝒙̇ = 𝐅𝒙 + 𝒒 in Equation (5)

becomes 𝒙̇ = 𝐅𝒙 +

[
𝟎

Δ𝐋

]
𝒂 + 𝒒. Noting that the KF esti-

mate vector propagates as ̇̂𝒙 = 𝐅𝒙, the estimate error vector
𝜺 = 𝒙 − 𝒙 satisfies the differential equation

𝜺̇ = 𝐅𝜺 +

[
𝟎

Δ𝐋

]
𝒂 + 𝒒 (A2)

Defining Δ𝐅𝑇 = [𝟎 Δ𝐋𝑇] and incorporating the dynamic
model for the Gauss-Markov states results in the following
propagation equation[

𝜺̇

𝒂̇

]
=

[
𝐅 Δ𝐅

𝟎 𝐋

] [
𝜺

𝒂

]
+

[
𝒒

𝒖

]
(A3)

The estimate vector after the measurement update is
𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝐊𝑘(𝒛𝑘 − 𝐇𝑘𝒙𝑘|𝑘−1). It is straightforward
to show that the estimate error vector is 𝜺𝑘|𝑘 = (𝐈 −

𝐊𝑘𝐇𝑘)𝜺𝑘|𝑘−1 − 𝐊𝑘𝐃𝑘𝒓𝑘. When combined with 𝒂𝑘 = 𝒂𝑘,
the update equation is[

𝜺𝑘|𝑘
𝒂𝑘

]
=

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

] [
𝜺𝑘|𝑘−1

𝒂𝑘

]
−

[
𝐊𝑘𝐃𝑘

𝟎

]
𝒓𝑘 (A4)
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The covariance matrix 𝐏 = 𝐸[𝒆𝒆𝑇] propagates between
measurements according to Simon (2006)

𝐏̇ =

[
𝐅 Δ𝐅

𝟎 𝐋

]
𝐏 + 𝐏

[
𝐅𝑇 𝟎

Δ𝐅𝑇 𝐋𝑇

]
+ 𝐐 (A5)

where

𝐐 = 𝐸

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
𝐁𝒏

𝒖

𝒖

⎤⎥⎥⎦
[
𝒏𝑇𝐁𝑇 𝒖𝑇 𝒖𝑇

]⎫⎪⎬⎪⎭ =
⎡⎢⎢⎣
𝐁𝐍𝐁𝑇 𝟎 𝟎

𝟎 𝐔 𝐔

𝟎 𝐔 𝐔

⎤⎥⎥⎦ (A6)

During a measurement update, the covariance matrix is
updated through

𝐏𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝐏𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘𝐑𝑘𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(A7)

Equations (A5) and (A7) are identical to Equations (10) and
(11) stated in Section 4.

APPENDIX B: INITIAL VARIANCE BOUND

This appendix derives the minimum allowable initial vari-
ance for the process in Equation (21). The derivation is
based on the requirement that 𝚫(0) ≥ 0 and 𝚺𝑥𝑎(0) = 𝟎. If
no prior information exists to initialize 𝒂 (the case consid-
ered here), the initial estimate for the augmented states is
𝒂0 = 𝟎. We also assume that 𝝃0 and 𝒂̂0 are initially uncor-
related, so that 𝐸 [𝜺𝜉,0𝜺

𝑇
𝑎,0] = 𝟎.

This leads to the following expected values

𝐸 [𝜺𝜉,0 𝜺
𝑇
𝑎,0 ] = 𝐸 [𝜺𝜉,0(𝒂0 − 𝒂0)

𝑇
] = 𝐸 [𝜺𝜉,0𝒂

𝑇
0 ] = 𝟎

𝐸 [𝜺𝑎,0 𝜺𝑇𝑎,0 ] = 𝐸 [(𝒂0 − 𝒂0)(𝒂0 − 𝒂0)
𝑇
] = 𝐸 [𝒂0𝒂

𝑇
0 ]

𝐸 [𝜺𝑎,0𝒂
𝑇
0 ] = 𝐸 [(𝒂0 − 𝒂0)𝒂

𝑇
0 ] = 𝐸 [𝒂0𝒂

𝑇
0 ] (B8)

where we have used the fact that because 𝒂̂0 = 𝟎,
𝐸[𝜺𝜉,0 𝒂̂𝑇

0 ], 𝐸[𝒂0 𝒂̂𝑇
0 ] and 𝐸 [𝒂0𝒂

𝑇
0 ] are all equal to 𝟎.

Using these relations, the true initial covariance matrix of
[𝜺𝑇𝜉,0 𝜺𝑇𝑎,0 𝒂𝑇

0 ] is

𝐏(0) =
⎡⎢⎢⎣
𝐏𝜉,𝟎 𝟎 𝟎

𝟎 𝐏𝑎,0 𝐏𝑎,0

𝟎 𝐏𝑎,0 𝐏𝑎,0

⎤⎥⎥⎦ (B9)

The requirement 𝚺𝑥𝑎 = 𝟎 implies that

𝚺(0) =
⎡⎢⎢⎣
𝚺𝜉,0 𝟎 𝟎

𝟎 𝚺𝑎,0 𝟎

𝟎 𝟎 𝚺𝑎,0

⎤⎥⎥⎦ (B10)

The goal is to determine 𝚺𝑎,0 so that 𝚺(0) ≥ 𝐏(0). Subtract-
ing 𝐏(0) from 𝚺(0) results in

𝚺(0) − 𝐏(0) =
⎡⎢⎢⎣
𝚺𝜉,0 − 𝐏𝜉,0 𝟎 𝟎

𝟎 𝚺𝑎,0 − 𝐏𝑎,0 −𝐏𝑎,0

𝟎 −𝐏𝑎,0 𝚺𝑎,0 − 𝐏𝑎,0

⎤⎥⎥⎦
(B11)

Using Schur complements (Gallier, 2019), 𝚺(0) ≥ 𝐏(0) if
and only if

[
𝚺𝜉,0 − 𝐏𝜉,0 𝟎

𝟎 (𝚺𝑎,0 − 𝐏𝑎,0 ) − 𝐏𝑎,0(𝚺𝑎,0 − 𝐏𝑎,0 )
−1

𝐏𝑇
𝑎,0

]
≥ 0

(B12)
It is assumed that 𝚺𝜉,0 can be determined so that (𝚺𝜉,0 −

𝐏𝜉,0 ) ≥ 0. Then it suffices to show that

(𝚺𝑎,0 − 𝐏𝑎,0 ) − 𝐏𝑎,0(𝚺𝑎,0 − 𝐏𝑎,0 )
−1

𝐏𝑇
𝑎,0 ≥ 0 (B13)

Allmatrices in Equation (B13) are diagonal. Denoting an
arbitrary diagonal element of 𝚺𝑎,0, 𝚺𝑎,0 and 𝐏𝑎,0 as 𝜎2

0, 𝜎
2

and 𝜎2, respectively, we can therefore consider the scalar
condition

(𝜎2
0 − 𝜎2) −

𝜎4

𝜎
2
− 𝜎2

≥ 0 (B14)

It can be shown from Equation (20) that

𝜎
2
= 2𝜎2∕[1 − 𝜏∕𝜏max ] (B15)

Substituting this result into Equation (B14) and simplifying
yields

𝜎2
0 ≥

2𝜎2

1 + (𝜏∕𝜏max)
(B16)

With 𝜎2 ∈ [0, 𝜎2
max ] and 𝜏 ∈ [𝜏min, 𝜏max ], the initial

variance 𝜎2
0 must satisfy the inequality

𝜎2
0 ≥

2𝜎2
max

1 + (𝜏min∕𝜏max)
(B17)
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APPENDIX C: DISCRETE-TIME COVARIANCE
ERRORMATRIX

This appendix derives propagation equations for the
covariance errormatrixΔ associatedwith the discrete-time
system [

𝝃𝑘+1

𝒂𝑘+1

]
=

[
𝐀𝑘 𝐁𝑘𝐄w,𝑘

𝟎 𝐋𝑘

] [
𝝃𝑘
𝒂𝑘

]
+

[
𝐁𝑘𝒏𝑘

𝒖𝑘

]
𝒛𝑘 =

[
𝐂𝑘 𝐃𝑘𝐄v,𝑘

] [𝝃𝑘
𝒂𝑘

]
+ 𝐃𝑘𝒓𝑘 (C18)

where 𝐸 [𝒏𝑘𝒏
𝑇
𝑙
] = 𝐍𝑘𝛿kl, 𝐸[𝒓𝑘𝒓

𝑇
𝑙
] = 𝐑𝑘𝛿𝑘𝑙 and 𝒂𝑘 is a vec-

tor of first-order GMPs with unknown but bounded time
constants. We assume 𝐍̂𝑘 ≥ 𝐍𝑘 and 𝐑̂𝑘 ≥ 𝐑𝑘 can be spec-
ified, and that 𝒙𝑇

𝑘
= [𝝃𝑇

𝑘
𝒂𝑇

𝑘
] is estimated with a KF that

models uncertain GMPs using Equation (28), restated
below

𝑎𝑘+1 = 𝑒−Δ𝑡∕𝜏max𝑎𝑘 +

√(
𝜎2

max𝜏max

𝜏min

)(
1 − 𝑒−2Δ𝑡∕𝜏max

)
𝑤𝑘

𝑤𝑘 ∼ WGN (0, 1)

𝜎2
0 =

2𝜎2
max

1 + (𝜏min∕𝜏max)
(C19)

With 𝜙 = 𝑒−Δ𝑡∕𝜏 and 𝛾 = 𝜎
√

1 − 𝜙2, a discrete-time
GMP is governed by the difference equation Rogers (2003)
𝑎𝑘+1 = 𝜙𝑎𝑘 + 𝛾𝑤𝑘, such that 𝑤𝑘 ∼ WGN(0, 1). Therefore,

𝐋𝑘 =
⎡⎢⎢⎣
𝜙1

⋱

𝜙𝑙

⎤⎥⎥⎦ and 𝐔𝑘 =
⎡⎢⎢⎣
𝛾2
1

⋱

𝛾2
𝑙

⎤⎥⎥⎦ (C20)

For the process in Equation (C19), let us also define 𝜙̂ =

𝑒−Δ𝑡∕𝜏max and 𝛾 =

√
(
𝜎2
max𝜏max

𝜏min
)(1 − 𝜙2) so that 𝐋̂𝑘 is 𝐋𝑘

populated with 𝜙̂’s and 𝐔̂𝑘 is 𝐔𝑘 populated with 𝛾̂’s. After
defining

𝐅𝑘 =

[
𝐀𝑘 𝐁𝑘𝐄w,𝑘

𝟎 𝐋̂𝑘

]
, 𝐐̂𝑥,𝑘 =

[
𝐁𝑘𝐍̂𝑘𝐁

𝑇
𝑘

𝟎

𝟎 𝐔̂𝑘

]
𝐇𝑘 =

[
𝐂𝑘 𝐃𝑘𝐄v,𝑘

]
(C21)

the KF covariance matrix propagates according to Gelb
et al. (1974)

𝚺𝑥,𝑘+1|𝑘 = 𝐅𝑘𝚺𝑥,𝑘|𝑘𝐅𝑇
𝑘
+ 𝐐̂𝑥,𝑘 , 𝚺𝑥,0|0 =

[
𝚺𝜉,0 𝟎

𝟎 𝚺𝑎,0

]
(C22a)

𝚺𝑥,𝑘|𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘)𝚺𝑥,𝑘|𝑘−1 (𝐈 − 𝐊𝑘𝐇𝑘)
𝑇

+𝐊𝑘𝐃𝑘𝐑̂𝑘𝐃
𝑇
𝑘
𝐊𝑇

𝑘
(C22b)

where𝐊𝑘 is the Kalman gain matrix and 𝚺𝑎,0 is a diagonal
matrix populated with the 𝜎2

0 ’s from Equation (C19).
Following the same approach as in Section 4, it can be

shown that the true covariance matrix propagates as

𝐏0|0 =
⎡⎢⎢⎣
𝐏𝜉,0 𝟎 𝟎

𝟎 𝐏𝑎,0 𝐏𝑎,0

𝟎 𝐏𝑎,0 𝐏𝑎,0

⎤⎥⎥⎦ (C23a)

𝐏𝑘+1|𝑘 =

[
𝐅𝑘 Δ𝐅𝑘

𝟎 𝐋𝑘

]
𝐏𝑘|𝑘

[
𝐅𝑘 Δ𝐅𝑘

𝟎 𝐋𝑘

]𝑇

+

[
𝐐𝑥,𝑘 𝐐xa,𝑘
𝐐𝑇
xa,𝑘 𝐔𝑘

]
(C23b)

𝐏𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝐏𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘𝐑𝑘𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(C23c)

such that Δ𝐅𝑇
𝑘

= [0 ΔL𝑇
𝑘
], 𝐐𝑇

𝑥𝑎 = [𝟎 𝐔𝑘 ] and 𝐐𝑥,𝑘 has
the same form as 𝐐̂𝑥,𝑘, except that 𝐍̂𝑘 and 𝐔̂𝑘 are replaced
with 𝐍𝑘 and 𝐔𝑘. A comparison between the KF and true
covariance matrices is made using the same approach as
in Section 5. That is, by specifying a propagation structure
for the larger covariance matrix 𝚺 that facilitates forming
the error matrix 𝚫𝑘|𝑘 = 𝚺𝑘|𝑘 − 𝐏𝑘|𝑘. To this aim, we define
propagation equations for 𝚺𝑘|𝑘 as

𝚺0|0 =
⎡⎢⎢⎣
𝚺𝜉,0 𝟎 𝟎

𝟎 𝚺𝑎,0 𝟎

𝟎 𝟎 𝚺𝑎,0

⎤⎥⎥⎦ (C24a)

𝚺𝑘+1|𝑘 =

[
𝐅𝑘 𝟎

𝟎 𝐋𝑘

]
𝚺𝑘|𝑘

[
𝐅𝑘 𝟎

𝟎 𝐋𝑘

]𝑇

+

[
𝐐̂𝑥,𝑘 𝟎

𝟎 𝐔𝑘

]
(C24b)

𝚺𝑘|𝑘 =

[
𝑙𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝚺𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘𝐑̂𝑘𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(C24c)

where 𝚺𝑎,0 is defined in Section 5.2 and 𝐔𝑘 is diagonal
with 𝑖th diagonal element 𝜎

2
𝑖 (1 − 𝜙2

𝑖
). The reader should

be aware that these are not the only options for 𝚺𝑎,0 and
𝐔𝑘. Other matrices could be specified. We will focus on
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the particular realizations above because they are a logical
choice and facilitate subsequent analysis.
The structure in Equations (C24b) and (C24c) ensures

that 1) Equations (C22a) and (C22b) remain intact, 2)
𝚺0|0 ≥ 𝐏0|0, which was shown in Section 5.2, and 3) the
lower right block of𝚺𝑘|𝑘 is time-invariant and always equal
to its initial value 𝚺𝑎,0. The next step is to form the differ-
ences 𝚺𝑘+1|𝑘 − 𝐏𝑘+1|𝑘 and 𝚺𝑘|𝑘 − 𝐏𝑘|𝑘 to define propaga-
tion equations for the covariance error matrix𝚫. However,
Equation (C24b) is not ideal because the matrix bracket-
ing 𝚺𝑘|𝑘 on the right-hand side does not match the matrix
bracketing 𝐏𝑘|𝑘 in Equation (C23b). In response, let us
rewrite Equation (C24b) as

𝚺𝑘+1|𝑘 =

[
𝐅𝑘 Δ𝐅𝑘

𝟎 𝐋𝑘

]
𝚺𝑘|𝑘

[
𝐅𝑘 Δ𝐅𝑘

𝟎 𝐋𝑘

]𝑇

+

[
𝐐̂𝑥,𝑘 𝟎

𝟎 𝐔𝑘

]

−

[
Δ𝐅𝑘 𝚺𝑎,0Δ𝐅𝑇

𝑘
Δ𝐅𝑘𝚺𝑎,0𝐋

𝑇
𝑘

𝐋𝑘 𝚺𝑎,0Δ𝐅𝑇
𝑘

𝟎

]
(C25)

where we utilize the fact that 𝚺 is a block diagonal matrix
and that the lower right block is time invariant. Now we
can subtract Equations (C23b) and (C23c) from Equations
(C24b) and (C24c), resulting in the covariance error prop-
agation equations

𝚫𝑘+1|𝑘 =

[
𝐅𝑘 𝚫𝐅𝑘

𝟎 𝐋𝑘

]
𝚫𝑘|𝑘

[
𝐅𝑘 𝚫𝐅𝑘

𝟎 𝐋𝑘

]𝑇

+

[
𝐐̂𝑥,𝑘 − 𝐐𝑥,𝑘 −𝐐xa,𝑘

−𝐐𝑇
xa,𝑘 𝐔𝑘 − 𝐔𝑘

]

−

[
Δ𝐅𝑘 𝚺𝑎,0Δ𝐅𝑇

𝑘
Δ𝐅𝑘 𝚺𝑎,0 𝐋

𝑇
𝑘

𝐋𝑘 𝚺𝑎,0Δ𝐅𝑇
𝑘

𝟎

]
(C26)

𝚫𝑘|𝑘 =

[
𝐈 − 𝐊𝑘𝐇𝑘 𝟎

𝟎 𝐈

]
𝚫𝑘|𝑘−1

[
(𝐈 − 𝐊𝑘𝐇𝑘)

𝑇
𝟎

𝟎 𝐈

]

+

[
𝐊𝑘𝐃𝑘(𝐑̂𝑘 − 𝐑𝑘)𝐃

𝑇
𝑘
𝐊𝑇

𝑘
𝟎

𝟎 𝟎

]
(C27)

APPENDIX D: PROOF OF POSITIVE
SEMI-DEFINITENESS

This appendix shows that the following matrix

𝐖 =

[
𝐐̂𝑥,𝑘 − 𝐐𝑥,𝑘 − Δ𝐅𝑘𝚺𝑎,0Δ𝐅𝑇

𝑘
−𝐐xa,𝑘 − Δ𝐅𝑘𝚺𝑎,0𝐋

𝑇
𝑘

−𝐐𝑇
xa,𝑘 − 𝐋𝑘𝚺𝑎,0Δ𝐅𝑇

𝑘
𝐔𝑘 − 𝐔𝑘

]
(D28)

is positive semi-definite. Recalling that Δ𝐅𝑇
𝑘

= [𝟎 Δ𝐋𝑇
𝑘
]

and𝐐𝑇
xa = [0 𝐔𝑘], and using the definition for 𝐐̂𝑘 given in

Equation (C21),𝐖 can be written in the 3 × 3 block form

𝐖 =

⎡⎢⎢⎢⎢⎣
𝐁𝑘(𝐍̂𝑘 − 𝐍𝑘)𝐁𝑇

𝑘
𝟎 𝟎

𝟎
𝐔̂𝑘 − 𝐔𝑘−

Δ𝐋𝑘𝚺𝑎,0Δ𝐋𝑇
𝑘

−𝐔𝑘 − Δ𝐋𝑘𝚺𝑎,0𝐋
𝑇
𝑘

𝟎 −𝐔𝑇
𝑘
− 𝐋𝑘𝚺𝑎,0Δ𝐋𝑇

𝑘
𝐔𝑘 − 𝐔𝑘

⎤⎥⎥⎥⎥⎦
(D29)

wherewe have used the fact that𝐐𝑘 has the same structure
as 𝐐̂𝑘 with 𝐍̂𝑘, 𝐔̂𝑘 replaced by𝐍𝑘 and𝐔𝑘.
Making the definitions

𝐗 =

[
𝐁𝑘(𝐍̂𝑘 − 𝐍𝑘)𝐁𝑇

𝑘
𝟎

𝟎 𝐔̂𝑘 − 𝐔𝑘 − Δ𝐋𝑘𝚺𝑎,0Δ𝐋𝑇
𝑘

]
(D30a)

𝐘 =

[
𝟎

−𝐔𝑘 − Δ𝐋𝑘𝚺𝑎,0𝐋
𝑇
𝑘

]
and 𝐙 = 𝐔𝑘 − 𝐔𝑘 (D30b)

allows𝐖 to be written as𝐖 =

[
𝐗 𝐘

𝐘𝑇 𝐙

]
. To prove that𝐖 ≥

0, we use the fact that with 𝐙 > 0 and invertible, 𝐖 ≥ 0 if
and only if (Gallier, 2019)

𝐒 = 𝐗 − 𝐘𝐙−1𝐘𝑇 ≥ 0 (D31)

To show that 𝐙 > 0 and invertible, first note from
Appendix C that 𝐔𝑘 − 𝐔𝑘 is a diagonal matrix with 𝑖th

diagonal element

(
𝐔𝑘 − 𝐔𝑘

)
ii
=

2𝜎2
𝑖
𝜏𝑖,max

𝜏𝑖,max − 𝜏𝑖
(1 − 𝜙2

𝑖
) − 𝜎2

𝑖
(1 − 𝜙2

𝑖
)

= 𝜎2
𝑖
(1 − 𝜙2

𝑖
)

(
𝜏𝑖,max + 𝜏𝑖

𝜏𝑖,max − 𝜏𝑖

)
(D32)

Since 0 ≤ 𝜙𝑖 ≤ 1 and 𝜏𝑖 ≤ 𝜏𝑖,max, (𝐔𝑘 − 𝐔𝑘)𝑖𝑖 > 0. Thus,
the necessary conditions that 𝐙 > 0 and invertible are sat-
isfied.
SubstitutingEquations (D30a) and (D30b) intoEquation

(D31) results in

𝐒 =

[
𝐁𝑘(𝐍̂𝑘 − 𝐍𝑘)𝐁

𝑇
𝑘

𝟎

𝟎 𝚲

]
, such that

𝚲 = (𝐔̂𝑘 − 𝐔𝑘) − Δ𝐋𝑘𝚺𝑎,0Δ𝐋𝑇
𝑘

− (𝐔𝑘 + Δ𝐋𝑘𝚺𝑎,0𝐋
𝑇
𝑘
)(U𝑘 − 𝐔𝑘)

−1
(𝐔𝑘 + Δ𝐋𝑘𝚺𝑎,0𝐋

𝑇
𝑘
)
𝑇

(D33)
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One way to prove that 𝐒 ≥ 0 is to show that 𝐁𝑘

(𝐍̂𝑘 − 𝐍𝑘)𝐁
𝑇
𝑘
and 𝚲 are both positive semi-definite. Since

we assumed that 𝐍̂𝑘 ≥ 𝐍𝑘, clearly 𝐁𝑘(𝐍̂𝑘 − 𝐍𝑘)𝐁
𝑇
𝑘
≥ 0. It

is more difficult to assess whether 𝚲 ≥ 0. To proceed, first
notice that𝚲 is a diagonalmatrix because it is a linear com-
bination of products of diagonal matrices. Thus, we can
prove that 𝚲 ≥ 0 by showing that the diagonal elements
are always nonnegative.

D.1 Defining an arbitrary diagonal element of Λ

This subsection develops an expression for an arbitrary
diagonal element of 𝚲. From Appendices B and C, the 𝑖th

diagonal elements of each matrix in Equation (D33) are

(𝐔̂𝑘)ii =
𝜎2

𝑖,max
𝜏𝑖,max

𝜏𝑖,min
(1 − 𝜙2

𝑖
)

(𝐔𝑘)ii = 𝜎2
𝑖
(1 − 𝜙2

𝑖
)

(𝚺𝑎,0)ii = 𝜎
2
𝑖 , where 𝜎

2
𝑖 =

2𝜎2
𝑖
𝜏𝑖,max

𝜏𝑖,max − 𝜏𝑖

(𝐔𝑘)ii = 𝜎
2
𝑖 (1 − 𝜙2

𝑖
)

(𝐋𝑘)ii = 𝜙𝑖

(Δ𝐋𝑘)ii = (𝐋𝑘 − 𝐋̂𝑘 )ii = 𝜙𝑖 − 𝜙𝑖 (D34)

Substituting the expressions from Equation (D34) into
Equation (D33), the 𝑖th diagonal element of 𝚲 is

𝜆𝑖 =
𝜎2

𝑖,max𝜏𝑖,max

𝜏𝑖,min
(1 − 𝜙̂2

𝑖
) − 𝜎2

𝑖
(1 − 𝜙2

𝑖
) − 𝜎

2
𝑖 (𝜙𝑖 − 𝜙̂𝑖)

2

−

[
𝜎2

𝑖
(1 − 𝜙2

𝑖
) + 𝜎

2
𝑖 𝜙𝑖(𝜙𝑖 − 𝜙̂𝑖)

]2
𝜎2

𝑖
(1 − 𝜙2

𝑖
)

(
𝜏𝑖,max + 𝜏𝑖

𝜏𝑖,max − 𝜏𝑖

) (D35)

As 𝜎2
𝑖
approaches 𝜎2

𝑖,max
, 𝜆𝑖 gets smaller. Thus, we will

focus on proving that 𝜆𝑖 ≥ 0 for the limiting case when
𝜎2

𝑖
= 𝜎2

𝑖,max. From this point forward, the 𝑖 index will be
dropped to simplify notation. Let 𝑟 = 𝜏max∕𝜏min and 𝛽 =

𝜎2 𝜏max∕(𝜏 − 𝜏max ). Then Equation (D34) shows that 𝜎
2

can be written as 𝜎2
= −2𝛽, and Equation (D35) simplifies

to

𝜆 =

[
𝜎2 (1 − 𝜙2 ) − 2𝛽𝜙(𝜙 − 𝜙)

]2
(𝜎2 + 2𝛽)(1 − 𝜙2)

− 𝜎2 (1 − 𝜙2 ) + 2𝛽(𝜙 − 𝜙)
2
− 𝜎2𝑟(𝜙2 − 1) (D36)

Defining the expression inside the square brackets in
Equation (36) as −𝜔, we obtain the final form for 𝜆 used
in this appendix

𝜆 = 𝑎𝜔2 + 𝜔 + 𝑐, 𝑎 =
1

(𝜎2 + 2𝛽)(1 − 𝜙2)

𝑐 = 2𝛽𝜙2 − 2𝛽𝜙𝜙 − 𝜎2𝑟(𝜙2 − 1)

𝜔 = (𝜎2 + 2𝛽)𝜙2 − 2𝛽𝜙𝜙 − 𝜎2 (D37)

D.2 Monotonicity of 𝜆

We will now show that 𝜆 is a monotonically increasing
function of Δ𝑡 for any 𝜏, 𝜏min and 𝜏max satisfying 𝜏 ∈

[𝜏min, 𝜏max ] and 𝜏min ≤ 𝜏max. With this fact established,
the range of 𝜆(Δ𝑡) is entirely defined by its values atΔ𝑡 = 0

and Δ𝑡 = ∞. The proof is based on the fact that a differ-
entiable function is monotonically increasing if its deriva-
tive is nonnegative at every point in the function’s domain
(Bermant, 1963). It is safe to use this criteria for mono-
tonicity because 𝜆(Δ𝑡) is continuous and therefore differ-
entiable.
From Equation (D37), we have the following derivatives

𝑑𝜔

𝑑Δ𝑡
= −

2(𝜎2 + 2𝛽)

𝜏
𝜙2 + 2𝛽

(
1

𝜏
+

1

𝜏max

)
𝜙𝜙

da
𝑑Δ𝑡

= −
2𝑎𝜙2

𝜏(1 − 𝜙2)

dc
𝑑Δ𝑡

= 2𝛽

(
1

𝜏
+

1

𝜏max

)
𝜙𝜙 −

2𝜙2

𝜏max
(2𝛽 − 𝜎2𝑟) (D38)

which, after simplification, lead to the following expres-
sion for 𝑑𝜆∕𝑑Δ𝑡

𝑑𝜆

𝑑Δ𝑡
= (2𝑎𝜔 + 1)

𝑑𝜔

𝑑Δ𝑡
+ 𝜔2 da

𝑑Δ𝑡
+

dc
𝑑Δ𝑡

= −
(

2𝛾𝜙

𝜏

)[
𝜙

𝛾2(1−𝜙2 )
2 𝜔

2 +
2(𝜙−𝜙)

𝛾(1−𝜙2 )
𝜔

+𝜙 − 2𝜙 +
𝜙2𝜏

𝛾𝜙𝜏max
(2𝛽 − 𝜎2𝑟)

]
(D39)

where 𝛾 = 𝜎2 + 2𝛽 = 𝜎2(𝜏 + 𝜏max)∕(𝜏 − 𝜏max). It will be
useful to define the quantity in square brackets as

𝜓 = 𝑏2𝜔
2 + 𝑏1𝜔 + 𝑏0, where

𝑏2 =
𝜙

𝛾2(1 − 𝜙2 )
2
, 𝑏1 =

2(𝜙 − 𝜙)

𝛾(1 − 𝜙2 )



276 LANGEL et al

𝑏0 = 𝜙 − 2𝜙 +
𝜙2𝜏

𝛾𝜙𝜏max
(2𝛽 − 𝜎2𝑟) (D40)

so that 𝑑𝜆∕𝑑Δ𝑡 = −(2𝛾𝜙∕𝜏)𝜓.
The factor−(2𝛾𝜙∕𝜏) is nonnegative, which follows from

the fact that 𝛾 ≤ 0. Therefore, 𝑑𝜆∕𝑑Δ𝑡 will be nonnega-
tive as long as 𝜓 ≥ 0. We can prove that 𝜓 is nonnega-
tive by examining its behavior as a function of Δ𝑡. A given
value Δ𝑡∗ uniquely determines the quantities 𝑏∗

0 , 𝑏
∗
1 , 𝑏

∗
2

and 𝜔∗ that, when substituted into Equation (D40), pro-
duce the value 𝜓∗. In addition to giving us 𝜓∗, Equation
(D40) also tells us that 𝜔∗ must be a root of the equation
𝑏∗
2 𝜔2 + 𝑏∗

1 𝜔 + 𝑏∗
0 − 𝜓∗ = 0. A necessary condition for the

quadratic equation to have at least one real root is that the
discriminant 𝐷 = (𝑏∗

1)
2
− 4𝑏∗

2 (𝑏∗
0 − 𝜓∗ ) is greater than or

equal to zero (Manfrino et al., 2015), that is, if

(𝑏∗
1 )

2
− 4𝑏∗

2 𝑏
∗
0

4𝑏∗
2

≥ −𝜓∗ (D41)

From the definitions in Equation (D40), notice that

𝑏2
1 − 4𝑏2𝑏0

4𝑏2
=

𝜙̂2

𝜙

[
1 −

𝜏(2𝛽 − 𝜎2𝑟)

𝜏max𝛾

]
(D42)

The term in brackets is always less than or equal to zero,
which can be shown by considering the inequality[

1 −
𝜏(2𝛽 − 𝜎2𝑟)

𝛾𝜏max

]
≤ 0 (D43)

Substituting the definitions for 𝛽, 𝑟 and 𝛾 into Equation
(D43) results in the new inequality

𝜏(2𝜏min − 𝜏 + 𝜏max)

𝜏min(𝜏 + 𝜏max)
≥ 1 (D44)

Equation (D44) can also be written as

−𝜏2 + 𝜏(𝜏min + 𝜏max) − 𝜏min𝜏max ≥ 0 (D45)

As a function of 𝜏, the left-hand side of Equatiion (D45)
is a parabola that starts at zero when 𝜏 = 𝜏min, rises to
its maximum value (𝜏max − 𝜏min)

2
∕4 when 𝜏 = (𝜏min +

𝜏max)∕2, and then falls back to zero when 𝜏 = 𝜏max. Thus,
the inequality in Equation (D45) is always true. Tracing
this result back to Equation (D42), we can conclude that

𝑏2
1 − 4𝑏2𝑏0

4𝑏2
≤ 0 (D46)

Given that Equation (D46) is valid for any 𝜏, 𝜏min, 𝜏max
and Δ𝑡, we can conclude from Equation (D41) that 𝜓∗ ≥ 0.
Since Δ𝑡∗ is arbitrary, it must be that 𝜓 is nonnegative for
all values of 𝜏, 𝜏min, 𝜏max and Δ𝑡. This completes the proof
that 𝑑𝜆∕𝑑Δ𝑡 ≥ 0 and therefore that 𝜆 is a monotonically
increasing function of Δ𝑡.

D.3 Establishing the range of 𝜆

Since 𝜆 is a monotonically increasing function of Δ𝑡, the
range of 𝜆 is entirely defined by its value at Δ𝑡 = 0 and
Δ𝑡 = ∞. Substituting these values for Δ𝑡 into Equation
(D37) leads to the conclusion that

𝜆 ∈

[
0,

𝜎2𝜏max
𝜏min(𝜏 + 𝜏max)

(𝜏 − 2𝜏min + 𝜏max)

]
(D47)

The sign of the right endpoint is dictated by the sign of
the quantity 𝜏 − 2𝜏min + 𝜏max. The minimum value of this
quantity is 𝜏max − 𝜏min when 𝜏 = 𝜏min. Since 𝜏min ≤ 𝜏max,
the right endpoint is greater than or equal to zero.
We have therefore established that 𝜆 ≥ 0 for all admis-

sible values of 𝜎2, 𝜏, 𝜏min, 𝜏max and Δ𝑡. This completes the
proof that the matrix in Equation (D28) is positive semi-
definite.
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